Feature-level and Model-level Audiovisual Fusion for Emotion Recognition in the Wild

Jie Cai1, Zibo Meng2, Ahmed Shehab Khan1, Zhiyuan Li1, James O’Reilly1, Shizhong Han3, Ping Liu4, Min Chen5 and Yan Tong1

1University of South Carolina
2Innopeak Technology Inc.
312 Sigma Technologies
4JD. com, Inc.
5University of Washington Bothell
Introduction

- Posed dataset:
 Neutral Peak (Angry) Neutral

- Emotion Recognition in the Wild:
 Illumination changes
Introduction

- **Posed dataset:**

 Neutral
 ...
 Peak (Angry)
 Neutral

- **Emotion Recognition in the Wild:**

 Occlusions
Introduction

- **Posed dataset:**

 Neutral Peak (Angry) Neutral

- **Emotion Recognition in the Wild:**

 Head pose variations
Introduction

- Posed dataset:

Neutral Peak (Angry) Neutral

- Emotion Recognition in the Wild:

Solution:
Exploiting information from audio and visual channels
Related Work

- **Feature-level fusion**
 Combining audio and visual features
 Training a classifier for emotion recognition

- **Decision-level fusion**
 Combining recognition results from audio and visual signals
 o majority voting
 o averaging prediction scores
 o weighted prediction scores

- **Model-level fusion**
 Exploiting correlation between audio and visual channels
 o Bayesian Network (BN)
 o Coupled, tripled, or multistream fused HMMs
 o Artificial Neural Network (ANN)
 o Multiple Kernel Learning (MKL)
A Flowchart of The Proposed Fusion Frameworks

Feature-level fusion
A Flowchart of The Proposed Fusion Frameworks

Video

Face Preprocessing → Visual Feature Extraction → LBP-TOP → Feature Level Fusion → SVM Classifier → Emotion Label

Audio

Audio Feature Extraction → LBP-TOP SVM Classifier → CNN SVM Classifier → CNN-BLSTM Classifier → Audio SVM Classifier → Probabilistic Graphical Model → Emotion Label

Model-level fusion
Audiovisual Feature Extraction

• Audio features (1582 dimension):
 o 34 spectral related low-level feature descriptors with corresponding delta coefficients × 21 functional (1428 dimension)
 o 4 voicing related low-level feature descriptors with corresponding delta coefficients × 19 functional (152 dimension)
 o the number of pitch onsets + the total duration of the input (2 dimension)

• Visual features:
 o Human-crafted features, i.e., LBP-TOP
 o Deep learning features, i.e., aggregated CNNs and CNN-BLSTM
Aggregated CNNs

- k-average temporal pooling
- k was set to 7 empirically
- per-video-clip CNN features are 49 dimensions
Aggregated CNNs

\[L_{IL} = \frac{1}{2} \sum_{i=1}^{m} \left\| x_i - c_{y_i} \right\|_2^2 + \lambda_1 \sum_{c_j \in \mathcal{N}} \sum_{\substack{c_k \in \mathcal{N} \ni c_k \neq c_j}} (1 + \frac{c_k \cdot c_j}{\|c_k\|_2 \|c_j\|_2}) \]
Aggregated CNNs

- An ensemble of CNNs:
 - 10 VGG-Face CNNs + 10 shallow CNNs + 10 VGG-Face CNNs (L_{IL}) + 10 shallow CNNs (L_{IL})
- Average scores of the softmax layer outputs of the 40 CNNs as the per-frame feature
Aggregated CNNs

- Two backbone CNNs: VGG-Face and a shallow CNN
- VGG-Face fine-tuned (1) CK+, MMI, Oulu-CASIA, RAF-DB and ExpW; (2) AFEW training set
- Shallow CNN fine-tuned (1) FER-2013 dataset; (2) AFEW training set
- CNN features of the fine-tuned VGG-Face model
- BLSTM features taken from dense layer (512 dimensions)
- Training: a series of 20 images were randomly chosen from each video
- Testing: a series of 20 evenly spaced images were chosen from each video
Audiovisual Feature-Level Fusion

Four types of features:
- The first 20 principal components of the audio features
- The first 150 principal components of the LBP-TOP
- The 49-dimensional (7×7 bins) aggregated CNN features
- The first 50 principal components of the BLSTM features

- Hence, a joint feature vector consisting of 269 features for each video clip.
Audiovisual Model-Level Fusion

\[
\text{Emotion}^* = \arg \max P(\text{Emotion}|M_{\text{audio}}, M_{\text{LBP-TOP}}, M_{\text{CNN}}, M_{\text{BLSTM}})
\]
Dataset

- Emotion Recognition on the “Acted Facial Expression in the Wild dataset” – **AFEW dataset**

- Classification into 7 emotion categories: Anger, Disgust, Fear, Happiness, Neutral, Sadness and Surprise

- Video clips collected from “close-to-real-world” environments, i.e., Hollywood movies, reality TV shows and sitcom

- Training set (773), Validation set (383), Test set (653)
Experimental Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Channel</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu et. al [19]</td>
<td>audio, visual</td>
<td>59.01</td>
<td>60.34</td>
</tr>
<tr>
<td>Fan et. al [12]</td>
<td>audio, visual</td>
<td>–</td>
<td>59.02</td>
</tr>
<tr>
<td>Vielzeuf et. al [38]</td>
<td>audio, visual</td>
<td>–</td>
<td>58.81</td>
</tr>
<tr>
<td>Yao et. al [42]</td>
<td>audio, visual</td>
<td>51.96</td>
<td>57.84</td>
</tr>
<tr>
<td>Ouyang et. al [30]</td>
<td>audio, visual</td>
<td>–</td>
<td>57.20</td>
</tr>
<tr>
<td>Kim et. al [23]</td>
<td>audio, visual</td>
<td>50.39</td>
<td>57.12</td>
</tr>
<tr>
<td>Yan et. al [41]</td>
<td>audio, visual</td>
<td>–</td>
<td>56.66</td>
</tr>
<tr>
<td>Wu et. al [40]</td>
<td>audio, visual</td>
<td>–</td>
<td>55.31</td>
</tr>
<tr>
<td>Kaya et. al [21]</td>
<td>audio, visual</td>
<td>57.02</td>
<td>54.55</td>
</tr>
<tr>
<td>Ding et. al [9]</td>
<td>audio, visual</td>
<td>51.20</td>
<td>53.96</td>
</tr>
<tr>
<td>Yao et. al [43]</td>
<td>audio, visual</td>
<td>49.09</td>
<td>53.80</td>
</tr>
<tr>
<td>Kaya et. al [20]</td>
<td>audio, visual</td>
<td>52.30</td>
<td>53.62</td>
</tr>
<tr>
<td>Kahou et. al [10]</td>
<td>audio, visual</td>
<td>–</td>
<td>52.88</td>
</tr>
<tr>
<td>Sun et. al [37]</td>
<td>audio, visual</td>
<td>–</td>
<td>51.43</td>
</tr>
<tr>
<td>Pini et. al [33]</td>
<td>audio, visual</td>
<td>49.92</td>
<td>50.39</td>
</tr>
<tr>
<td>Li et. al [26]</td>
<td>audio, visual</td>
<td>–</td>
<td>50.46</td>
</tr>
<tr>
<td>Gideon et. al [14]</td>
<td>audio, visual</td>
<td>38.81</td>
<td>46.88</td>
</tr>
<tr>
<td>Bargal et. al [2]</td>
<td>visual</td>
<td>59.42</td>
<td>56.66</td>
</tr>
<tr>
<td>Sun et. al [36]</td>
<td>visual</td>
<td>50.67</td>
<td>50.14</td>
</tr>
<tr>
<td>Audio (baseline)</td>
<td>audio</td>
<td>35.51</td>
<td>–</td>
</tr>
<tr>
<td>LBP-TOP (baseline)</td>
<td>visual</td>
<td>38.90</td>
<td>–</td>
</tr>
<tr>
<td>CNN (baseline)</td>
<td>visual</td>
<td>47.00</td>
<td>–</td>
</tr>
<tr>
<td>CNN-BLSTM (baseline)</td>
<td>visual</td>
<td>49.09</td>
<td>–</td>
</tr>
<tr>
<td>Feature-level fusion</td>
<td>audio, visual</td>
<td>53.79</td>
<td>56.81</td>
</tr>
<tr>
<td>Model-level fusion</td>
<td>audio, visual</td>
<td>54.83</td>
<td>54.06</td>
</tr>
</tbody>
</table>
Conclusion

• Two novel audiovisual fusion methods by exploiting audio features, LBP-TOP-based features, aggregated CNN features, and CNN-BLSTM features.
• Both the proposed fusion methods outperform the baseline methods that employ a single type of feature.
• More advanced techniques will be developed to improve the recognition performance.
Acknowledgement

This work was supported by National Science Foundation under CAREER award IIS-1149787.

The Titan Xp used for this research was donated by the NVIDIA Corporation.
Thank you!