1. Introduction

- Challenges for facial expression recognition
 - High intra-class variations and high inter-class similarities
 - Subtle facial appearance changes
 - Head pose variations
 - Illumination changes
 - Gender, race, and other person-specific attributes
- Developed two novel approaches to learn discriminative features
 - Identity-aware convolutional neural network (IACNN) to deal with identity-related variations
 - Island loss to enhance the discriminative power of the deeply learned features

2. Related Work

- 2D/3D feature extraction
 - Human crafted features: LBP, LQG, LGBP, HOG, SIFT, and their spatiotemporal extensions
 - Features learned from data: sparse coding and deep learning
- Loss function and similarity metric learning for facial expression recognition
 - Contrastive Loss: calculating from training pairs
 - Triplet Loss: calculating from training triplets
 - Center Loss: reducing the intra-class variations
 - Locality-Preserving Loss: reducing the intra-class variations

3. Identity-Aware Convolutional Neural Network

- Motivation:
 - Recognition performance usually degrades on unseen subjects
 - Features extracted may not purely related to facial expression
- Proposed framework:

4. Island Loss Convolutional Neural Network

- Motivation:
 - Reducing the intra-class variations while enlarging the inter-class differences simultaneously

5. Experimental Result

- Experimental Results on four databases, i.e. CK+, CASIA, MMF, and SFWE have demonstrated that IACNN and IL-CNN outperforms the baseline CNN models.
 - Results on the most challenging dataset, i.e. SFWE.

6. Future Plan

- Learning expression-related discriminative features
- Extending island loss to more applications
- Constructing facial expression databases

This work was supported by National Science Foundation under CAREER Award IIS-1149787.