
TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00

NAPOLY: A Non-deterministic Automata Processor OverLaY

RASHA KARAKCHI and JASON D. BAKOS, University of South Carolina
1
2

Deterministic and Non-deterministic Finite Automata (DFA and NFA) comprise the core of many big data 3
applications. Recent efforts to develop Domain-Specific Architectures (DSAs) for DFA/NFA have taken diver- 4
gent approaches, but achieving consistent throughput for arbitrarily-large pattern sets, state activation rates, 5
and pattern match rates remains a challenge. In this article, we present NAPOLY (Non-Deterministic Au- 6
tomata Processor OverLaY), an FPGA overlay and associated compiler. A common limitation of prior efforts 7
is a limit on NFA size for achieving the advertised throughput. NAPOLY is optimized for fast re-programming 8
to permit practical time-division multiplexing of the hardware and permit high asymptotic throughput for 9
NFAs of unlimited size, unlimited state activation rate, and high pattern reporting rate. NAPOLY also allows 10
for offline generation of configurations having tradeoffs between state capacity and transition capacity. In this 11
article, we (1) evaluate NAPOLY using benchmarks packaged in the ANMLZoo benchmark suite, (2) evaluate 12
the use of an SAT solver for allocating physical resources, and (3) compare NAPOLY’s performance against 13
existing solutions. NAPOLY performs most favorably on larger benchmarks, benchmarks with higher state 14
activation frequency, and benchmarks with higher reporting frequency. NAPOLY outperforms the fastest of 15
the CPU and GPU implementations in 10 out of 12 benchmarks. 16

CCS Concepts: • Computing methodologies→ Parallel computing methodologies; Concurrent com- 17
puting methodologies; • FPGA, automata processing, FPGA overlay, pattern matching; 18

Additional Key Words and Phrases: FPGA, automata processing, FPGA overlay, pattern matching 19

ACM Reference format: 20
Rasha Karakchi and Jason D. Bakos. 2023. NAPOLY: A Non-deterministic Automata Processor OverLaY. ACM 21
Trans. Reconfig. Technol. Syst. 00, JA, Article 00 (May 2023), 25 pages. 22
https://doi.org/10.1145/3593586 23

24

1 INTRODUCTION 25

Pattern-based datasets such as genomic sequences, item-sets, web data, and network packets are 26
growing rapidly in size and complexity. Identifying complex patterns are often involved in ap- 27
plications such as motif discovery [28], de novo genomic assembly [24], web-search and rank- 28
ing [4], question answering systems [8, 23], compression in NoSQL systems [18, 25], approximate 29
string matching [13], calculating the edit distance between two genomic sequences [31], signature- 30
based threat detection [6], association rule mining [12], and data-packet inspection [6]. Such pat- 31
tern matching computations are often reducible to the simulation of either Deterministic Finite 32
Automata (DFA) or Non-deterministic Finite Automata(NFA). 33

This material is based upon work supported by the National Science Foundation under Grant No. 1421059.

Authors’ addresses: R. Karakchi and J. D. Bakos, University of South Carolina, Columbia, SC 29208; emails: {karakchi,

jbakos}@cec.sc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1936-7406/2023/05-ART00 $15.00

https://doi.org/10.1145/3593586

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

https://orcid.org/0009-0004-1391-0166
https://orcid.org/0000-0002-0821-6258
https://doi.org/10.1145/3593586
https://doi.org/10.1145/3593586

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:2 R. Karakchi and J. D. Bakos

DFA allows only one active state at any time, and the DFA structure must contain a state cor-34
responding to every possible partial match of every pattern to be accepted. An NFA, on the other35
hand, allows an arbitrary number of active states and thus allows multiple next-state functions to36
operate concurrently.37

Although pattern matching problems can be solved equivalently using either a DFA or NFA,38
neither can be efficiently performed on a CPU. DFAs require extremely large transition tables39
with an unpredictable access pattern, while NFAs require memory bandwidth that scales with40
state activation rate, often becoming memory bound. For this reason, there is widespread interest41
in Domain-Specific Architectures (DSA) that can efficiently exploit the NFA parallelism.42

Automata processor DSAs are generally evaluated by their achieved symbol throughput but43
the reported values often assume that the entire NFA fits in on-chip memory. This is equivalent44
to evaluating a memory system using the bandwidth of only its on-chip cache. Such systems may45
require milliseconds [3] to seconds [2, 20, 22, 36] to reprogram, making rapid context switching46
impractical.47

2 PRIOR WORK48

Previous work in automata matching DSA architectures have been deployed on both Field-49
Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuits (ASICs).50
Most of these can achieve high traversal throughput of one or two input symbols per clock cy-51
cle but processing NFAs that are too large to fit in device memory requires multiple passes of52
the input stream. The latency of reprogramming between consecutive passes is often a significant53
performance limiter. This is the main challenge NAPOLY was designed to address.54

When using FPGAs, the patterns are often synthesized directly onto the FPGA fabric as logic55
circuits, allowing high pattern density and high throughput (100s of MB/s). However, even if the56
logic is pre-synthesized offline, the fine granularity of reconfiguration requires long reconfigura-57
tion times of 10s of seconds making it impractical to time-multiplex the hardware [2, 20, 22, 36].58

On the other hand, ASIC-based architectures such as the Micron Automata Processor59
(Micron AP), allow the input data to be streamed into multiple functional units where each60
functional unit tracks partial pattern matches. Such designs allow for faster re-configuration time61
than FPGA-based approaches since only a more compact, abstract form of the patterns need to62
be loaded. However, their fixed structure lacks the ability to leverage the patterns themselves to63
make design tradeoffs, i.e., trade between state density and transition density in the corresponding64
automata [3, 20].65

Fang et al. designed the Unified Automata Processor (UAP), a set of vector extensions added66
to a traditional von Neuman CPU optimized for implementing a variety of NFA-based program-67
ming models [20]. The UAP exploits parallelism by concurrently traversing one edge per cycle for68
each of its 64 lanes. The design stores NFA transitions in local memory attached to each lane, with69
a total capacity of 1 MB. The transitions are stored in a compact, efficient format but the design is70
limited to NFAs that can fit into the local memory.71

Das et al. [5] proposed Cache Automaton (CA), in which a conventional cache is augmented72
to perform automata processing through the addition of two pipeline stages fed by each input73
symbol. The first stage finds the symbol match in the RAM and the second implements the state74
transitions through a hierarchical switching network. The achieved throughput degrades with the75
targeted NFA’s edge density and number of states. Subsequent efforts have sought to address this76
problem. J et al. [10] use a time-division multiplexing approach by adding a multiplexer to pipeline77
the hierarchical switching network. This approach improved cache automata throughput by 2X.78

Another approach for implementing DFAs and regular expressions is by using Ternary79
Content-Addressable Memory (TCAM). TCAM-based approaches have limited capacity and80
a–far as we are aware–have not been demonstrated to be amenable to time multiplexing [11].81

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:3

Teubner et al. [30] implemented an FPGA-based automata engine for database systems by inte- 82
grating the FPGA hardware as an XML projection (or pre-filtering) into a database system path. 83
XML projection [17] extracts filtering expressions from query then pre-filters the data to reduce 84
the dataset size and the compilation overhead. The hardware can be reconfigured in less than one 85
microsecond, but is currently only capable of matching individual patterns and cannot be adapted 86
to processing generalized automata descriptions such as the one defined in ANMLZoo. 87

CAMA-T [21], Impala [7], and Grapefruit [19] are based on multi-stride NFA to accept multiple 88
input symbols per clock cycle. Impala is an ASIC-implementation that transforms the usual 8-bit 89
symbol used by many automata processors into a 4-bit symbol to further improve throughput, 90
while Grapefruit is an FPGA-implementation which has the ability to execute four 8-bit symbols 91
at a time. Unfortunately, this article does not provide throughput values for each of the ANMLZoo 92
benchmarks to provide a direct comparison. 93

Wang et al. recently proposed hAP, a spatial-von Neumann Automata Processor that consists 94
of a hybrid DFA/NFA engine, where the DFA component is designed as state-match component 95
that accepts one active state at a time and the NFA executes the transitions which are deployed 96
directly to gates and registers [35]. The reported throughput includes the kernel throughput and 97
the compressed reporting overhead, however, reconfiguration time is not considered. Additionally, 98
hAP targets only one specific type of automata application, regular expression matching. 99

This work is comprised into three main contributions: 100

(1) a parameterizable overlay, NAPOLY, which is comprised of an array of hardware modules 101
(called State Transition Elements or STEs), each sensitive to a specific pattern and reconfig- 102
ured at run time in 21 to 74 μs depending on the overlay size selected, 103

(2) an open-source tool, NFATOOL, which maps logical pattern states onto the physical STEs 104
using a SAT solver [27], 105

(3) analysis of the tradeoffs between state capacity, interconnect density, output buffer size, and 106
(4) comparison to state-of-the-art Intel’s CPU-based NFA software (Hyperscan) and a well- 107

known GPU-based implementation (iNFAnt) [14]. 108

3 FINITE AUTOMATA 109

A finite automaton (FA) M is defined by [26]. 110
M = (Q,

∑
,δ ,q0, F), where 111

— Q is finite set of states, 112
—
∑

is a finite set of symbols called the input alphabet, 113

— δ :
⎧⎪⎨
⎪
⎩

Qx
∑→ Q, Transition Function for DFA,

Qx (
∑∪λ) → 2Q , Transition Function for NFA,

114

— q0 ∈ Q is the initial state, 115
— F ⊆ Q is a set of reporting states. 116

At each clock cycle, the FA makes a transition based on (1) current state activation and (2) the 117
match of the input symbol and the edge label. The FA must report whenever a “report” state is 118
activated, meaning that a pattern defined in the pattern set was identified. In this case, both the 119
report ID and the current symbol position (offset) in the input sequence are reported. An FA is 120
classified either as DFA or NFA depending on how many states may be active at one time. 121

3.1 Deterministic Finite Automata (DFA) 122

During operation, a DFA may have only one active state and accesses only one entry of its state 123
transition table. It must contain a state for every possible partial match of every possible pattern. 124
This can lead to combinatorial growth of the state space. 125

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:4 R. Karakchi and J. D. Bakos

Fig. 1. DFA for regular expression pattern “ababc”.

Fig. 2. NFA for regular expression pattern “ababc”.

Fig. 3. ANML-NFA for regular expression pattern “ababc”.

Figure 1 shows an example of DFA consisting of six states (state 0 represents start-state and126
state 5 represents report-state) that recognizes a simple regular expression pattern “ababc”. The127
corresponding next state table is shown as Table 1.128

3.2 Nondeterministic Automata129

In an NFA, multiple states are active simultaneously. Each state needs only track the progress130
towards accepting one specific pattern instead of all possible patterns. This requires fewer states131
than an equivalent DFA.132

Figure 2 shows an NFA that accepts the same pattern as in Figure 1. As it is shown in Table 2,133
the next state table for NFA is 2.6 times smaller than that of the DFA in Table 1.134

An alternative form of NFA description called Automata Network Markup Language135
(ANML) was developed by Micron [3]. ANML-NFA is differentiated by associating the transition136
labels with the states instead of the edges. This adds an additional constraint that each state’s in-137
coming transitions must have the same label set, but it allows an implementation to associate the138
next state table with the states instead of the edges and thus reducing the memory requirement.139

Figure 3 shows the alternative form of NFA with symbols associated with states, for implement-140
ing the pattern “ababc”.141

3.3 Intel FPGA142

An Intel FPGA is comprised of a two-dimensional array of Logic Array Blocks (LABs). In the143
Stratix 5 family of FPGAs, each LAB consists of 10 basic reconfigurable Adaptive Logic Modules144
(ALMs) sharing local interconnections, control signals, and chain of connection lines. The ALM145
consists of two 6-input Look-Up Tables (LUTs), two-adders, four multiplexers, and four registers.146
Some LABs are variants called MLABs (Memory LAB), which contain LUTs-based SRAM capability147

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:5

Table 1. Transition Table
for DFA Description

state input next

0 a 1

0 λ 0

1 b 2

1 a 1

1 λ 0

2 a 3

2 λ 0

3 b 4

3 a 1

3 λ 0

4 c 5

4 a 3

4 λ 0

Table 2. Transition Table
for NFA Description

state input next

0 a 1

1 b 2

2 a 3

3 b 4

4 c 5

Fig. 4. Mapping “ababc” in Figure 2 directly to Micron AP.

to support simple dual-port SRAM. LABs connect to each other through global interconnections 148
distributed horizontally and vertically on the device. 149

Prior work [2, 22] implemented NFA as circuits and flip-flops as illustrated in Figure 5, show- 150
ing an automata that accepts pattern “ababc” implemented on an FPGA. This approach has fixed

Q1

151
interconnection and fixed symbol tables, which requires that the FPGA be reconfigured to change 152
the recognized patterns. 153

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:6 R. Karakchi and J. D. Bakos

Fig. 5. Mapping NFA directly on FPGA of Figure 3.

Fig. 6. An example of fan-in-based relaxation.

3.4 VASIM Relaxation154

Mapping an arbitrary automata onto NAPOLY often requires transforming automata into another155
functionally equivalent automata but having different structure. One NFA transformation is fan-156
in and fan-out relaxation [33], replicates each state having a fan-in (incoming transitions) that157
exceed a given limit, resulting in the transformed NFA having a desired maximum fan-in in order158
to enforce constraints imposed by the hardware.159

Figure 6 shows an original automaton of five vertices having a maximum fan-in of 3. If we160
wish to limit the maximum to, for example, 1, then state 4 would be a violation of this constraint.161
With fan-in relaxation, the violated state is replicated by ceil (I/d), where I = the original fan-in162
and d = the fan-in constraint. The outputs of the original vertex are copied, while the inputs are163
divided among the new replicated vertices. Likewise, fan-out relaxation allows for constraining164
the application of a fan-out constraint.165

Figure 7 shows an original automaton of five vertices, where its maximum logical fan-out is166
O = 3. Assuming the logical fan-outd = 1, state 2 violates the hardware fan-out constraint. During167
relaxation, the violated state is replicated by ceil(O/d). The outputs of the original vertex are divided168
among the new replicated vertices, and the inputs are copied.169

3.5 ANMLZOO Benchmark Suite170

ANMLZoo is a diverse benchmark suite of finite automata for evaluating automata processing en-171
gines [9]. It consists of 12 benchmarks representing various applications for automata processing.172

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:7

Fig. 7. An example of fan-out-based relaxation.

Table 3 shows ANMLZoo benchmarks which have up to 100,000 and up to 5,000 distinct sub- 173
graphs, which are connected to each other to form ANMLZoo graph. The first column lists the 174
benchmark names, the second and third columns show the number of states in (1,000’s) and the 175
number of distinct subgraphs. The fourth column shows the maximum logical fan-in/ logical fan- 176
out for each benchmark, which represents the maximum incoming and outgoing transitions of 177
state. The Family column represents the family to which each benchmark belongs: regex (set of 178
characters that define search pattern), mesh (regular structure with fan-in/fan-out), and widget 179
(when automata represented as a tree). The last column, function, describes the function each 180
benchmark performs. 181

4 NAPOLY DESIGN 182

NAPOLY is a parameterizable and reusable architecture for deploying an NFA description but im- 183
poses several constraints. First, the NFA topology must not violate a fan-in and fan-out constraint. 184
However, the fan-in and fan-out constraint not only limits the number of incoming and outgoing 185
edges but also limits the distance between the mapped location of states that are connected with 186
an edge. We refer to this constraint as the “hardware fan-out”, which determines the maximum 187
number of outgoing transitions per STE as well as the maximum distance between a pair of con- 188
nected STEs with respect to their location in the array. For example, with a hardware fan-out of 189
10, STEn can only connect to STEn−4 to STEn+5 (including itself). 190

NAPOLY configurations are a tradeoff between hardware fan-out and state capacity, in terms 191
of the number of STEs. We developed several Pareto optimal versions of the overlay with varying 192
numbers of STEs and hardware fan-out [15]. 193

4.1 STE Design 194

Figure 8 shows the NAPOLY STE design. To achieve maximum utilization of memory, the “current 195
state table”, which stores the set of input symbols associated with each STE, is generated as a 256 x 196
M bit RAM, where M = the number of STEs. Each STE accepts a one-bit input from its corresponding 197
column in the current state table, indexed by the input symbol. 198

Each STE contains an OR-gate that combines activation signals from all its f possible predeces- 199
sor STEs (f is the hardware fanout). Any cycle in which any of the incoming activation signals 200
are asserted while simultaneously receiving a one-bit from the current state table will activate the 201
STE’s state bit in the following cycle. Unless the “start bit” is set, the state bit resets in any cycle 202
in which this condition does not hold. 203

While the state bit is set, the STE will broadcast an activation signal to all its f outputs, each 204
of which is AND’ed against a corresponding “interconnect configuration bit” before connecting to 205

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:8 R. Karakchi and J. D. Bakos

Table 3. ANMLZoo Applications

Benchmark
States

(K)
Distinct

Sub-graphs

Logical

Fan-in /
Fan-out

Family Function

Brill 26 1,962 4/4 Regex
brill tag

patterns and
correct tags

ClamAV 48 515 11/2 Regex
viruses

signatures in
files

Snort 69 2,585 19/5 Regex
particular
snort rules

Protomata 42 2,340 3/106 Regex
particular

motif
signature

Dotstar 96 2,837 2/2 Regex spy rules

Power En 40 2,857 4/3 Regex
complex

rules

Levenshtein 27 24 8/5 Mesh

edit
distance
between

DNA
sequence

Hamming 11 93 4/2 Mesh

number of
mismatches

between
sequences

SPM 100 5,025 3/2 Widget
groups of

related
items

Fermi 40 2,399 2/2 Widget
particular

path

Entity Resolution 95 1,000 28/2 Widget

input
sequences

match
encoded
pattern

Random Forest 75 3,767 2/2 Widget

Recognize
particular

handwritten
texts

the OR-gate of each of the potential successor STEs. The interconnect configuration bits are the206
mechanism by which edges are established between states mapped onto STEs. It forms a point-207
to-point programmable interconnect, in which each wire and corresponding configuration bit are208
associated with each pair of connectable STEs.209

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:9

Fig. 8. STE design.

Fig. 9. NAPOLY interconnect.

The interconnect configuration bits and the start and reporting flags are stored in a set of flip- 210
flops connected as one of several shift registers that collectively spans all STEs, similar to the JTAG 211
boundary scan but a set of which are fed in parallel from DRAM as opposed to serially as in the 212
case of JTAG. 213

4.2 Interconnection Design 214

The physical STEs on the FPGA are connected using point-to-point links between each STE and to 215
itself and between each STE and f-1 of its neighbors. The STEs adopt a one-dimensional address- 216
ing scheme, where each STE is associated with ID n and sends output signals to successor STEs 217
n − [(f − 1)/2] to n + [f /2]. 218

Figure 9 shows NAPOLY interconnects when n = 4, and f = 4. The blue and red wires rep- 219
resent the backward and forward interconnects respectively. This interconnect design is based 220
on dedicated, non-shared point-to-point wires between each pair of connectable STEs. While it 221
is less versatile than a switched interconnect consisting of shared wire tracks, it avoids the need 222
to allocate and map interconnect resources, relying instead only on solving only the state-to-STE 223
mapping problem. 224

4.3 Overlay Resource Constraints 225

STE capacity is limited by the LUTs required to implement the OR-gates that combine the incoming 226
predecessor inputs into each STE. Our evaluation FPGA is an Intel Stratix 5 GX A7. 227

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:10 R. Karakchi and J. D. Bakos

In terms of RAM capacity, there is a choice between using MLAB or M20K RAMs for the current228
state tables. The Stratix 5 GX A7 has roughly 7X the M20K capacity than it does MLAB capacity,229
but the current state tables have a depth of 256, while the minimum depth required to fully utilize230
M20K resources is 512, meaning that only 50% of the M20K capacity is available for depth-256231
tables. More importantly, M20Ks require synchronous reads, which if used for the current state232
table would reduce array throughput by 1/2, as each input symbol would require one cycle to233
access the current state table and another for updating the state flip-flops. Lastly, the M20K blocks234
are needed to buffer the input and output data for the AP fabric. The Stratix 5 GX 7A contains 7.16235
Mb of MLAB memory, giving an upper bound of roughly 29K STEs.236

4.4 I/O Interface237

The input symbols stored initially in the DRAM are transferred into the input buffer. The outputs238
reported in NAPOLY are stored in output buffers before flushing out to the DRAM.239

4.4.1 Input Buffer. A 64K x 8-bit M20K-based RAM serves as the input buffer. Once filled, it240
streams input data into the STE array at one symbol per cycle at 152MB/s for the 4K-STE overlay.241
Note that this is the upper bound for throughput, but in practice, the effective throughput is lower242
due to the overheads required for programming the array, filling the input buffer, and flushing243
the output buffer. Filling the input buffer from DRAM requires 8.6μs (7.1GB/s), performed S/64K244
times, where S is the total number of input characters.245

4.4.2 Output Buffer and Report Region. Any STE may be mapped to a particular reporting state,246
which causes it to generate a global output signal or “report” in all cycles in which it is active. Ide-247
ally the output buffer would accommodate a scenario where all states are configured as accepting248
states and all states are active in every cycle, which is readily achievable by setting the “start” and249
“reporting” flag on all STEs.250

To obtain the reporting ID, NAPOLY’s STEs are decomposed into output regions, where each251
region represents a group of consecutive STEs (M). The number of reporting regions in the design252
is equal to (N /M), where N is total number of STEs. To determine which STE is reporting in each253
group, we use a priority encoder. The number of encoders determines the maximum number of254
reports per clock cycle without stalling.255

4.4.3 Output Buffer Implementation. The depth and width of the output buffers are design pa-256
rameters. The buffer depth depends on overlay size, where smaller overlays can support deeper257
output buffers. The output buffer depth for overlay 4K, 8K, 12K, 16K, 20K, and 24K is 64K, 32K,258
24K, 16K, 12K, and 8K, respectively.259

For example, assume an 8K overlay comprised of eight 1024-STE reporting regions with four260
encoders per region, giving 32 encoders. STEs are enumerated within each reporting region, mean-261
ing that each STE ID is comprised of loд21024 = 10 bits, and the width of the encoder outputs is262
32 × 10 = 320 bits.263

The output buffer must therefore have a 320-bit port for reporting and a 512-bit port for DMA264
to DRAM. However, the dual RAM design is restricted by the set of ratios between port A and port265
B widths are 1, 2, 4, 8, 16, and 32. This prevents generating RAM with ratio 512/320, leading us to266
necessitate padding the input port width by extra 0s to the left to achieve the minimum valid ratio267
between the two ports. These padded bits are used to store the input offset as shown in Figure 11.268

4.4.4 Priority Encoder. The priority encoders identify the active reporting STEs in each cycle.269
In each cycle, the encoding process starts by the right-most bit in the group, checking if the bit is270
set. If so, the bit will be encoded, and its ID sent to the reporting-ID register. If the bit is zero, the271
priority encoder moves to the next bit and repeats the process, until the final bit in the group.272

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:11

Fig. 10. NAPOLY timing diagram.

In order to limit the logic latency of this operation, the priority encoders in each reporting region 273
are further divided into one or more output regions, within which it limits the number of reporting 274
states. Figure 11 shows the design of the priority encoder with a reporting region size of 16 and a 275
output region size of 8. 276

4.4.5 NAPOLY Performance Model. Historically, automata DSAs have evaluated performance 277
in terms of symbol throughput, i.e., symbols per cycle or symbols per second. Practical workloads 278
often require multiple passes through the pattern set, in which case reconfiguration time plays 279
a substantial part in end-to-end performance. Performance metrics must therefore consider the 280
number of reconfigurations and the time to read input set and flush the reports. 281

NAPOLY is reprogrammed in three steps. The current state tables, which are mapped onto 282
MLAB blocks, are written through an exposed write port, while the registers (interconnect and 283
state flags) are programmed using parallel shift register chains. There is one chain for each bit of 284
width to the external memory interface. For the Stratix 5 board, there are 64 shift registers to allow 285
for 64 bits to be shifted in every cycle to match the DRAM interface width. This width is scalable 286
to utilize all available memory bandwidth. Finally, the input symbol buffer, which is mapped onto 287
M20K blocks, is also configured through an exposed write port. 288

At runtime, NAPOLY follows the timing diagram shown in Figure 10. For each block of input
Q2
289

characters, the array must fill the input buffer from DRAM (
sizeinput _buf f er

bwDRAM
), and for each batch of 290

STEs it must reconfigure its array (timer econf iд) DRAM (loading next_state tables and configuring 291
gates), flush the input buffer through the array (timeI BF), and flush the output to DRAM (timeOBF). 292

Reconfiguring the interconnect bits scales with f and the number of STEs (N) and the time to 293
load the current state tables scales with the number of STEs (note that f and N vary inversely). 294

The effective throughput is calculated according to Equation (1). The reconfiguration time 295
timer econf iд gives the time needed to reconfigure a new NFA onto the overlay. Thus, the exe- 296

cution time scales with R × timer econf iд × I S
64K

, where 64KB = the size of the input buffer and IS 297
is the size of the input data to be searched for patterns. 298

Throughput =
sizeinput _buf f er

sizeinput _buf f er
bwDRAM

+R×(t imer econf iд+t imeO BF+t imeI BF)
. (1)

5 MAPPING PROBLEM 299

Mapping an NFA graph to an overlay (NAPOLY) is performed by allocating each state into an STE 300
and consequently mapping every edge to an STE-to-STE wire. This mapping must be performed 301
without violating the hardware fan-out constraints; that is, without mapping any pair of connected 302
states to a pair of STEs whose physical distance exceeds the reach of the STE interconnects [16]. 303

Definition 5.1. For a given NFA {V ,E}, whereV is a set of states and E a set of edges (transitions), 304
a map is an association between each of the NFA states of an NFA graph and a corresponding STE 305

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:12 R. Karakchi and J. D. Bakos

Fig. 11. NAPOLY output region.

Fig. 12. Mapping problem.

index in the range of [0,N − 1], where N = number of STEs. There are thus |V |! unique maps for306
a given NFA assuming |V | = N .307

For example, assume we have an NFA graph consisting of seven states [A,B,C,D,E, F ,G] as308
shown in Figure 12, and we need to map this NFA onto an overlay consisting of seven STEs309

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:13

[0, 1, 2, 3, 4, 5, 6]. Assume the hardware fan-out f is 9, meaning that the maximum forward connec- 310
tion distance is 4, maximum backward connection distance is 4, and self-loop is one connection. 311

If we map each state to an STE in order, as it is shown in Figure 12, the edge between B and G 312
will require a connection to mapping state B onto STE1, and mapping state G to STE6. This will 313
violate the fan-out constraint which is maximum backward or forward distance of 4. We refer to 314
this as a mapping violation. One way to meet this constraint is to map state F to STE6, and G to 315
STE5, as shown in the Figure. 316

In this example, there is 7! or 5, 040 possible ways to map the NFA onto the overlay. With f = 5, 317
there is no mapping solution. With f = 6, f = 7, and f = 8, the number of mapping solutions 318
grows to 24, 48, and 372, respectively. 319

5.1 Greedy Mapping Heuristic 320

For each violation between a predecessor and successor state, the mapping score resulting from 321
all possible violation resolutions is calculated and compared to the previous mapping score. The 322
mapping score is the sum of mapped distances between the STEs holding each pair of connected 323
states. To re-map a state from its original STE to a target STE, all states mapped to STEs between 324
the original STE and target STE are shifted to accommodate the state’s change in location. 325

The greedy heuristic considers every possible way to re-map either the predecessor or successor 326
state that results in the physical distance between the predecessor and successor being less than or 327
equal to the maximum reach as defined by hardware fan-out. Note that resolving a violation may 328
create new violations caused by the shifting of states required in the re-mapping. The heuristic 329
effectuates the re-mapping that gives the best overall score improvement relative to the original 330
mapping state. If none of the re-mapping options improves the mapping score, then the algorithm 331
moves on to the next violation without re-mapping any states. 332

The mapping heuristic will abort execution if it fails to achieve a reduction in mapping score 333
after several iterations. When this occurs, the algorithm is performed again but using an overlay 334
configuration with greater reach and less STEs. 335

5.2 SAT Solver Mapping Algorithm 336

Mapping states to STEs against the hardware interconnect constraints is reducible to SAT. In this 337
work, we use CryptoMiniSat [29] as our SAT solver. 338

The hardware fan-out parameter f defines which subset of maps is valid for a given NFA. In 339
order to find a valid map, a mapping algorithm must assignmap (s)∀s ∈ V subject to the following 340
constraints: 341

(1) Maximum hardware fan-out, 342

∀(s,d) ∈ E: ((map(s) - map(d))≤ �(f −1
2)) and ((map(d) - map(s))< �(f

2)) 343
(2) Every state must be assigned to only one STE 344
∀s ∈ V , ∀i, j ∈ N , i � j, ifmap (s) = i , thenmap (s) � j 345

(3) Every STE must be allocated one state 346
∀s,d ∈ V , s � d , ∀i ∈ N , if i =map (s), then i �map (d) 347

(4) All states must be allocated 348
∀s ∈ V ,map (s) ∈ N 349

In order to allocate the states into STEs, we describe the constraints above in conjunctive 350
normal form (CNF), where each clause is formed as a disjunction of literals (i.e., a product of 351
sums). We assign each possible mapping of a state to an STE as a Boolean variable whose state 352
determines if the mapping is made, i.e., Let Ls

i = TRUE whenmap (s) = i . 353

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:14 R. Karakchi and J. D. Bakos

We describe constraint 1 as shown in Equation (2) by constructing a set of clauses that collectively354
guard against every possible mapping violation.355

∧

∀(s,d)∈E,∀i ∈N

(Ls
i ∨

∨

∀m∈[−� f −1
2 	 ...,−1,1, � f

2]

Ld
i+m). (2)

In other words, if any edge (s,d) is mapped such thatmap (s) == i and state d is not mapped to356

SEs i − � f −1
2 	 to i + � f

2 	, then the clause will be FALSE, invalidating the entire CNF expression.357
We describe constraint 2 similar to the previous constraint, but for each conjunction as the358

complemented variables corresponding to each state mapped to every pair of STEs, as shown in359
Equation (3).360 ∧

∀i1∈N

∧

∀i2∈N

∧

∀s ∈V
(Ls

i1
∨ Ls

i2
). (3)

We describe constraint 3 by adding |V |2× |N | additional clauses, formed from the conjunction of361
the complemented variables corresponding to every pair of states mapped to every STE, as shown362
in Equation (4).363 ∧

∀s1∈V

∧

∀s2∈V

∧

∀i ∈N

(Ls1

i ∨ L
s2

i). (4)

We describe constraint 4 by adding an additional clause for each state, comprised of the con-364
junction of the literals representing every possible mapping of that state, as shown in Equation (5).365

366 ∧

∀s ∈V

∨

f or all i ∈N

Ls
i . (5)

Figure 13 depicts an example NFA, overlay, and corresponding CNF clauses that describe con-367
straint 1. Graph G is composed of V ∈ 0, 1, 2, 3, E ∈ (0, 1), (0, 2), (1, 3), (2, 3), and overlay M is368
composed of N ∈ (0, 1, 2, 3) and f = 3.369

Each potential mapping clause is shown as a matrix in Figure 13 where its rows represent the370
state end the columns represent the STEs to which the state can potentially be mapped. The cells371
in the matrix are the literals of the clauses, shown as T as the positive literal and F as the negative372
literal. The clause joins literals by OR, while clauses are joined by AND.373

The C (E01) in Figure 13 constrains the edge between state 0 and state 1 and shows four logical374
implications converted into four logical disjunctions. Any of these would evaluate to false if state375
0 were mapped to any of the STEs without state 1 being mapped to another STE within the range376
[−1, 2]. In CNF, all clauses must be true to satisfy the expression.377

5.3 NFA Transformation378

NAPOLY overlay configurations exhibit a tradeoff between the number of STEs and the hardware379
fan-out, the number of available inputs and outputs in each STE. This tradeoff is caused by the380
resource constraints imposed by the ALMs required by the OR-gate that combines the inputs from381
all the possible predecessors into each STE.382

As shown in Figure 19, larger overlays achieve higher throughput because they require less383
total runtime reconfigurations, but the maximum overlay size available to a given automata is384
determined by the minimum hardware fan-out on which the automata can be successfully mapped385
by the NAPOLY compiler. To maximize performance, each automata must be mapped onto an386
overlay having minimal hardware fan-out to allow for the use of a larger overlay. The minimum387
hardware fan-out depends on the transition density of the automata.388

Our methodology for finding the minimal hardware fan-out for a given NFA is to perform a389
binary search. For some benchmarks, it is possible to map overlays with lower hardware fan-out390

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:15

Fig. 13. An example for generating CNF clauses of literals based on Constraint 1.

by transforming the NFA into a functionally equivalent alternative form that limits the maximum 391
number of incoming and/or outgoing transitions from each state at the cost of an increased number 392
of states. 393

We use the fan-in/fan-out relaxation technique included in VASim [34] to decompose any states 394
that have an in- or out-degree larger than the prescribed fan-in or fan-out limit. This type of trans- 395
formation replicates all the states along all the paths from the start states to the accepting states 396
that are part of any of the high fan-in or fan-out paths, as shown in the example in Figure 14. 397
This approach is only practical when the performance gained from increasing the overlay size out- 398
weighs the performance loss caused by increasing the number of states and the resulting number 399
of reconfigurations. 400

To explore this, Figures 15–17 show the achieved throughput of the Promomata, Snort, and 401
PowerEn benchmarks on two different overlays: the baseline one, in which the compiler can 402
successfully map all the states for the unaltered version of the benchmark, and the performance 403
achieved on the next higher size overlay under the assumption that a given number of states must 404
be replicated in order to reduce the transition density to the point where the compiler can map 405
the automata (shown on the horizontal axis). In each of these benchmarks, less than 5% of its NFA 406
sub-graphs failed to map to one of the overlay configurations, which in this case is considered to 407
be the “next size up”. These results reveal the maximum number of state replications permissible 408
before the overhead in workload outweighs the benefit of the larger overlay. 409

In the case of Protomata, the compiler was able to successfully map the automata to the 16K 410
overlay (after having previously only been mappable to the 8K overlay) after the density improve- 411
ments achieved through a 2% increase in states, giving way to an end-to-end speedup of 1.51, as 412
shown in Figure 15. 413

In the case of Snort, the compiler was able to successfully map the automata to the 16K overlay 414
(after having previously only been mappable to the 8K overlay) after the density improvements 415
achieved through a 4% increase in states, giving way to an end-to-end speedup of 1.61, as shown 416
in Figure 16. 417

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:16 R. Karakchi and J. D. Bakos

Fig. 14. Transformation of NFA graph in Figure 12.

Fig. 15. Protomata: Performance on 16K STE overlay and 20K STE overlay vs. the assumed number of state
replications needed to map the automata onto the 20K STE overlay with its fewer interconnections.

In the case of Power En, the compiler was able to successfully map the automata to the 20K418
overlay (after having previously only been mappable to the 16K overlay) after the density im-419
provements achieved through a 0.3% increase in states, giving way to an end-to-end speedup of420
1.29, as shown in Figure 17. As shown, Power En performance speeds up only within a very small421
region (number of replications ≤ 0.008) of 20K overlay performance plot.422

5.4 Experimental Analysis423

Comparing with the heuristic described in Section 5.1, the SAT solver-based mapper can map424
75% of the ANMLZoo benchmarks to larger overlay configurations than when using the heuristic,425
which results in fewer number of reconfigurations at runtime. Figure 20 shows the effective speed426
up for these benchmarks when using the SAT-based mapper as compared to the heuristic mapper.427

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:17

Fig. 16. Snort: Performance on 8K STE overlay and 16K STE overlay vs. the assumed number of state repli-
cations needed to map the automata onto the 16K STE overlay with its fewer interconnections.

Fig. 17. Power En: Performance on 16K STE overlay and 20K STE overlay vs. the assumed number of state
replications needed to map the automata onto the 20K STE overlay with its fewer interconnections.

5.4.1 Hardware Resources. Table 4 shows the hardware resources required to implement six 428
overlay configurations. The column labeled #STEs gives overlay sizes (number of STEs), the col- 429
umn labeled Maximum hardware fan-out shows f the hardware fan-out of the overlay, and 430
the column labeled Fmax shows the maximum clock frequency. The remaining columns show 431
the hardware resources. Note that each of these overlay configurations is limited by ALM usage, 432
which is driven by the overlay’s STE fan-out. 433

Table 5 shows the total M20K used to implement the output buffer in the overlays. The col- 434
umn labeled Buffer depth ranges between [64K , 32K , 24K , 16K , 12K , 8K] based on overlay size 435

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:18 R. Karakchi and J. D. Bakos

Table 4. Hardware Resources Used in Different Overlay Configurations

STEs
Max Hw. Fan-out

(f)
Fmax
(MHz)

MLABs ALMs% Reg.% M20K%

4K 103 152 1,047,296 90 46 41
8K 44 136 2,096,384 91 41 41
12K 25 122 3,145,472 95 36 60
16K 12 121 4,193,024 94 26 41
20K 6 119 5,242,112 95 19 61
24K 3 112 6,291,200 96 15 41

Table 5. Total M20K Used for Output Buffer

STEs Buffer Depth Buffer Width
Buffer Width
After Padding

Total M20K
(MB)

4K 64 192 256 16
8K 32 416 512 16
12K 24 624 1,024 24
16K 16 896 1,024 16
20K 12 1,144 2,048 24
24K 8 1,399 2,048 16

(#STEs). The column Buffer Width shows the width of the output buffer, which is determined436
by #encoders×#outputregions× log2 (STEs). As described in Section 4.4, the buffer width needs to437
be padded, as shown in column Buffer Width after Padding. Column Total M20K shows the438
total number of M20K needed in each overlay.439

5.5 NAPOLY Run Time440

Table 6 shows the Pareto optimal set of synthesized and place-and-routed overlay configurations441
with respect to STE capacity and hardware fanout. The column #STEs lists all the six NAPOLY con-442
figurations. The column labeled Max BW for N%active = 0.25(GB/s) gives the effective on-chip443
memory bandwidth needed for 25% average active states. Exploitation of on-chip memory band-444
width is the principle performance advantage of NAPOLY over CPU- and GPU-based approaches.445

The column labeled Time_Reconfig (T) lists the time needed to reconfigure a new NFA onto446
the overlay. The column labeled Output Encoders gives the number of output encoders, which447
determines the maximum number of “reports”, or accepting state activation, allowed per clock448
cycle.449

The column labeled Max Reporting Cycles gives the depth of the output buffer relative to the450
depth of the input buffer (64K). Together, these values and Fmax determine the maximum reporting451
rate of the overlay configuration, listed in the column labeled Max Report Rate (GHz).452

For a given NFA and input, the effective throughput is calculated according to Equation (1),453
which is shown in the last two columns (Throughput for 24K and Throughput for 128K) at454
24K states and 128K states, respectively.455

Figure 18 shows NAPOLY execution time is dominated by the time to flush input buffer and the456
time to flush the output buffer.457

Figure 19 plots the achieved throughput of all NAPOLY overlays for 1 million input characters458
and for a total NFA workload from 4K to 128K states. The performance difference between the459
different overlays converges to their size, i.e., the 24K overlay is 6X faster than the 4K overlay for460
an automata of 128K states).461

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:19

Table 6. Repertoire of the Achieved NAPOLY Configurations

STEs
Max BW

(GB/s)

Time
Reconfig

T
(μs)

Output
Encoders

Max
Report
Cycles

Max
Report
Rate

(GHz)

Throughput
24K

states
(MB/s)

Throughput
128K
states
(MB/s)

4K 1,866 21 16 100% 2.4 14 3
8K 1,427 31 32 50% 2.2 27 5
12K 1,031 43 48 33% 2.0 32 6
16K 692 53 64 25% 1.9 36 9
20K 426 67 80 20% 1.9 31 9
24K 240 74 96 17% 1.8 67 11

Fig. 18. Execution time makeup of NAPOLY.

5.6 Mapping Results 462

Table 7 shows the mapping result for each of the ANMLZoo benchmarks using SAT solver which 463
achieved a significant improvement in hardware fan-out, targeting larger overlay and reducing 464
the number of re-configurations in 75% of ANMLZoo benchmarks. 465

5.6.1 NFA Transformation Results. We applied the NFA transformation technique described in 466
Section 5.3 on Protomata, Snort, and Power En benchmarks. 467

Tables 8, 9, and 10 show the state replications and the achieved hardware Fan-out after NFA 468
transformation for three benchmarks Protomata, Snort, and Power En. The first column repre- 469
sents the Fan-in/Fan-out limit applied on the failing sub-graphs of each benchmark. The second 470
column, State Replications, shows the number of state replications achieved when fan-in/out 471
limits are applied. The third column shows the Minimum Hardware Fan-out achieved to map 472
the sub-graphs onto larger overlays, and final column shows the Target Overlay. As shown in the 473
three tables, the number of state replications significantly increases when limiting fan-in/fan-out 474
to 1, while it lowers when moving the limits towards the maximum logical Fan-in/out for each 475
benchmark. 476

5.7 Performance Comparison 477

For each of the ANMLZoo benchmarks, Table 11 shows the performance of competing CPU and 478
GPU automata processing frameworks. The CPU implementation is Intel Hyperscan [1] measured 479

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:20 R. Karakchi and J. D. Bakos

Fig. 19. NAPOLY performance vs. NFA size.

Table 7. NAPOLY Mapping Using SAT Solver

Benchmarks

#
States

(S)

Min f
Achieved

Overlay
Size
(N)

#
Reconf.

Throughput
(MB/s)

Brill 26,668 8 16K 2 36
Clam AV 49,538 12 16K 3 16
Dot Star 96,438 4 20K 5 12

ER 95,136 41 8K 12 7
Fermi 40,783 5 20K 2 31

Hamming 11,346 14 12K 1 63
Levenshtein 2,784 16 12K 1 63
Power En 40,513 8 16K 3 25
Protomata 42,061 42 8K 6 15
Random
Forest

75,340 6 20K 4 16

Snort 69,029 36 8K 9 9
SPM 100,500 6 20K 5 13

independently by the authors using a 3.1 GHz Intel i5-4440 CPU with 32 GB RAM. The GPU im-480
plementation is iNFAnt2 executed on an Nvidia Titan Xp as reported in [9]. The second column of481
the table shows NAPOLY throughput for each benchmark. Comparing with Table 7, the through-482
put of Snort, Protomata, and Power En has increased because of applying the NFA transformation483

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:21

Fig. 20. Speedup achieved in 75% of benchmarks at SAT solver vs. Heuristic.

Table 8. Snort Transformation Results

Logical
Fan-in/-out

Limit

State
Replications

Achieved
HW Fan-out

Target
Overlay

10/10 0 36 8K
8/8 1% 12 16K
6/6 3% 11 16K
4/4 4% 11 16K
2/2 4% 9 16K
1/1 40% 2 24K

Table 9. Protomata Transformation Results

Logical
Fan-in/-out

Limit

State
Replications

Achieved
HW Fan-out

Target
Overlay

24/24 0 42 8K
16/16 0.07% 11 16K
8/8 0.2% 11 16K
2/2 2% 9 16K
1/1 12,415% 2 24K

technique described in 5.3 on these benchmarks. This technique allowed us to reduce the logical 484
Fan-in/Fan-out limit 1/1 for each of the benchmarks and mapping the benchmarks on 24K over- 485
lay. In order to understand the relationship between the NFA and its corresponding performance 486
on the CPU and GPU implementations, the table also lists runtime data for each benchmark: the 487
average number of active states (active set) and total number of reports as reported in [9]. 488

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:22 R. Karakchi and J. D. Bakos

Table 10. Power En Transformation Results

Logical
Fan-in/-out

Limit

State
Replications

Achieved
HW Fan-out

Target
Overlay

4/3 0 8 16K
2/2 0.3% 6 20K
1/1 10% 2 24K

Table 11. Performance Results

Benchmark
NAPOLY

Throughput

Average
Active
States
(AS)

R
Per
B

GPU
Throughput

(MB/s)

CPU
Throughput

(MB/s)

Speedup
vs.

Max(CPU,GPU)

Brill 36 14 4 7 1 5
Clam AV 16 4 5 4 14 1.14
Dot Star 12 3 5 40 10 0.3

Entity Resolution 7 10 19 4 1 1.75
Fermi 31 3,854 2 2 1 15.5

Hamming 63 240 1 18 10 3.5
Levenshtein 63 88 1 38 1 1.65

Power En 31 31 5 53 10 0.58
Protomata 24 19 6 5 1 4.8

Random Forest 16 968 5 2 0.5 8
Snort 15 98 17 14 0.4 1.07
SPM 14 6,631 5 0.5 0.1 28

NAPOLY performs best for larger benchmarks with more active states and is faster than both the489
GPU and CPU NFA implementations in 10 of the 12 benchmarks, while the GPU implementation490
is faster in only two benchmarks. DotStar and PowerEn have a small number of reports (0 for Dot491
Star and 4,304 for Power En [32]) and a relatively small number of active states (0.003% for Dot492
Star and 0.07% for Power En). C493

1
1
2 +

1
2 ×

1
2

≈ 1.33. (6)

5.8 Overlay Scalability494

As shown in Equation (1), NAPOLY throughput depends on (1) the number of reconfigurations495
needed, which may be reduced by having a larger overlay with more interconnect density, (2)496
the time to flush the input buffer, which depends on clock speed, and (3) reconfiguration time,497
which depends on DRAM bandwidth. Table 12 shows NAPOLY capability when scaled up to an498
Intel Stratix 10 GS. However, even if a larger FPGA can offer roughly double of overlay capacity,499
double of clock rate and double of DRAM bandwidth, the performance won’t probably be doubled500
according to Equation (6).501

6 CONCLUSION502

In this article, we have presented a novel architecture for an automata processor overlay and its503
associated software. NAPOLY is parameterizable, allowing for tradeoffs in state capacity, intercon-504
nect density, and output buffer size. These tradeoffs allow for offline generation of a repertoire of505

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:23

Table 12. Repertoire of Achieved Configurations on Stratix 10GS

#STEs
Hardware

Fanout
Output

Encoders
Max Reporting

Cycles
Max Report
rate (GHz)

Fmax
(MHz)

Max BW
for 25 %active (GB/s)

4K 254 16 100% 4.64 290 8,746
8K 126 32 50% 8 250 7,510
12K 83 48 33% 12 250 7,331
16K 62 64 25% 13.4 210 6,208
20K 49 80 20% 15.2 190 5,549
24K 40 96 17% 16.32 170 4,863
28K 34 112 14% 16.8 150 4,255
32K 30 128 12% 16.64 130 3,719
36K 26 144 11% 15.84 110 3,068
40K 23 160 10% 14.4 90 2,467
44K 21 176 9% 12.32 70 1,744
48K 19 192 8% 9.6 50 1,072

Table 13. Wire Utilization Achieved For ANMLZoo Benchmarks

Benchmark

Max
Logical
Fan-in/
Fan-out

Min
Hardware

Fan-in/
Fan-out

Average
Fan-in
degree

Average
Fan-out
degree

Fan-in
Wire
Utiliz

Fan-out
Wire
Utiliz

Brill 4/4 8/8 1.11 0.72 13.8% 9%
ClamAV 11/2 18/18 1.01 1.003 5.6% 5.6%
DotStar 2/2 4/4 1.00 0.48 25% 12%

Entity Resolution 28/5 41/41 1.89 1.15 4.6% 2.8%
Fermi 2/2 5/5 1.33 1.41 26.6% 28.2%

Hamming 4/2 14/14 1.69 1.69 12% 12%
Levenshtein 8/5 16/16 2.89 1.63 18% 10.2%

PowerEn 4/3 6/6 1.08 0.51 18% 8.5%
Protomata 3/106 9/9 1.02 0.49 11.3% 5.4%

Random Forest 2/2 6/6 1.05 0.5 17.5% 8.3%
Snort 19/19 9/9 1.22 0.6 13.5% 6.6%
SPM 3/2 6/6 2.1 1.05 35% 17.5%

overlays that allow for the overlay to be customized for specific types of NFAs. Once an overlay 506
is deployed, the user can rapidly program the NFA at runtime, supporting arbitrary large NFAs. 507
Automata-based benchmarks are mapped to NAPOLY processing elements based on the results of 508
an SAT solver. 509

Our performance results included the time required to program the overlay from DRAM and are 510
competitive with the state-of-the-art CPU- GPU-based implementations. Our performance results 511
showed that NAPOLY’s performance scales with on-chip memory capacity. 512

NAPOLY’s main limitation is the hardware fan-out constraint, which determines the number 513
of neighboring STEs to which any STE can connect and determines the maximum distance (or 514
“reach”) when establishing edges (NFA transitions) between mapped STEs. The fan-out constraint 515
is imposed by the FPGA resources and must be traded off against STE capacity. As shown in 516
Table 13, the utilization of STE-to-STE connections for each benchmark is less than 29%, meaning 517

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

00:24 R. Karakchi and J. D. Bakos

that a more efficient interconnect design would allow for more STEs, less reconfigurations for a518
given NFA, and higher throughput.519

Additionally, NAPOLY spends over half of its execution time flushing the output buffer to DRAM,520
during which the STE array is idle. It is possible to perform these steps in parallel, but overlapping521
STE execution and output flushing would require splitting the STE array into two halves, resulting522
in more reconfigurations.523

REFERENCES524

[1] K. Angstadt and et al. 2017. MNCaRT: An open-source, multi-architecture automata-processing research and execu-525
tion ecosystem. IEEE Computer Architecture Letters.

Q3
526

[2] Michela Becchi and Crowley Patrick. 2009. Data Structures, Algorithms and Architectures for Efficient Regular Expression527
Evaluation. Washington University, St. Louis, MO.528

[3] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes. 2014. An efficient and scalable529
semiconductor architecture for parallel automata processing. IEEE Transactions on Parallel and Distributed Systems 25,530
12 (2014).531

[4] A. Putnam et al. 2014. A reconfigurable fabric for accelerating large-scale datacenter services. , In Proceedings of the532
ACM/IEEE International Symposium on Computer Architecture.533

[5] A. Subramaniyan et al. 2017. Cache automaton. In Proceedings of the 2017 50th Annual IEEE/ACM International Sym-534
posium on Microarchitecture.535

[6] D. Guo et al. 2008. A scalable multithreaded l7-filter design for multi-core servers. In Proceedings of the 4th ACM/IEEE536
Symposium on Architectures for Networking and Communications Systems.537

[7] E. Sadredini et al. 2020. Impala: Algorithm/architecture co-design for in-memory multi-stride pattern matching. In538
Proceedings of the IEEE International Symposium on High Performance Computer Architecture.539

[8] J. Hauswald et al. 2015. Sirius: An open end-to-end voice and vision personal assistant and its implications for future540
warehouse scale computers. In Proceedings of the 20th International Conference on Architectural Support for Program-541
ming Languages and Operating System.542

[9] J. Wadden et al. 2016. ANMLzoo: A benchmark suite for exploring bottlenecks in automata processing engines and543
architectures. In Proceedings of the 2016 IEEE International Symposium on Workload Characterization.544

[10] J. Yu et al. 2019. Time-division multiplexing automata processor. In Proceedings of the Design, Automatation and Test545
in Europe 2019 IEEE.546

[11] K. Peng et al. 2011. Chain-based DFA deflation for fast and scalable regular expression matching using TCAM. In547
Proceedings of the 7th ACM/IEEE Symposium on Architectures for Networking and Communications Systems.548

[12] K. Wang et al. 2015. Association rule mining with the micron automata processor. In Proceedings of the IEEE 29th549
International Parallel and Distributed Processing Symposium.550

[13] M. Casias et al. 2019. Debugging support for pattern-matching languages and accelerators. In Proceedings of the 24th551
International Conference on Architectural Support for Programming Languages and Operating Systems.552

[14] N. Cascarano et al. 2010. iNFAnt: NFA pattern matching on GPGPU devices. ACM SIGCOMM Computer Communication553
Review 40, 5 (2010).554

[15] R. Karakchi et al. 2017. A dynamically reconfigurable automata processor overlay. In Proceedings of the International555
Conference on Reconfigurable Computing and FPGAs (ReConFig’17).556

[16] R. Karakchi et al. 2019. An overlay architecture for pattern matching. In Proceedings of the IEEE 30th International557
Conference on Application-specific Systems, Architectures and Processors (ASAP’19).558

[17] R. Moussalli et al. 2014. A study on parallelizing XML path filtering using accelerators. ACM Transactions on Embedded559
Computing Systems 13, 4 (2014), 1–28.560

[18] R. Nishtala et al. 2013. Scaling memcache at facebook. .561
[19] R. Rahimi et al. 2020. Grapefruit: An open-source, full-stack, and customizable automata processing on FPGAs. In562

Proceedings of the IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines563
(FCCM’20).564

[20] Y. Fang et al. 2015. Fast support for unstructured data processing: The unified automata processor. In Proceedings of565
the MICRO-48.566

[21] Y. Huang et al. 2022. CAMA: Energy and memory efficient automata processing in content-addressable memories. In567
Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA’22).568

[22] Y. Yang et al. 2008. Compact architecture for high-throughput regular expression matching on FPGA. In Proceedings569
of the 4th ACM/IEEE Symposium on Architectures for Networking and Communications Systems.

Q4
570

[23] G. Li F. Seide and D. Yu. 2011. Conversational speech transcription using context-dependent deep neural networks.571
In Proceedings of the 12th Annual Conference of the International Speech Communication Association.572

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

NAPOLY: A Non-deterministic Automata Processor OverLaY 00:25

[24] P. Flicek and E. Birney. 2009. Sense from sequence reads: Methods for alignment and assembly. Nature Methods (2009). 573
[25] A. Harris. 2010. Distributed caching via memcached. Pro ASP NET 4 CMS. 574
[26] Peter Linz. 2006. An Introduction to Formal Languages and Automata. Jones and Bartlett Learning. 575
[27] Jason D. Bakos Rasha Karakchi. 2019. nfatool. Retrieved from https://github.com/HeRCLab/nfatool.

Q5
576

[28] I. Roy and S. Aluru. 2014. Finding motifs in biological sequences using the micron automata processor. In Proceedings 577
of the 28th IEEE International Parallel and Distributed Processing Symposium. 578

[29] Mate Soos, Karsten Nohl, and Claude Castelluccia. 2009. Extending SAT solvers to cryptographic problems. In Pro- 579
ceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing. 244–257. DOI:https:// 580
doi.org/10.1007/978-3-642-02777-2_24 581

[30] Louis Woods Teubner, Jens, and Chongling Nie. 2012. Skeleton automata for FPGAs: Reconfiguring without recon- 582
structing. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. ACM. 583

[31] T. Tracy, M. Stan, N. Brunelle, J. Wadden, K. Wang, K. Skadron, and G. Robins. 2015. Nondeterministic finite automata 584
in hardware – the case of the Levenshtein automaton. In Proceedings of the International Workshop on Architectures and 585
Systems for Big Data (ASBD) in Conjunction with the 42nd International Symposium on Computer Architecture (ISCA’15). 586

[32] J. Wadden, K. Angstadt, and K. Skadron. 2018. Characterizing and mitigating output reporting bottlenecks in spa- 587
tial automata processing architectures. In Proceedings of the 24th IEEE International Symposium on High-Performance 588
Computer Architecture. 589

[33] J. Wadden, K. Samira Khan, and K. Skadron. 2017. Automata-to-routing: An open-source toolchain for design-space 590
exploration of spatial automata processing architectures. In Proceedings of the IEEE 25th Annual International Sympo- 591
sium on Field-Programmable Custom Computing Machines. 592

[34] J. Wadden and K. Shadron. 2016. VASim: An Open Virtual Automata Simulator for Automata Processing Application and 593
Architecture Research. Technical Report CS2016-03, University of Virginia. 594

[35] Xuan Wang, Lei Gong, Jing Cao, and Wenqi Lou. 2023. hAP: A spatial-von Neumann heterogeneous automata proces- 595
sor with optimized resource and IO overhead on FPGA. In Proceedings of the 31st ACM/SIGDA International Symposium 596
on Field-Programmable Gate Arrays (FPGA’23). 597

[36] Y. Yang and V. Prasanna. 2012. High-performance and compact architecture for regular expression matching on FPGA. 598
IEEE Transactions on Computers 61, 7 (2012).

Q6
599

Received 17 August 2022; revised 20 February 2023; accepted 27 March 2023 600

ACM Transactions on Reconfigurable Technology and Systems, Vol. 00, No. JA, Article 00. Publication date: May 2023.

https://github.com/HeRCLab/nfatool
https://doi.org/10.1007/978-3-642-02777-2_24

TRETS-2022-0069 acmart Trim: 6.75 X 10 in May 9, 2023 9:42

AUTHOR QUERIES

Q1: AU: Figure 4 is not cited in the text, please check.

Q2: AU: Please be sure to mention Figure 11 after mention of Figure 10 per ACM style.

Q3: AU: Please provide the issue number and volume number in references [1], [24], and [25].

Q4: AU: Please provide the names of all the authors in references [1] and [4]–[22].

Q5: AU: Please provide access date in reference [27].

Q6: AU: Please provide the page range in references [1], [3], [14], [24], [25], and [36].

