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ABSTRACT

Structures operating in high-rate dynamic environments,
such as hypersonic vehicles, orbital space infrastructure, and
blast mitigation systems, require microsecond (µs) decision-
making. Advances in real-time sensing, edge-computing, and
high-bandwidth computer memory are enabling emerging tech-
nologies such as High-rate structural health monitoring (HR-
SHM) to become more feasible. Due to the time restrictions such
systems operate under, a target of 1 millisecond (ms) from event
detection to decision-making is set at the goal to enable HR-
SHM. With minimizing latency in mind, a data-driven method
that relies on time-series measurements processed in real-time to
infer the state of the structure is investigated in this preliminary
work. A methodology for deploying LSTM-based state estima-
tors for structures using subsampled time-series vibration data
is presented. The proposed estimator is deployed to an embed-
ded real-time device and the achieved accuracy along with sys-

tem timing are discussed. The proposed approach has shown
potential for high-rate state estimation as it provides sufficient
accuracy for the considered structure while a time-step of 2.5 ms
is achieved. The Contributions of this work are twofold: 1) a
framework for deploying LSTM models in real-time for high-rate
state estimation, 2) an experimental validation of LSTMs running
on a real-time computing system.

NOMENCLATURE
HR-SHM High-rate structural health monitoring.
DROPBEAR Dynamic Reproduction of Projectiles in Ballistic

Environments for Advanced Research.
LSTM Long short-term memory.
RNN Recurrent neural networks.
FEA Finite element analysis.
SNRdB Signal-to-noise ratio in decibels.
RMSE Root-mean-square eror.
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ADC Analog to digital convertor.
DAC Digital to analog convertor.

1 INTRODUCTION
Structures subjected to impact loading that results in acceler-

ations of greater than 100 gn during time periods of less than 100
ms are considered to be structures operating in high-rate dynamic
environments [1]. High rate structural health monitoring (HR-
SHM) and prognostics is an emerging field focused on highly
dynamic engineering systems that are being enabled through the
recent introduction of real-time sensing, edge-computing, and
high-bandwidth computer memory [2]. The goal of HR-SHM
is to target the 1 ms timescales from event detection to decision-
making. The timing deadline of 1 ms does not include the time it
takes to execute decisions, such as the energizing of active struc-
tural components, changes in desired outcomes, or mission can-
cellation and device termination. Potential high-rate applications
that would benefit from the development of HR-SHM include
super and hyper-sonic vehicles, orbital space infrastructures, and
active blast mitigation systems [3–5].

Real-time state estimation of structural state is essential to
enabling high-rate decision-making for structures operating in

extreme dynamic environments. However, traditional model-
based state-estimation techniques are slow and operate on the
order of seconds to hours [6, 7]. Prior work by the authors has
demonstrated that finite element analysis (FEA) can be used to
track the state of a simple cantilever beam-based setup [8]. This
work demonstrated that a 40 element 1-D Euler-Bernoulli beam
model could be solved for every 4.04 ms while providing an over-
all error of 2.9%. These results were obtained using parallel-
optimized code on a 2.3 GHz eight-core PXI controller (PXIe-
8880 manufactured by NI). Solving the generalized eigenvalue
problem to obtain the systems frequency components is the most
time-consuming aspect of the presented model-based approach
and accounts for over 3.6 ms of the total 4.04 ms. It is envisioned
that the FEA model used for a real system experiencing high-rate
dynamics will be a relatively complex 3D model with thousands
of FEA nodes, however, due to its O(n3) complexity, the gener-
alized eigenvalue formulation scales poorly for larger FEA mod-
els. It becomes evident that model-based approaches are poorly
suited for obtaining state-estimations on the µs timescale.

Data-driven approaches offer the potential to link complex
time-series measurements obtained from a structure to an esti-
mation of the structure’s state in real-time. In particular, the long
short-term memory (LSTM) is well suited for inferring a state

FIGURE 1. The Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research (DROPBEAR) experimental testbench,
showing: (a) the physical setup, (b) the measured roller movement profile which induces vibrations into the cantilever beam, and (c) the measured
acceleration data taken during the test.

2 Copyright © 2022 by ASME



from time-series data due to its ability to keep a memory of pre-
vious inputs within the model’s framework. For an LSTM, the
time and storage complexity is O(n2) where n is the number of
LSTM units [9, 10]. Where the number of needed LSTM units
is a model hyperparameter that must be set. The de-coupling of
the model complexity from the structure’s physical models offers
the potential to greatly improve high-rate state estimation, mov-
ing it closer to the stated 1 ms time-step for a system of moderate
complexity.

This work reports on the deployment of an LSTM to track
the state of a benchtop structural testbed in real-time. To achieve
this, an LSTM model is deployed to an edge-scale computing
device (1.33 GHz Dual-Core Intel Atom) running a Linux-based
real-time operating system. A methodology for developing a
multi-cell LSTM and determining the number of units needed
to accurately track the state of the structure is presented. An ex-
perimental investigation is undertaken using an edge-computing
device demonstrating an achieved time step of 2.5 ms. The con-
tributions of this work are twofold: 1) a framework for deploying
LSTM models to real-time computing systems for tracking the
state of structures operating in high-rate dynamic environments
is introduced, and 2) an experimental validation of LSTMs run-
ning on a real-time computing system is undertaken. The code
has been made available in a public repository.
2 Background

This section presents background on the experimental test-
bench and a mathematical formulation of LSTM models.

2.1 DROPBEAR experimental testbed
The Dynamic Reproduction of Projectiles in Ballistic Envi-

ronments for Advanced Research (DROPBEAR), introduced and
modeled by Joyce et al. [11], was used to generate the experimen-
tal data used in this work. DROPBEAR is presented in figure
1(a) and in its present configuration is a cantilever beam featur-
ing controllable roller support that moves to alter the “condition”
or “state” of the beam. The automated roller can produce a re-
peatable change in the system’s state that is analogous to damage
in the structural system. The cantilever beam measures 51 × 6 ×
350 mm beam with a single accelerometer (PCB Piezotronics -
393B04) mounted near the end of the beam and digitized using a
24-bit IEPE ADC (NI-9234). As shown in figure 1(b), the roller
followed a profile ranging from 48 mm (closest to the fixity) to
175 mm.

The beam is self-excited by the roller’s movements and
therefore no extraneous inputs are required, however, this does
require an initial input to the beam as annotated in figure 1(b) to
initiate vibrations in the beam. The test profile consists of square,
sinusoidal, and impulse inputs each in sets of six with increasing
amplitude. The maximum roller movement was limited by the
experimental setup to 250 mm/s. The time-series acceleration
response of the beam is presented in figure 1(c). The data used
in this work is available through a public repository [12].

2.2 Long-Short Term Memory

FIGURE 2. Data flow through an LSTM cell with a forget gate.

Traditional recursive neural networks (RNN) are deep learn-
ing algorithms designed to deal with a variety of complex tasks
where the data of interest is a sequence of events that occur in
succession. In these applications, each new data point is tied
to the previous data point through some underlying informa-
tion. For example, a classic use for RNNs is speech recogni-
tion where the information that ties the individual words together
forms a complete thought [13]. Ideally, deeper RNNs have a
longer memory period and better capabilities. However, this is
not achievable in real-world applications due to the challenge
of backpropagating through the network. This is known as the
vanishing gradient problem. Consequently, RNNs are typically
only useful for shorter data sequences as the depth of their useful
memory is limited.

LSTMs overcome the vanishing gradient problem by main-
taining a constant error, allowing them to learn over sequential
data. Consider the typical formulation for an LSTM with forget
gates, as depicted in Fig. 2. The compact form of the equations
for a forward pass of an LSTM is [9, 10]:

ft = σg(Wf xt +U f ht−1 +b f ) (1)
it = σg(Wixt +Uiht−1 +bi) (2)
ot = σg(Woxt +Uoht−1 +bo) (3)
c̃t = σh(Wcxt +Ucht−1 +bc) (4)
ct = ft ◦ ct−1 + it ◦ c̃t (5)
ht = ot ◦ cσh(ct) (6)

where ht is the output vector of the LSTM unit at time t. Note that
the input vector xt is transformed to the output vector (ht ) through
a series of point-wise operations, sigmoid (σg) and hyperbolic
tangent (σh) activation functions, and the Hadamard product (◦).
W and U represent the weights of the input and recurrent connec-
tions while b represents the bias term. W , U , and b are learned
through backpropagation. The subscript denotes the input gate
(i), output gate (o), forget gate ( f ), or the memory cell (c).
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3 METHODOLOGY
This section presents the development of an LSTM for de-

ployment on a real-time edge device and presents the setup for
its experimental validation.

3.1 LSTM Model Development

FIGURE 3. LSTM algorithm architecture used in this work and de-
ployed onboard the real-time edge device.

The deployment of LSTMs to edge computing devices for
high-rate state estimation results in significant constraints in the
size of the model that can be deployed and the speed at which
data can be fed to the model. Figure 3 shows the general LSTM
model architecture being investigated in this paper. The first
layer is a sequence input layer, which takes sequence input data
and splits it into the correct vector size. To fit the number of
hidden units within the subsequent LSTM cell(s). This is fol-
lowed by a regression output layer. This LSTM model architec-
ture was chosen after an ad hoc investigation into various model
architectures and hyper-parameters while considering hardware
limitations. All model configurations were simulated before im-
plementing them onto a real-time system.

The LSTM models were trained on the data produced by
DROPBEAR as shown in figure 1(c). The acceleration data is
used to estimate the state (position) of the roller, therefore accel-
eration is the input to the model, and predicted pin location is the
output. The acceleration data is digitized at 25.6 kS/s, which is
considered over-sampled. Sub-sampling this data without losing
information on the dynamics of interest would greatly reduce the
computational load. To sub-sample the data, the time series data
was mapped into the frequency domain to find the important fre-
quency components and to calculate the max down-sample factor
to fit the Nyquist sampling theorem. A down-sample factor of 64
was chosen for both the experimental and simulated models.

The LSTM cell within the model architecture has many hy-
perparameters that can be adjusted. Optimization of the hyper-
parameters was performed using a grid search that was run over
select parameters for 1000 epochs on one LSTM cell. The pa-
rameters considered were hidden unit size, initial learning rate,
learning rate drop factor, and batch size. Each run was trained us-
ing the Adam optimizer. Figure 4 reports the root mean squared
error (RMSE) measured between the real and predicted roller lo-

FIGURE 4. RMSE values of various model architectures with differ-
ent numbers of cells and units.

cations for LSTM architectures with 1 to 4 cells over an increas-
ing number of hidden units per cell. Note that while an increase
in the number of cells and units tends to help the model learn
the complexities of the data set and return predictions with less
error; they require greater system resources that may make them
infeasible for deployment on edge devices.

The model configuration chosen for hardware implementa-
tion was a four-stacked LSTM with cell units of 30, 30, 15, and
15, as well as a densely connected top with no activation func-
tion, as shown in figure 3. This architecture was chosen as it was
shown to have high accuracy compared while still maintaining
an efficient model size. The cell architecture was programmed
in the LabVIEW visual programming environment, with LSTM
weights stored as constants.

3.2 Real-time Edge Implementation
To gauge the algorithms performance, an experiment is con-

structed with two subsystems, a host machine, and a real-time
target machine, as presented in figure 5. The test setup is com-
posed of two devices, a real-time target, and a data synthesis de-
vice. The purpose of the data synthesis device is to reproduce
the data obtained by Downey et al. [8, 12] as an analog volt-
age. This setup allows the real-time target to function as if it was
directly deployed on a structure obtaining measurements from
an accelerometer, without simulating data buffers. The DROP-
BEAR acceleration data is imported from a file located on the
host PC. Preprocessing of this data includes scaling the data by
the same factor used in training, keeping the same sampling rate.
This data is streamed using a cDAQ-9178 and NI-9262 digital-
to-analog (DAC) module to produce an analog signal simulating
the accelerometer’s signal shown in figure 1(c).

The real-time target digitizes the analog voltage and treats
it as acceleration data. Data is digitized using a NI-9201 12-
Bit analog-to-digital (ADC) module with a maximum sampling
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FIGURE 5. Experimental validation showing: (a) physical hardware
used, and (b) block diagram of data flow within the physical hardware.

rate of 500 kS/s. No clock synchronization between the data
synthesis and data acquisition systems was used. The rate of
data acquisition is set to 1/64th that of data synthesis so that the
downsampling performed in model training is replicated. In this
initial work, the rates of synthesis and sampling are varied to
investigate timing and noise, however, the downsampling fac-
tor remains a constant 64 throughout the duration of this work
to provide a true metric of performance. The acceleration sig-
nal is then fed into the LSTM architecture deployed onboard the
real-time processor. The LSTM model runs within a timed loop
and will return the state prediction within the period of the timed
loop. State predictions (e.g., roller locations) are returned to a
first-in-first-out buffer back to the host PC for analysis and error
calculation.

The real-time target edge device used in this work is a cRIO-
9035 manufactured by National Instruments which allows for the
easy integration of a 1.33 GHz dual-Core Intel Atom (E3825)
with data acquisition. In this work, a NI-9201 12-bit ADC with a
maximum sampling rate of 500 kS/s is used to re-digitize the ana-
log signal. The real-time time step was set to 2.5 ms, therefore,
every 400 times per second data digitization and a forward pass

of the LSTM is performed. The real-time target utilizes the Lab-
VIEW Real-Time environment and used NI Linux Real-Time,
a proprietary real-time OS developed by NI from open-source
code. Mainly, NI Linux Real-Time is built on PREEMPT RT
[14, 15] which aims to improve the determinism of the Linux
kernel itself.

Limitations of this experiment revolve around the DAC’s
ability to reproduce signals with high slew rates and therefore,
provide a true reconstruction of the voltage signal. Simulating
the vibration signature of the test structure was shown to be chal-
lenging as the acceleration signals are rich in high-frequency
components that could not be reproduced on the current hard-
ware. Furthermore, discretization and reconstruction with a zero-
order hold introduce disturbances that deviate from the desired
reference signal. To expand, when the synthesis and prediction
are performed at the same speed as during the DROPBEAR ex-
periment, a complete pass through the data takes approximately
45 s.

4 RESULTS AND DISCUSSION

In this section, the findings of the real-time deployment of
the LSTM architecture is presented. Performance was exam-
ined using signal-to-noise ratio measured in decibels (SNRdB),
RMSE, and execution time.

The position of the roller pin predicted by the LSTM model
is presented in figure 6. Figure 6(a) reports the predicted pin
locations at 400S/s. Note that the LSTM has difficulties repro-
ducing the peaks of the roller movement shapes as this is where
the acceleration signals include the highest frequency compo-
nents, and the DAC used lacked the adequate bandwidth to ac-
curately synthesize such signals. The accuracy demonstrated by
the LSTM model for state estimation shows the promise of data-
driven approaches for tracking system health.

An investigation into the consistency of the real-time op-
eration was performed and is reported in figure 7. Results re-
ported here are for the LSTM at the 2.5 ms time step as the real-
world processing speed is the performance threshold of interest.
Recorded results demonstrate an average time step of 2.5 ms with
a standard deviation of 0.004 ms and a skew of −1.277×10−14.
Where the standard deviation and skew are measurements of
jitter in the real-time operating system. Importantly, the max
recorded time is 2.519 ms which results in a timing overshoot
of 0.019 ms over the desired time step of 2.5 ms, as shown in
table 1.
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FIGURE 6. Results for the high-rate LSTM-based state estimator showing the predicted values at 400 S/s.

FIGURE 7. Timing distribution of the LSTM forward path at a 2.5 ms
time step.

TABLE 1. Algorithm execution timing report.

Mean 2.5 ms

Standard deviation 0.004 ms

Max overshoot 0.019 ms

5 CONCLUSION
In this preliminary stage, the design and implementation

of an LSTM-based state-estimation framework were presented.
This method demonstrates the feasibility of deployment on a
real-time edge device and an ad hoc methodology for select-
ing the size of the hyperparameters for the LSTM architecture.
In order to achieve the rate of 400 Hz, the acceleration signal
was downsampled to reduce computation. This study shows that

LSTMs offer a viable path forward for high-rate state estima-
tion as they can achieve accurate state estimations for structures
subjected to dynamic environments. Results demonstrated that
a SNRdB of 43.2 and an RMSE of 12.8 mm could be achieved.
Moreover, a time-step of 2.5 ms was demonstrated with a maxi-
mum overshoot of 0.019 ms. Future work will involve validating
the accuracy of the signal replication. Additionally, decreasing
the time from receiving the measurement to issuing a prediction
will be investigated. The algorithm has been made available in a
public repository [16].
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