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Abstract—A typical cell has a size of only 10 µm while it 

contains about a billion proteins. Transportation of these 

proteins from their synthesis sites to their target locations 

within or outside of the cell is precisely controlled by protein 

sorting signals. However, genome-wide understanding of 

protein sorting regulatory signals and mechanisms is still 

very limited. We formulate the protein sorting motif 

discovery problem as a classification problem and proposed 

a Bayesian classifier based motif discovery algorithm 

(BayesMotif) to find a common type of sorting motifs in 

which a highly conserved anchor is present along with a less 

conserved motif regions. Experiments showed that our 

algorithm has the advantage of finding long lowly conserved 

sorting signals compared to other protein motif discovery 

algorithms such as MEME. Our algorithm also has the 

advantage to easily include additional meta-sequence 

features that overcomes the limitation of PWM (position 

weight matrix) 

Keywords-protein sorting motif; motif discovery, Bayesian 
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I.  INTRODUCTION 

A typical cell has a size of only 10 µm while it 

contains about a billion proteins. How these proteins are 

transported from their synthesis sites to their target 

locations within or outside of the cell is still not well 

understood. Experiments showed that translocation of 

nascent proteins are usually guided by “postal code” like 

targeting signals encoded within the amino acid sequences 

of proteins. Genome-wide identification and decoding of 

these molecular “zip codes” are fundamental to 

comprehensive understanding of the cell. Experimentally 

identifying protein targeting signals is labor and cost 

intensive, usually using a tedious cut-and-test approach 

[1;2]. Recently, genome scale protein localization data has 

become available [3] for a couple of species and gene 

ontology also provides a large amount of localization 

information of proteins [4]. These datasets provide a great 

opportunity for developing bioinformatic algorithms to 

identify protein sorting signals to guide biological 

experiments. However, computational prediction of 

targeting signals is still a big challenge due to their low 

conservation at the amino acid level. Many motif 

discovery algorithms [5] have been proposed in the past 

decades but mostly have been only tested or applicable to 

DNA motif discovery with alphabet of four nucleotides 

rather than 20 amino acids.  Two commonly used de novo 

protein motif discovery algorithms are MEME [6] and 

TEIRESAS [7], which are not very effective to mine these 

signals due to the low conservation of sorting motifs at the 

amino acid level and/or their length.  
In this paper, we are interested in de novo discovery of 

a common type of protein sorting motifs that are 

composed of a highly conserved anchor (2 to 5 amino 

acids long) and a less conserved amino acid region with a 

specific physichemical property. Most of these sorting 

signals are located within the 200 amino acids of the N-

terminal or C-terminal. For example, Chaddock et al. [8] 

examined thylakoid transfer signals from all of the known 

lumenal proteins and found that all of the substrates for 

the ApH-dependent translocase possess a twin-arginine 

motif (RR) immediately before the hydrophobic (H) 

amino acid region. Brink [9] showed that the RR motif 

alone is not sufficient for the delta pH transportation and 

another signal inside the hydrophobic region is required. 

Sheikh and Isacke reported a di-hydrophobic motif 

Leu330-Val334 motif which is located within a 

cytoploasmic domain [10].  

II. METHODOLOGY: BAYESIAN CLASSIFIER FOR 

PROTEIN SORTING MOTIF DISCOVERY 

A.  Overview of the algorithm 

We formulate the protein sorting motif discovery 

problem as a classification problem: Given a set of protein 

sequences 1 2{ , ,... }NP s s s that are localized to the 

same location L , a negative set N of sequences are 

selected composed of proteins that are not localized to 

location L .  Identification of sorting motifs can be thus 

mapped to finding a motif model which can differentiate 

the motif instances from positive sequence set from 

background of the negative sequences. The higher the 

classification accuracy of a motif model has to 

differentiate positive sets from negative sets, the better the 

motif model. 

We are interested in protein sorting motifs that are 

composed of a highly conserved, but short anchor (mostly 

these anchors have fewer amino acids than 4, e.g.: in RR 

translocation pathway, the signal peptide all have a twin-

arginine pair located between N and H region, and for 

LDL receptors, an NPXY motif frequently shows up at 

COOH terminal of the sequence) and a comparably low-

conserved motif region around the anchor. Because most 

of the sorting motifs are not well conserved at the amino 

acid level, it will be difficult to find out these motifs by 

sequence alignment. Our approach is to firstly search the 

most frequent anchors in positive datasets, then use 



Bayesian classifier to test if an anchor has a motif region 

around which can well differentiate them from 

background sequences (negative dataset).  Our method is 

also able to determine motif boundary by a sliding-

window test on cross validation score returned by 

Bayesian classifier. 

Our motif finding algorithm is composed of three 

major steps (Figure 1): 

1)  Preprocessing protein sequences by cutting protein 

sequences and keep only N-terminal and C-terminal K 

amino acids and then do redundancy removal 

2) Finding frequent anchors by regular expression 

enumeration; 

3) Constructing Bayesian classifier to detect low 

conserved motif regions around anchors; 

4) Based on the motif boundary given by step 3, calculate 

discrimination score for each motif using cross-validation 

test on Bayesian classifier again.  

B. Preprocessing of datasets 

In protein sorting motif discovery problem, a given set 

of proteins assumed to be transported to a specific 

location are given. These proteins can be either obtained 

from gene ontology annotation or genome scale 

localization experiments. For each such sequence, we will 

cut 200 amino acids from the N-terminal and C-terminal 

and apply the motif discovery algorithms on them.  

Figure 1. BayesMotif discovery algorithm 

To evaluate our algorithm, we use both synthetic 

datasets and real datasets from Swiss-Prot release 48; 

synthetic dataset are generated by adding an artificial 

motif randomly in a set of protein sequences: firstly 

choose an arbitrary set of protein sequences (we use 

cytoplasmic protein in our experiments), and then divide 

the whole set into balanced two partitions. One of the 

partitions is used as negative training samples.  An 

artificial motif is inserted into a random position in the N-

terminal of each sequence in the positive set. The random 

motifs are created with a centered 2-amino acids anchor, 

and a surrounding region composed of amino acids drawn 

from prior probabilistic distributions, which is used to 

simulate the hydrophobic, charged or other physichemical 

regions typically occurring with the anchors.  

The real dataset we use are two protein datasets contain 

real motifs: RR translocation signal peptide and LDL 

receptors, a background protein set extracted from 

cytoplasmic localization are used as negative training 

samples to real positive dataset. Because the number of 

positive training samples are comparably fewer than 

negative, we randomly select a subset from all 

cytoplasmic proteins from Swiss-Prot database to make 

the two classes to be more balanced, also considering the 

possible noises and duplications in data, we use cd-hit, a 

sequence cluster and homogeneity reduction tool, to 

reduce the homogeneity in both positive and negative 

training samples, the similarity threshold is set up to be 

80%. 

An important preprocessing step is to remove 

redundancy in the training sequences. The rationale is that 

redundancy in training samples will lead to classifiers 

biased to the over-represented class composed of 

redundant training samples, which therefore leads to 

misleading prediction accuracy. To reduce the redundancy 

in the dataset, we use CD-HIT [11], a sequence clustering 

algorithm. CD-HIT has the ability to cluster the sequences 

by predefined or user defined weight matrices and a 

similarity threshold, and remove all identical sequences in 

the same cluster but the pivot, which guarantees each pair 

of sequences in those left pivots will not be similar to each 

other, to make sure all sequences are not identical 

globally, the threshold for redundancy reduction in the 

experiments is set to 80% 

C. Frequent Anchor Discovery 

Frequent anchors are identified using exhaustive 

regular expression searching on positive dataset. The 

search space is defined on a gap-tolerant regular 

expression anchor model since many protein sorting 

motifs (e.g. NPXY and YXXф motif in LDL receptors) 

are not completely conserved amino acid sequences, but a 

combination of two motifs with a variable-length gap. To 

find out these more flexible anchors, we use a regular 

expression model with the form: <Amino 

Acid>{n}<X><Amino Acid>{m} to represent the 

“language” of possible anchors: the anchor  model is 

composed of two motif region <Amino Acid>{n} and 

<Amino Acid>{m}, which is two informative regions of 

amino acids with length n and m, and a gap toleration 
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between the two motif regions <X> {min, max}, min and 

max are two parameters to control gap length, the length 

of the gap must be in the interval defined by  {min, max},  

to be more adaptive, we allow the two motif region also 

have controllable length and allow them to have different 

amino acid alphabets. Using this regular expression 

model, we can then enumerate all possible anchors and 

count their occurrence frequency in the positive dataset in 

both N and C terminal regions. We then check if there are 

conserved regions around these anchors and how these 

regions can differentiates positive datasets from negative 

ones. 

D. Motif Boundary Determination 

After generating the ranked anchor list, Bayesian 

classifiers are trained to identify the most likely boundary 

of low-conserved motif region around the anchors. For 

each anchor occurrence at N or C terminal in positive 

dataset, the algorithm use a window of fixed length W to 

slide from to the left and right of the anchor, each time 

using the amino acids in the window for all positive 

sequences as input to train a Bayesian classifier. For 

negative dataset, a randomly picked window within N or 

C terminals is used for extracting background samples for 

training. After training a Bayesian classifier, we use 5-

cross validation to obtain the prediction accuracy of the 

classifier for a given sliding window. If the smaller value 

of precision and recall is lower than a threshold score (e.g. 

0.5), it means the sliding window is moving out of the true 

motif region and the left boundary can thus be 

determined. It is obvious that the farther the sliding 

window leaves the motif, the more irrelevant regions will 

be included in the window, so the lower the score will be. 

Similarly, the right boundary can be decided. 

E.  Scoring Motif Discrimination Capability and 

Conservation 

After left and right boundaries for each anchor are 

determined, we pick up the sub sequences between left 

and right boundaries, and train a Bayesian classifier again 

to get the overall classification score of the motif region, 

which reflects the capability of the motif to differentiate 

positive proteins from negative datasets or proteins 

targeting a specific subcellular localization against 

proteins that target elsewhere. The score is defined as min 

(precision, recall). 

Measuring Motif Conservation 

To measure the conservation of discovered motifs, we 

use the information content measurement: for a fixed 

length motif model, each position in the model can be 

seemed as a random variable, the entropy of this random 

variable can be calculated by Shannon theorem, let s be 

the sequence set of a motif, is be the ith sequence in s , 

jp  be the jth position in the sequences,  be the 

amino acid alphabet. 
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where  p a  can be calculated by counting the 

frequency of different amino acids appeared in different 

positions in the sequence set,  I s  is the joint 

information of all positions in the motif. In our case, it 

will be the information content of the motif. 

III. EXPERIMENTAL SETUP 

The simulation dataset are prepared as follows: First 

we randomly select 2000 cytoplasmic protein sequence set 

from Swiss Prot release 48 database. 1000 of them are 

used for constructing positive dataset, and 1000 as 

negative dataset. For each positive sequence, an artificial 

anchor (in our experiments are ----AA----) is first inserted 

into a random position of the first 100 N-terminal amino 

acids. And then two equal-sized regions are inserted 

around the anchor. These two are low-conserved and are 

generated according to a prior distribution on amino acids, 

e.g. hydrophobic amino acids. We use cytoplasmic 

proteins for both positive and negative datasets in order to 

guarantee they share identical background distribution of 

amino acids. Three sets of motifs are implanted into three 

positive datasets (Figure 2.). For real datasets, Tat-

pathway translocation proteins and LDL receptors are 

extracted from Swiss Prot as shown in Table I. 

 
a): simulated hydrophobic motifs anchored by AA 

 
b): simulated hydrophobic/positively charged motifs anchored by AA 

 
c) No conserved motifs around anchors 

 
Figure 2. Logos of implanted motifs with a fully conserved anchor and 

less conserved physichemical motifs. 

 
TABLE I SIMULATED AND REAL DATASETS 

Dataset 

Number of 

Positive 
samples 

number 

Number of 

Negative 
samples 

number 

Anchors 

Synthetic 1000 1000 
----AA---- 

(Artificial) 

Tat-Pathway 

Translocation 
86 600 ----RR---- 

LDL receptor 464 439 ----NPXY---- 



IV. RESULTS 

A. Results on Synthetic Datasets 

In our experiments, we simulate the low-conserved 

motif region with amino acids on hydrophobicity index 

and charged property, tests on the datasets show that our 

method has a strong capability to distinguish boundary of 

anchored lowly-conserved artificial motifs. 

TABLE II: BOUNDARY TEST RESULTS FOR IMPLANTED MOTIF MODELS 

Motif 
Implanted 

Motif 

length  

Detected 
motif 

length 

Motif 

Entropy 

Motif 

Score 

Hydrophobic 20 25 73.8 100 

Hydrophobic+ 
Charged 

20 21 67.7 99.7 

Random 20 8 26 57.6 

 

First two rows of Table II show that when artificial motifs 

are created in a information-rich distribution, the 

boundary test can always find the right motif region, in 

comparison of hydrophobic and charged motif, the third 

row shows when the motif are generated in a totally 

random way, the boundary algorithm returned is no longer 

accurate compared with actual motif boundary, which 

make sense because it will be difficult to give boundary 

prediction if the motif is of no difference from the 

background, also we can see from column 5 and 6, the 

entropy per amino acid and discriminate score are 

inversely correlative, high discriminate score corresponds 

to low uncertainty in amino acid distribution thus a low 

value in information content will be returned and vice 

versa. 

B. Results on real datasets 

1) De-novo discovery of RR translocation signal 

peptide RR-x-FLK 

TAT system is known as Sec-independent protein 

export pathway in bacteria. The most remarkable feature 

in TAT translocation proteins is the presence of the 

double arginines located between N and H region of the 

signal peptide. We downloaded 86 Tat-translocation 

proteins from SwissProt database and applied our 

BayesMotif algorithm with a two-amino acid XX anchor 

model. A set of 600 cytoplasmic proteins are used as 

negative dataset. After homogeneity reduction with CD-

Hit, our BayesMotif algorithm found the following motif 

with 17 amino acids. The motif score is 87. 9, which 

means that the classifier can achieve classification 

accuracy of at least 0.879 in precision or recall rate. 

Although a functional RR-consensus motif RR-X-FLK is 

indispensable for targeting the Tat translocase, additional 

sequence features of RR-signal sequences seem to be 

required to prevent mistargeting to the Sec export 

pathway [12].  

 

 
a) Motif logo of TAT-Translocation signal peptide RRxFLK 

 
b) Motif logo of DGxD motif 

 
c) Motif log of GGPL and GDSG motif 

 
d) Motif log of putative Motif PGVY 

 

Figure 3: discovered sorting motifs 

 

2) De-novo discovery of NPxY motif at C terminal of 

Megalin LDL receptor 

Megalin is the main endocytic receptor of the proximal 

tubule and is responsible for reabsorption of many filtered 

proteins. It is found that information that directs apical 

sorting is present in the cytoplasmic tail (CT) of megalin, 

which contains three NPXY motifs, YXXØ, SH3, and 

dileucine motifs, and a PDZ-binding motif at its COOH 

terminus. Using 464 megalin sequences downloaded from 

Swiss-prot database as positive dataset and cytoplasmic 

proteins as negative dataset, BayesMotif algorithm found 

the NPxY motif at the C-terminal along with a conserved 

amino acid region with undiscovered biological 

functionality. 

Besides the NPxY motif, we also found two other 

biologically verified motifs: DGxD motif and GGPL 

motif. DGxG motif is found in the alignment of five 

ligand-binding repeats in rat LRP3 in comparison with a 

consensus sequence of those in LDL receptors, a C-

terminal DGSDE pentapeptide, which forms part of the 

ligand-binding site of LDL receptors and is almost 

completely conserved. GGPL motif not only appears in 

LDL receptors but also in other protein families as GRF1-

4 and OsGRF1, which presents as a C-terminal motif 

essentially related to transactivition activity [13]. 

We also noticed two motifs with a significant high 

score found by our algorithm: GDSG and PGVY motifs.  

GDSG motif (Figure 2.a) has a long motif region 

overlapped with GGPL motif, implying that it could work 

as a functional part of GGPL motif. PGVY is a new 

independent motif which has a well conserved motif 



region. The biological interpretation of this motif is still 

unknown yet, but significance from both frequency 

counting, sequence entropy and discrimination scoring 

suggests that the over representation of this motif is not 

likely to be coming from randomness of amino acid 

combination in proteins but has some biological 

significance. 

C. Comparison with other motif algorithms 

We also input the same datasets to two other popular 

protein motif discovery algorithms: MEME and Teiresias 

[7]. MEME use Position Weighted Matrix as motif model 

and search overrepresented patterns on a given dataset by 

maximizing the motif likelihood using an EM algorithm. 

Teiresias is a regular expression modeling algorithm for 

motif finding. Teiresias adapts apriori method for frequent 

pattern mining to solve protein motif discovery problem. 

Even though our BayesMotif uses a supervised 

classification algorithm for motif search, it is essentially a 

de novo motif discovery algorithm comparable to MEME. 

We have tested these two algorithms on the simulated 

datasets. It turned out that Teiresias cannot retrieve any of 

the implanted motifs due to its inability to find long 

motifs. MEME can find the implanted motifs but reported 

them as two separate motifs. We then tested the two 

algorithms on the real datasets and we found that MEME 

and Teiresias can identify the following motifs RR-FLK, 

GGPL, and PGVY. But MEME failed to find the NPxY, 

GDSG, and DGxD motifs while Teiresias failed to find 

NPxP and DGxD motifs. However, both MEME and 

Teiresia tend to find short motifs while most protein 

sorting signals are composed of a short anchor and a 

region with low-conservation, which poses difficulty for 

conventional algorithms. 

V. CONCLUSIONS 

We proposed a Bayesian classifier based protein motif 

discovery algorithm for de novo identification of anchored 

protein sorting motifs. Experiments on both simulated 

datasets and real datasets demonstrated that the proposed 

BayesMotif algorithm is able to retrieve implanted motifs 

as well as experimentally identified biological motifs. 

Compared to conventional motif discovery algorithms, the 

classification algorithm formulation of BayesMotif makes 

it easy to incorporate additional structural or meta-

sequence features for motif discovery such as 

hydrophobic or secondary structures and etc. Another 

advantage is that the BayesMotif algorithm can work on 

very large datasets while current algorithms may not 

handle.  It should be noted that the positive dataset can be 

easily picked by identifying a set of proteins that target to 

the same subcellular location. The negative dataset simply 

include proteins that do not target to that location. 
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