
MAY/JUNE 2003 1094-7167/03/$17.00 © 2003 IEEE 25
Published by the IEEE Computer Society

A I ’ s S e c o n d C e n t u r y

What’s AI Done for Me Lately?

Genetic Programming’s
Human-Competitive
Results
John R. Koza, Stanford University

Martin A. Keane, Econometrics Inc.

Matthew J. Streeter, Genetic Programming Inc.

P roducing human-competitive results is a primary reason why the AI and machine

learning fields exist. As machine learning pioneer Arthur Samuel said in a 1983

talk entitled “AI: Where It Has Been and Where It Is Going,” “[T]he aim [is] … to get

machines to exhibit behavior, which if done by humans, would be assumed to involve the

use of intelligence.”1 So, what’s AI done for us lately?

The answerin terms of results produced by
genetic programming’s automatic synthesis of com-
puter programsis 36 human-competitive results,
21 of which duplicate previously patented inventions.
(For more information on genetic programming, see
the related sidebar.) We use the term human-com-
petitive to mean that the result satisfies one or more
of the following eight criteria:

1. The result was patented as an invention in the
past, is an improvement over a patented inven-
tion, or would qualify today as a patentable new
invention.

2. The result is equal to or better than a result that
was accepted as a new scientific result at the
time when it was published in a peer-reviewed
scientific journal.

3. The result is equal to or better than a result that
was placed into a database or archive of results
maintained by an internationally recognized
panel of scientific experts.

4. The result is publishable in its own right as a
new scientific resultindependent of the fact
that the result was mechanically created.

5. The result is equal to or better than the most recent
human-created solution to a long-standing prob-
lem for which there has been a succession of
increasingly better human-created solutions.

6. The result is equal to or better than a result that
was considered an achievement in its field
when it was first discovered.

7. The result solves a problem of indisputable dif-
ficulty in its field.

8. The result holds its own or wins a regulated
competition involving human contestants (in
the form of either live human players or human-
written computer programs).

The criteria are at arms-length from AI and machine
learning. A result cannot acquire the human-com-
petitive rating merely because it interests researchers
inside specialized fields attempting to create machine
intelligence. Instead, the result must earn the rating
independent of the fact that an automated method
generated it.

Table 1 shows genetic programming’s 36 human-
competitive results, along with a criteria number
(from the list just given) establishing the basis for
the human-competitiveness claim. Here, we provide
additional details on a sampling of these results.

Six patented inventions for analog
electrical circuits

Patents represent current research and development
efforts of the engineering and scientific communities.
When an institution allocates time and money to

The automated

problem-solving

technique of genetic

programming has

generated at least 36

human-competitive

results. In six cases,

it automatically

duplicated the

functionality of

inventions patented

after January 2000.

George
Inserted Text
IEEE

George
Inserted Text
IEEE Computer Society Copyright

invent something and subsequently embarks
on the time-consuming and expensive process
of obtaining a patent, it deems the work of
some scientific or practical importance. For
this reason, we first describe a project in
which we browsed the patent literature for
patents on analog electrical circuits issued
since January 2000 to commercial enterprises

or university research institutions (see Table
2). We then used genetic programming to
automatically synthesize both the structure
(topology) and sizing (numerical component
values) for circuits that duplicate the patented
inventions’ functionality. Only one of the six
automatically created circuits infringes on the
patent on which it is based.

Our method for automatically synthesizing
analog circuits starts from a high-level state-
ment of a circuit’s desired behavior and char-
acteristics and only minimal knowledge about
analog electrical circuits. The method employs
a circuit simulator for analyzing candidate cir-
cuits but does not rely on domain expertise or
knowledge concerning the synthesis of circuits.

26 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

A I ’ s S e c o n d C e n t u r y

Table 1. Human-competitive results produced by genetic programming.

Basis for claim
Claimed instance (criteria number)

1. Creating a better-than-classical quantum-computing algorithm for the Deutsch-Jozsa “early promise” problem2 2, 6

2. Creating a better-than-classical quantum-computing algorithm for Grover’s database search problem3 2, 6

3. Creating a quantum algorithm for the depth-two AND/OR query problem that is better than any previously published result4,5 4

4. Creating a quantum algorithm for the depth-one OR query problem that is better than any previously published result5 4

5. Creating a protocol for communicating information through a quantum gate that was previously thought not to permit such communication6 4

6. Creating a novel variant of quantum dense coding6 4

7. Creating a soccer-playing program that ranked in the middle of the field of 34 human-written programs in the RoboCup 1998 competition7 8

8. Creating four different algorithms for the transmembrane segment identification problem for proteins8,9 2, 5

9. Creating a sorting network for seven items using only 16 steps9 1, 4

10. Rediscovering the Campbell ladder topology for lowpass and highpass filters9 1, 6

11. Rediscovering the Zobel “M-derived half section” and “constant K” filter sections9 1, 6

12. Rediscovering the Cauer (elliptic) topology for filters9 1, 6

13. Automatically decomposing the problem of synthesizing a crossover filter9 1, 6

14. Rediscovering a recognizable voltage gain stage and a Darlington emitter-follower section of an amplifier and other circuits9 1, 6

15. Synthesizing 60- and 96-decibel amplifiers9 1, 6

16. Synthesizing analog computational circuits for squaring, cubing, square root, cube root, logarithm, and Gaussian functions9 1, 4, 7

17. Synthesizing a real-time analog circuit for time-optimal control of a robot9 7

18. Synthesizing an electronic thermometer9 1, 7

19. Synthesizing a voltage reference circuit9 1, 7

20. Creating a cellular automata rule for the majority classification problem that is better than the Gacs-Kurdyumov-Levin (GKL) rule 4, 5
and all other known rules written by humans9

21. Creating motifs that detect the D–E–A–D box family of proteins and the manganese superoxide dismutase family9 3

22. Synthesizing topology for a PID-D2 (proportional, integrative, derivative, and second derivative) controller10 1, 6

23. Synthesizing topology for a PID (proportional, integrative, and derivative) controller10 1, 6

24. Synthesizing an analog circuit equivalent to Philbrick circuit10 1, 6

25. Synthesizing a NAND circuit10 1, 6

26. Simultaneously synthesizing topology, sizing, placement, and routing of analog electrical circuits10 7

27. Rediscovering the Yagi-Uda antenna10 2, 6, 7

28. Creating PID tuning rules that outperform a PID controller using the Ziegler-Nichols and Åström-Hägglund tuning rules10 1, 2, 4, 5, 6, 7

29. Creating three non-PID controllers that outperform PID controllers using the Ziegler-Nichols and Åström-Hägglund tuning rules10 1, 2, 4, 5, 6, 7

30. Rediscovering negative feedback10 1, 6

31. Synthesizing a low-voltage balun circuit10 1

32. Synthesizing a mixed analog-digital variable capacitor circuit10 1

33. Synthesizing a high-current load circuit10 1

34. Synthesizing a voltage-current conversion circuit10 1

35. Synthesizing a cubic signal generator10 1

36. Synthesizing a tunable integrated active filter10 1

We read the patent document to determine
the level of performance that the invention
aimed to achieve. We then created a fitness
measure reflecting the invention’s perfor-
mance and characteristics. This required

translating the problem’s high-level require-
ments into a precise computation. In particu-
lar, the fitness measure specified the desired
time- or frequency-domain outputs, given
various inputs. For each problem, a test fix-

ture consisting of appropriate hard-wired
components (such as a source resistor or load
resistor) is connected to the input ports and
desired output ports. The main difference
between the genetic programming runs for

MAY/JUNE 2003 computer.org/intelligent 27

Genetic programming is an automatic domain-independent
method for solving problems. Starting with thousands of ran-
domly created computer programs, it applies the Darwinian
principle of natural selection, recombination (crossover), muta-
tion, gene duplication, gene deletion, and certain mechanisms
of developmental biology. It thus breeds an improved popula-
tion over many generations.1–4

Genetic programming starts from a high-level statement
of a problem’s requirements and attempts to produce a com-
puter program that solves the problem. The human user com-
municates the problem’s high-level statement to the genetic
programming system by performing certain preparatory steps.
The five major preparatory steps for the basic version of genetic
programming require the human user to specify

1. The set of terminals (for example, the problem’s indepen-
dent variables, zero-argument functions, and random
constants) for each branch of the to-be-evolved program

2. The set of primitive functions for each branch of the to-be-
evolved program

3. The fitness measure (for explicitly or implicitly measuring
the fitness of individuals in the population)

4. Certain parameters for controlling the run
5. The termination criterion and the criterion for designat-

ing the run’s result

The fitness measure is the primary mechanism for communi-
cating the high-level statement of the problem’s requirements
to the genetic programming system. It specifies what needs to
be done.

When using genetic programming to automatically synthe-
size computer programs, the programs are usually represented
as rooted, point-labeled trees with ordered branches. The
function set might consist of merely the ordinary arithmetic
functions of addition, subtraction, multiplication, and division
as well as a conditional branching operator.

When using genetic programming to automatically synthe-
size a specialized structure such as a controller, the function set
consists of the specialized functions that make up controllers
integrators, differentiators, gains, adders, subtractors, leads,
lags, and so forth.

When you use genetic programming to automatically syn-
thesize electrical circuits, you must overcome an additional
representational obstacle because circuits are labeled cyclic
graphs. You can do so by establishing a mapping between the
program trees that genetic programming ordinarily uses and
the labeled cyclic graphs germane to circuits. You use a devel-
opmental process to map trees into circuits. This developmen-
tal process begins with a simple embryo (often consisting of
just a single modifiable wire). You then develop an analog
electrical circuit by progressively applying the circuit-construct-
ing functions in a program tree to the embryo’s initial modifi-
able wire (and to succeeding modifiable wires and modifiable
components).

The functions in the circuit-constructing program trees include

• Topology-modifying functions that alter the topology of a
developing circuit. The topology-modifying functions do
such things as create a series or parallel division or create a
connection from one point in a circuit to the power supply,
to a distant point, or to ground.

• Component-creating functions that insert components (such as
resistors, capacitors, and transistors) into a developing circuit.

• Development-controlling functions that control the devel-
opmental process (such as cut or end).

After the user has performed the preparatory steps, genetic
programming executes a series of well-defined, problem-inde-
pendent steps. Specifically, the genetic programming run starts
by generating an initial population of compositions (typically
random) of the problem’s functions and terminals.

Then, genetic programming iteratively performs the follow-
ing substeps (referred to herein as a generation) on the popu-
lation of programs until satisfying the termination criterion.

First, execute each program in the population and assign it a
fitness value using the problem’s fitness measure.

Second, create a new population of programs by applying
the following operations to selected individuals in the evolving
population. The operations are applied to programs selected
from the population with a probability based on fitness (with
reselection allowed):

• Reproduction: Copy the selected program to the new
population.

• Crossover: Create a new offspring program for the new
population by recombining randomly chosen parts of two
selected programs.

• Mutation: Create one new offspring program for the new
population by randomly mutating a randomly chosen part
of the selected program.

• Architecture-altering operations: Create one new offspring
program for the new population by altering the program’s
architecture by creating, duplicating, or deleting a subrou-
tine, iteration, loop, recursion, or element.

Finally, the individual with the best fitness run is designated
as the result of the run. This result might solve (or approximately
solve) the problem.

References
1. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable

Programs, MIT Press, 1994.

2. J.R. Koza et al., Genetic Programming III: Darwinian Invention and
Problem Solving, Morgan Kaufmann, 1999.

3. J.R. Koza et al., Genetic Programming IV: Routine Human-Compet-
itive Machine Intelligence, Kluwer Academic Publishers, 2003.

4. J.R. Koza, Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection, MIT Press, 1992

What is Genetic Programming?

the six problems was that each had a different
fitness measure.

Low-voltage balun circuit
A balun (balance/unbalance) circuit’s

purpose is to produce two outputs from a
single input, each having half of the input’s
amplitude. One output should be in phase
with the input while the other should be
180 degrees out of phase with the input,
and both should have the same DC offset.
The patented balun circuit uses a power sup-
ply of only 1 V (typical of low voltages that
contemporary high-performance circuits
demand).

We based the fitness measure for this prob-
lem on a frequency sweep analysis designed
to measure the magnitude and phase of the
circuit’s two outputs and a Fourier analysis
designed to measure harmonic distortion.

The best-of-run evolved circuit (see Figure
1) is roughly a fourfold improvement over
the patented circuit in terms of our fitness
measure. The evolved circuit is superior both
in terms of its frequency response and har-
monic distortion.

The inventor states in the patent docu-
ments (US patent 6,265,908) that the essen-
tial difference between the prior art and his
2001 invention is a coupling capacitor C2

located between the base and the collector of
the transistor Q2. Sang Gug Lee explains,

The structure of the inventive balun circuit … is
identical to that of [the prior art] except that a
capacitor C2 is further provided thereto. The
capacitor C2 is a coupling capacitor disposed
between the base and the collector of the tran-
sistor Q2 and serves to block DC components
which may be fed to the base of the transistor Q2
from the collector of the transistor Q2.

(For this and any other patent mentioned, see
http://patft.uspto.gov/netahtml/srchnum.htm
and search by patent number.) This essential
difference between the prior art and Lee’s
invention is an integral part of claim 1 of
Lee’s patent—a second capacitor C2 coupled
between the base and the collector of tran-
sistor Q2.

The best-of-run genetically evolved cir-
cuit possesses the very feature (called C302
in Figure 1) that Lee identifies as the essence
of his invention. (We discuss this in greater
detail elsewhere.10) The genetically evolved
circuit also matches three additional ele-
ments of claim 1 from Lee’s patent. How-
ever, in spite of possessing the essence of
Lee’s invention, it does not match some other
elements enumerated in claim 1 and thus
does not infringe on the patent.

Mixed analog-digital register-
controlled variable capacitor

The mixed analog-digital variable capac-
itor circuit has a capacitance controlled by
the value stored in a digital register.

We based the fitness measure on the error
accumulated by 16 combinations of time-
domain test signals ranging over all eight
possible values of a 3-bit digital register for
two different analog input signals. The genet-
ically evolved circuit performs as well as the
patented circuit. It matches all but one of the
elements of the patent’s first claim (and
hence does not infringe on the patent).

Tunable, integrated active filter
The tunable, integrated active filter’s pur-

pose is to perform the function of a lowpass
filter whose passband boundary is dynami-
cally specified by a control signal. We based
the fitness measure on nine frequency-
domain simulations, one for each of the pass-
band boundary’s nine values. We defined

28 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

A I ’ s S e c o n d C e n t u r y

Table 2. Six post-2000 patented analog circuits.

Invention Date Inventor Place Patent

Low-voltage balun 2001 Sang Gug Lee Information and Communications 6,265,908
(balance/unbalance) circuit University

Mixed analog-digital circuit for 2000 Turgut Sefket Aytur Lucent Technologies 6,013,958
variable capacitance

Voltage-current conversion circuit 2000 Akira Ikeuchi and Naoshi Tokuda Mitsumi Electric 6,166,529

Low-voltage high-current load circuit 2001 Timothy Daun-Lindberg and International Business Machines 6,211,726
for testing a voltage source Michael Miller

Low-voltage cubic function generator 2000 Stefano Cipriani and Anthony A. Takeshian Conexant Systems 6,160,427

Tunable integrated active filter 2001 Robert Irvine and Bernd Kolb Infineon Technologies 6,225,859

VOUT1

R306
11.0k

R307
1G

Q308

Q309

Q304 Q303

C302
21.5u

C301
4.19u

RSRC
75

VINO

R305
10.4k

RLOAD1
150

RLOAD0
150

VCC
1V

VDIFF

RPROBE
1G

VOUT0V V V

Figure 1. Genetically evolved low-voltage balun (balance/unbalance) circuit.

error as the difference between an evolved
circuit’s frequency response and a model cir-
cuit’s frequency response. We included par-
simony in the fitness measure to get a small
solution to the problem.

The genetically evolved circuit matches
every element of claim 1 of US patent
6,225,859, thus infringing on it.

Voltage-current conversion circuit
The voltage-current conversion circuit’s

purpose is to take two voltages as input and
to produce as output a stable current whose
magnitude is proportional to the difference
between the voltages. We based the fitness
measure on four time-domain input signals.
The genetically evolved circuit has roughly
62 percent of the average (weighted) error of
the patented circuit (and outperformed the
patented circuit on additional previously
unseen test cases). The best-of-run circuit
solves the problem in an entirely different
manner from the patented circuit.

High-current load circuit
US patent 6,211,726 covers a circuit

designed to sink a time-varying amount of
current in response to a control signal. The
fitness measure consisted of two time-
domain simulations, each representing a dif-
ferent control signal. The genetically evolved
circuit shares the following features found in
the patent’s first claim:

A variable, high-current, low-voltage, load cir-
cuit for testing a voltage source, comprising … a
plurality of high-current transistors having source-
to-drain paths connected in parallel between a pair
of terminals and a test load.

However, the remaining elements of the
patent’s first claim are very specific, and the
genetically evolved circuit does not match
these remaining elements. In fact, the genet-
ically evolved circuit’s remaining elements
bear hardly any resemblance to the patented
circuit. In this instance, genetic programming
produced a circuit that duplicates the
patented circuit’s functionality using a dif-
ferent structure.

Low-voltage cubic signal generator
The patent covers an analog computational

circuit that produces the cube of an input sig-
nal as its output. The circuit is compact in that
it contains a voltage drop across no more than
two transistors. The fitness measure consisted
of four time-domain fitness cases using vari-
ous input signals and time scales. Providing

only a 2-V power supply enforced the com-
pactness constraint. The genetically evolved
circuit has approximately 59 percent of the
error of the patented circuit.

The claims in US patent 6,160,427 amount
to a very specific description of the patented
circuit. The genetically evolved circuit does
not match these claims and, in fact, bears
hardly any resemblance to the patented circuit.

Automatic synthesis of other
complex structures

Genetic programming has also produced
human-competitive results in the form of
automatically synthesized controllers, anten-
nas, classifier programs, and mathematical
algorithms.

Controllers
Genetic programming created a controller

for a two-lag plant containing proportional,
integrative, derivative, and second derivative
blocks. We were able to rediscover the PID-
D2 (proportional-integral-derivative-second-
derivative) topology covered by claim 38 of
US patent 2,282,726 issued in 1942 to Harry
Jones of the Brown Instrument Company of
Philadelphia.10

Similarly, genetic programming created a
controller containing a proportional, inte-
grative, derivative block as described in claim
3 of US patent 2,175,985, issued in 1939 to
Albert Callender and Allan Stevenson of
Imperial Chemical Limited.10

Improved tuning rules for PID controllers.
For the past six decades, most industrial users
have relied on the tuning rules that John G.
Ziegler and Nathaniel B. Nichols developed
in 1942 to select the numerical parameters
(for the gain of the controller’s proportional,
integrative, and derivative blocks and the ref-
erence signal’s setpoint weighting) for the
widely used PID type of controller. Karl J.
Åström and Tore Hägglund improved upon
these rules in 1995.

Recently, genetic programming synthe-
sized tuning rules for PID controllers that
outperform these existing rules.10 We applied
for a patent on these new improved tuning
rules and the improved non-PID controller
described next. If a patent is granted (as
expected), we believe it will be the first one
for an invention that genetic programming
created.

Improved topology and tuning for general-
purpose controllers. Genetic programming
can automatically create, in a single run, a
general (parameterized) solution to a prob-
lem in the form of a graphical structure
whose edges represent components and
where the parameter values of the compo-
nents are specified by mathematical expres-
sions containing free variables.

For example, genetic programming re-
cently synthesized both the topology and siz-
ing of an improved general-purpose non-PID
controller (see Figure 2) that outperforms the

MAY/JUNE 2003 computer.org/intelligent 29

Control
variable

790

Plant
output

Reference
signal

736 788738 748

10
780

710

+
–

+
–

734

+

– +

++
+

++

+
++

700

704

Astrom-
Hagglund
controller

706

Eq. 34

760

1 + [Eq.33]*s

750740

Eq. 31

730

3

778

2

2
720

770

1 + [Eq.32]*s

Figure 2. Genetically evolved improved non-PID parameterized controller.

general-purpose 1995 Åström-Hägglund
PID controller and the widely used Ziegler-
Nichols tuning rules.10

In the automated process, genetic pro-
gramming determines the graph’s size (its
number of nodes) as well as its connectivity
(specifying which nodes are connected to each
other). Genetic programming also assigns
component types (such as gain blocks, adders,
subtractors, leads, lags, differentiators, and
integrators) to the graph’s nodes or edges. In
addition, it creates mathematical expressions
that establish the components’ values, some
of which contain free variables. The free vari-
ables let a single genetically evolved graphi-
cal structure represent a general (parameter-
ized) solution to an entire category of
problems. This genetically evolved controller
is considered general-purpose because the

parameter values for two gain blocks (730 and
760) and two lead blocks (740 and 750) are
specified by mathematical expressions con-
taining free variables for the plant’s time con-
stant Tr, dead time L, ultimate gain Ku, and
ultimate period Tu. For example, gain block
730 in Figure 2 is parameterized by the genet-
ically created equation

Antennas
To synthesize an antenna, a “turtle”

deposits (or does not deposit) metal on a
plane as it moves and turns under the control

of various moving and turning functions
(similar to those in the LOGO programming
language). Genetic programming has redis-
covered the Yagi-Uda antenna topology (see
Figure 3) and synthesized an antenna that is
competitive with a human-designed antenna
for the same problem.10

A classifier program
Genetic programming has created a clas-

sifying program that identifies transmem-
brane domain proteins and has a lower error
rate than the human-written algorithms for
this problem.9 For the genetically evolved
classifier program, we did not prespecify

• That iterations should be used or, if used,
the number of iterations

• That subroutines should be used or, if
used, the number of subroutines and argu-
ments possessed by each of them

• The precise number of steps in the result-
producing branch, the subroutines, and the
iteration-performing branches

• The exact sequence of steps performed
in the result-producing branch, the sub-
routines, and the iteration-performing
branches

• The hierarchical organization of the pro-
gram’s branches

All of the evolved solution’s characteristics
emerged during the genetic programming run
as a result of using the architecture-altering
operations for subroutines and iterations.

A sorting network
Genetic programming synthesized a 100

percent–correct 16-step sorting network (see
Figure 4) that is superior (that is, having
fewer compare-swap operations) to the one
Daniel G. O’Connor and Raymond J. Nel-
son presented in their 1962 patent (US patent
3,029,413).

The Genetic Programming Problem Solver9

uses a standardized set of functions and ter-
minals, eliminating the need to prespecify a
function set and terminal set for the problem.
In addition, GPPS uses the architecture-alter-
ing operations to create, duplicate, and delete
subroutines, loops, recursions, and internal
storage during the genetic programming run.
Because the evolving program’s architecture
is automatically determined during the run,
GPPS eliminates the need to specify in
advance whether to employ subroutines,
loops, recursions, and internal storage in solv-
ing a given problem. It similarly eliminates

log log
log

.T T
L

Tr u

L

u
− +

+1

30 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

A I ’ s S e c o n d C e n t u r y

0 0.5 1 1.5 2
–0.2

0

0.2

Figure 3. Genetically evolved Yagi-Uda antenna (measured in meters).

0

1

2

3

4

5

6

Figure 4. This 16-step minimal sorting network, evolved with Genetic Programming
Problem Solver 2.0, is 100 percent correct.

the need for the user to specify the number of
arguments each subroutine possesses.

Assessing automated problem-
solving techniques

We can assess an automated problem-
solving technique in various ways. One way
is to assess the gross amount of computer
time that running the technique consumes.

Also, because genetic programming is a
probabilistic algorithm (that is, it starts from
a randomly created population, selects indi-
viduals to participate in the genetic operations
probabilistically based on fitness, and exe-
cutes some aspects of the genetic operations
in a probabilistic way), we can measure the
probability of a run’s success under specified
circumstances. This data makes it possible to
calculate the computational effort8 required
to yield a solution to a given problem with a
specified probability (such as 99 percent).

At a higher level, we can assess an auto-
mated problem-solving technique on the
basis of whether it produces human-com-
petitive results (as we did earlier).

Another way to assess an automated prob-
lem-solving technique concerns its routine-
ness, which requires generality. More impor-
tantly, when we say that a method has a high
degree of routineness, we mean that rela-
tively little human effort is required to get the
method to successfully handle new problems
within a particular domain and to success-
fully handle new problems from different
domains. For example, the transition from
controllers to antennas to classifying pro-
grams to sorting networks is accomplished
by changing the function set from one spe-
cialized set of functions to another and appro-
priately changing the fitness measure to
reflect the differing goals. This transition is
routine with genetic programming.

As computer time grows cheaper,
researchers will routinely use genetic

programming to produce useful new designs,
generate patentable new inventions, and
engineer around existing patents.

References

1. A.L. Samuel, “AI: Where It Has Been and
Where It Is Going,” Proc. 8th Int’l Joint Conf.
Artificial Intelligence, Morgan Kaufmann,
1983, pp. 1152–1157.

2. L. Spector, H. Barnum, and H.L. Bernstein,
“Genetic Programming for Quantum Com-
puters,” Genetic Programming 1998: Proc.
3rd Ann. Conf., J.R. Koza et al., eds., Morgan
Kaufmann, 1998, pp. 365–373.

3. L. Spector, H. Barnum, and H.J. Bernstein,
“Quantum Computing Applications of
Genetic Programming,” Advances in Genetic
Programming 3, L. Spector et al., eds., MIT
Press, 1999, pp. 135–160.

4. L. Spector et al., “Finding a Better-than-Clas-
sical Quantum AND/OR Algorithm Using
Genetic Programming,” Proc. 1999 Congress
on Evolutionary Computation, IEEE Press,
1999, pp. 2239–2246.

5. H. Barnum, H.J. Bernstein, and L. Spector,
“Quantum Circuits for OR and AND of Ors,”
J. Physics A: Mathematical and General, vol.
33, no. 45, Nov. 2000, pp. 8047–8057.

6. L. Spector and H.J. Bernstein, “Communica-
tion Capacities of Some Quantum Gates, Dis-
covered in Part through Genetic Program-
ming,” to be published in Proc. 6th Int’l Conf.
Quantum Comm., Measurement, and Com-
puting, Rinton Press, 2003.

7. D. Andre and A. Teller, “Evolving Team Dar-
win United,” RoboCup 98: Robot Soccer

World Cup II, LNCS 1604, M. Asada and H.
Kitano, eds., Springer-Verlag, 1999, pp.
346–352.

8. J.R. Koza, Genetic Programming II: Auto-
matic Discovery of Reusable Programs, MIT
Press, 1994.

9. J.R. Koza et al., Genetic Programming III:
Darwinian Invention and Problem Solving,
Morgan Kaufmann, 1999.

10. J.R. Koza et al., Genetic Programming IV:
Routine Human-Competitive Machine Intel-
ligence, Kluwer Academic Publishers, 2003.

For more information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

MAY/JUNE 2003 computer.org/intelligent 31

T h e A u t h o r s
John R. Koza is a consulting professor in the Biomedical Informatics Pro-
gram in the Department of Medicine at Stanford University. He is also a con-
sulting professor in the Department of Electrical Engineering at Stanford
University, where he teaches a course on genetic algorithms and genetic pro-
gramming. His research focuses on the creation of computer programs by
automatic means. He received his PhD in computer science from the Uni-
versity of Michigan. He is a member of the IEEE. Contact him at Post Office
Box K, Los Altos, CA 94023-4011; koza@stanford.edu.

Martin A. Keane is chief scientist of Econometrics Inc. of Chicago and a
consultant to various computer-related and gaming-related companies. His
research interests include applying genetic programming to the design of
controllers for nonlinear dynamic systems. He received a PhD in mathe-
matics from Northwestern University. He is a member of the IEEE. Contact
him at 1960 N. Lincoln Park West, #1103, Chicago, IL 60614; martinkeane@
ameritech.net.

Matthew J. Streeter is a systems programmer and researcher at Genetic
Programming Inc. His primary research interest is applying genetic pro-
gramming to problems of real-world scientific or practical importance. He
received his MS in computer science from Worcester Polytechnic Institute.
His masters thesis applied genetic programming to the automated discovery
of numerical approximation formulae for functions and surfaces. He is a
member of the IEEE. Contact him at 2585 Alvin Ave. #111, San Jose, CA
95121; matt@genetic-programming.com.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

