IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 4, APRIL 2012 579

A Cluster-on-a-Chip Architecture
for High-Throughput Phylogeny Search

Tiffany M. Mintz, Member, IEEE, and Jason D. Bakos, Member, IEEE

Abstract—In this paper, we describe an FPGA-based coprocessor architecture that performs a high-throughput branch-and-bound
search of the space of phylogenetic trees corresponding to the number of input taxa. Our coprocessor architecture is designed to
accelerate maximum-parsimony phylogeny reconstruction for gene-order and sequence data and is amenable to both exhaustive and
heuristic tree searches. Our architecture exposes coarse-grain parallelism by dividing the search space among parallel processing
elements (PEs) and each PE exposes fine-grain memory parallelism for their lower-bound computation, the kernel computation
performed by each PE. Inter-PE communication is performed entirely on-chip. When using this coprocessor for maximum-parsimony
reconstruction for gene-order data, our coprocessor achieves a 40X improvement over software in search throughput, corresponding
to a 14X end-to-end application improvement when including all communication and systems overheads.

Index Terms—Biology and genetics, distributed systems, parallelism and concurrency, reconfigurable hardware.

1 INTRODUCTION

THE heterogeneous computing model, where a general
purpose CPU is accelerated using a special purpose
coprocessor, is a common technique for 3D rendering [1],
high-definition video playback [2], and simulation and
gaming [3] but has only recently begun to emerge as a
widely used, mainstream technique in scientific computing.
This is evident by the integration of coprocessor devices
into recent high-performance computers such as Los
Alamos’s Roadrunner, NCSA’s Lincoln, Cray’s line of XT5
XT5h computers, and SGI's RASC enhancement to their
Altix computers. Each of these systems include integrated
programmable or reconfigurable coprocessors, specifically
IBM PowerXCell processors in the case of Roadrunner [4],
NVIDIA GT200-series Tesla processors in the case of
Lincoln, and Field Programmable Gate Arrays (FPGAs)
coprocessors in the case of Cray [5] and SGI [6].

Although Digital Signal Processors (DSP), Graphics Unit
Processors (GPUs), and now so-called Stream Processors are
attractive coprocessor devices due to their relatively simple
programming model, at this time FPGAs still remain a
popular choice for heterogeneous scientific computing. In
this case, a special-purpose hardware version of an applica-
tion’s most expensive computation, or kernel computation, is
implemented in custom FPGA logic. The kernel computa-
tions that are traditionally implemented on FPGAs are O(n)
computations where input data are streamed through a
pipeline on the coprocessor. Such implementations are
common for numerical linear algebra [7], [8], cryptography
[9], pattern matching [10], sequence alignment [11], [12], [13],
network intrusion detection [14], and signal, video, and
image processing [15], [16], [17], [18], [19]. Note that within

o The authors are with the Department of Computer Science and
Engineering, University of South Carolina, Columbia, SC 29208.
E-mail: mintztm@ornl.gov, jbakos@cse.sc.edu.

Manuscript received 8 Apr. 2009; revised 15 Sept. 2009; accepted 8 Dec. 2009;
published online 21 Oct. 2010.

Recommended for acceptance by M. Yamashita.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-04-0159.
Digital Object Identifier no. 10.1109/TPDS.2010.191.

1045-9219/12/$31.00 © 2012 IEEE

the context of application, these kernel computations may be
invoked within the higher level algorithm that is not O(n),
while the actual coprocessor hardware is limited to O(n)
(e.g., sparse matrix-vector multiply performed on the
coprocessor and used as a kernel to conjugate gradient
method for solving linear systems).

In most cases, kernels implemented on FPGAs are
control independent in the sense that their execution
behavior does not depend on the input data. They are well
suited for large input sets, because despite the fact that they
reference each input value only once, their memory access
pattern is fixed and known a priori allowing them to hide
memory access latency by using a streaming execution
model. Their performance is often limited by the FPGA’s
off-chip memory bandwidth as opposed to the amount of
parallelism that can be extracted from the computation [20],
[21], [22], [23].

On the other hand, non-O(n) kernels, such as those based
on quadratic or exponential algorithms, are rarely imple-
mented entirely on the FPGA. Examples of such include
many types of optimization and search algorithms. These
computations iterate over the same data multiple times,
require complex control, exhibit temporal data locality,
have unpredictable memory access patterns, and their
behavior is dependent on their input data. This class of
computation is becoming prevalent in computational
biology and includes branch-and-bound and stochastic
search algorithms. These algorithms are very well suited
to FPGA acceleration because they can take advantage of
the extremely high internal memory bandwidth available
on FPGAs and thus potentially exploit much fine-grain
parallelism as compared to traditional O(n) kernels. How-
ever, such computations are extremely difficult to imple-
ment using traditional logic design tools.

In this paper, we implement the branch-and-bound search
algorithm used in direct-optimization phylogenetic recon-
struction. In our particular application, phylogenies, which
are used to show the possible evolution of species, are
represented as unrooted binary trees. The number of possible
tree configurations grows exponentially as the number of
input species (which correspond to the leaves of the tree)

Published by the IEEE Computer Society

580 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 4, APRIL 2012

°©
@ ©

(a) (b)

-,

5 ' : \ .f.v hY

(©

Fig. 1. Three of the 105 possible phylogenies for six input genomes. Input species (gl,¢2,...,g6) are shown in black while ancestral species are

shown in white.

increases. To search this space, a heuristic or branch-and-
bound search method is commonly employed [24]. Heuristic
searches often begin with an initial estimate of the tree and
makes small branch rearrangements to reach neighboring
trees. Popular heuristic phylogeny search methods use
simulated annealing [25], [26], [27] and genetic algorithms
[28],[29]. More accurate methods rely on a branch-and-bound
search, which perform an exhaustive search but discard sets
of trees that fail a lower bound computation.

The primary contribution of this paper is an FPGA-based
accelerator architecture that is organized as a cluster-on-a-
chip, where the coprocessor consists of a set of processing
elements (PEs) that each performs the same computation as
traditional cluster nodes in the case where the application is
run in MPI mode. Our PE design is an FPGA implementa-
tion of a kernel that accelerates a combinatorial branch-and-
bound search. The search relies on a lower bound
computation that is based on pairwise distances. This
computation is used in parsimony-based gene-order and
sequence phylogeny search, and is compatible with divide-
and-conquer heuristics for searching larger tree spaces. Our
design extracts both memory-level parallelism and coarse-
grain parallelism.

2 PHYLOGENY RECONSTRUCTION

Phylogenetic analysis is the study of evolutionary lineage
among a set of species. A phylogeny (or phylogenetic tree)
is a binary tree where each vertex represents information
associated with a species and each edge represents a series
of evolutionary events that effectively transformed one
species into another. The analysis of phylogenies is a
fundamental tool that biologists use to infer common
characteristics across different species based on their
evolutionary relatedness. Analysis of phylogenies is a vital
component of research in such areas as drug and vaccine
development and bio-pathway discovery.

Fig. 1 shows three example phylogenies for six input
species. Each of the n leaves has degree 1 and represents a
species that currently exists (usually called taxa), while each
of the n — 2 internal vertices has degree 3 and represents a
species that is an extinct ancestor species. Edge lengths
represent evolutionary distance, sometimes vaguely ex-
pressed using time (i.e., millions of years) or more precisely
using the actual number of evolutionary events from a
specific evolutionary model. Both the topology and the edge
distances are important characteristics of the phylogeny.

In general, the problem of phylogenetic reconstruction is
to approximate through inference the true evolutionary

history of n input species. There are several methods that
are used for reconstructing phylogenies such as neighbor
joining [30] and maximum parsimony [31], [32], [33]. The
benefit of neighbor joining is that its low computational cost
allows it to be used for large input sets but generally yields
results with poor accuracy. Maximum parsimony methods
based on direct optimization are among the most accurate
methods but are also among the most expensive [24].

The specific application we target in this work is Genome
Rearrangements Analysis under Parsimony and other
Phylogenetic Algorithms (GRAPPA) [34], which is an
exhaustive search method, moving systematically through
the space of all possible phylogenetic trees to find the tree
with the lowest sum of edge lengths. For each tree, the
program tests a lower bound to determine whether the tree
is worth scoring. In practice, such bounding achieves higher
than 99.99 percent pruning rates. The lower bound used by
GRAPPA is derived from the following theorem, which
holds for any graph that obeys the triangle inequality [35]:

Theorem 1. Let d be a n xn matrix of pairwise distances
between the taxa in a set S; let T be a tree leaf labeled by the
taxa in S and w be an edge weighting (tree score) on T, so that
we have wi; = 3., w(e) > dij, where p;; is a path from i to
jon tree T. Set w(T) =3 cppywle). If 1,2,....,n is a
circular ordering of the leaves of T, then we have
2w(T) > dig+dag+ -+ dy.

This gives us a lower bound (circular ordering) for the tree
score, i.e., the tree score w(7T) should at least be
w Although this bound is primitive, it is very
cheap to compute.

For every tree that is scored, the program will iteratively
solve the median problems at internal nodes until conver-

gence, as shown in Algorithm 1 [36].

Algorithm 1. The GRAPPA scoring procedure
Initially label all internal nodes with gene orders
Repeat
For each internal node v, with neighbors A, B and C, do
Solve median problem on A, B, C' to yield m
If relabeling v with m improves the tree score, then
do it
Until no change occurs
As shown in Fig. 2, the median problem on k genomes is
to find a single genome that minimizes the median score

MINTZ AND BAKOS: A CLUSTER-ON-A-CHIP ARCHITECTURE FOR HIGH-THROUGHPUT PHYLOGENY SEARCH 581

Fig. 2. Given genomes A, B, and C, the median problem is to find genome
M that minimizes the median score, where the median score =
d(A, M) +d(B, M) +d(C, M), where d() is an edit distance (i.e., break-
point distance).

(sum of the pairwise distances) between itself and each of
the k given genomes.

For n taxa (and thus n leaves), the number of possible
unrooted binary trees is (2n —5)!! = (2n —5) x (2n —7) x
---x 5 x 3. To illustrate this growth, assume an arbitrary
tree is represented by a circular ordering of its edges that is
independent of both the starting point and the direction the
edges are read. For example, a tree with three leaves would
have three edges and one unique tree based on the circular
order; i.e.,

1-2-3-1(123)1-3-2—-1(132) 2—-3—1
—-2(231)2—-1-3—-2(213)3—-2—1
—3(321) © 3 —1— 2 — 3(312).

Each of these orderings represent the same tree, ie., for
every ordering edge 1 is connected to edge 2 and 3, edge 2 is
connected to edges 1 and 3 and edge 3 is connected to edges
1 and 2. This means that all of the edge orderings will have
equal lower bounds per Theorem 1.

The smallest possible unrooted binary tree is a star with
three leaves and one internal vertex. For every leaf that is
added to a tree, two new edges must be added, which can be
inserted by bifurcating any existing edge on the tree. This
means that a tree structure with m + 1 leaves has two
possible insertion points greater than a tree with m leaves. A
three-leaf tree therefore has three insertion points, for any of
these the resulting four-leaf tree will have five insertion
points, for of any of these the resulting five-leaf tree will have
seven insertion points, etc. Since an n-leaf tree could have
been arrived at by 2n — 5 possible paths from a tree with one
less leaf, there are (2n — 5)!! total tree configurations.

This number grows exponentially as the number of
leaves increase. For example, there are only two million
trees for 10 taxa, but more than 10%° trees for 20 taxa. In
general, an exhaustive search for data sets with more than
17 taxa is not feasible [37]. One technique used to remedy
this problem is a divide-and-conquer approach where the
set of taxa is decomposed into a collection of overlapping
subsets where each of which optimizes some criterion
designed to make heuristic reconstruction on the subset as
accurate and efficient as possible. The best such approach to
date is the family of disk-covering methods (DCM) [38],
[39]. Tang and Moret combined the DCM1 approach [40]

with GRAPPA, limiting the size of the subsets to at most 13
taxa through a combination of threshold choices and
recursive calls to the DCM decomposition itself, yielding a
DCM-GRAPPA software [41]. The goal of this project was to
develop an FPGA-accelerated parallelized tree search
architecture, which can perform a high-throughput scan
through the tree space. Once achieved, this design will
easily be able to be integrated into the DCM approach.

3 ACCELERATOR ARCHITECTURE

Our tree search architecture provides a simple bijective
function for mapping each search state value to a unique
tree configuration. Specifically, trees are represented by a
list of integers that correspond to the ordering of the tree’s
edges that define its topology. Tree construction begins
with an initial three-edge (four-vertex) tree structure
configured in a star topology. The edges are labeled 1, 2,
and 3. Each of these edges is an external edge, meaning that
one of its endpoints connects to a leaf vertex. The tree is
grown by systematically adding vertices to every possible
position within the tree, limited to a maximum number of
leaves. Whenever a new vertex is added, two new edges are
added until a completed tree structure is generated. For
each pair of inserted edges, there is an internal edge (both
endpoints are internal nodes) and an external edge. The
internal edge is always added first, immediately followed
by the insertion of the external edge. In our encoding
scheme, even numbered edges greater than 3 correspond to
internal edges, while edge 2 and all odd numbered edges
correspond to external edges.

Figs. 3a, 3b, 3¢, 3d, and 3e illustrate the process of tree
construction for a tree with seven leaf nodes. Fig. 3a is the
initial tree. When internal edges are added, the previous
connection between nodes is broken and a new connection is
made with this new edge adding both an internal vertex and
leaf vertex. As shown in Fig. 3b, internal edge number 4 was
added at edge 1, so the connection between the existing
endpoint of edge 1 was broken and a new node as well as
edge 4 was added to the tree structure. The external edge 5 is
then added at edge 4 and its endpoints are connected to the
newest nodes. External edges are always added to the
internal edge that was inserted immediately before it. This is
further illustrated in Figs. 3c, 3d, and 3e. The final tree
structure is represented by the edge list: 14567289310 11.

Fig. 4 shows the finite state machine (FSM) controller,
which facilitates the sequential process of generating a
sequence of trees. In the Insert Edges /LB state, the controller
uses various counters to insert the appropriate edges into the
appropriate position within the (possibly incomplete) tree
on the top of the stack. The tree’s lower bound is
accumulated in parallel by performing lookups into the
distance matrix while each tree is being constructed.

When adding edges, the current tree is logically
separated into three parts: the prefix, insertion point, and
suffix. The insertion point is the index where new edges
are to be added into the tree. The prefix is edges to the left
of the insertion point and the suffix is the edges to the right
of the insertion point. Before inserting edges into an
arbitrary tree, the controller reads the insertion point from
the stack.

582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

S}

Tree: 14523

Tree: 1456723

(d

Tree: 1456728931011

(@)

Fig. 3. Stages of tree generation for a tree with seven leaf nodes.
(a) Initial stage. (b) Intermediate stage. (c) Intermediate stage.
(d) Intermediate stage. (e) Final stage.

Fig. 5 shows the block diagram of the processing
element, highlighting its major components. The architec-
ture maintains a stack using on-chip block RAM (BRAM)
that is used to store the state of the tree at every stage of
construction, implementing a depth-first search where each
level of the search tree consists of a tree having an

VOL. 23, NO. 4, APRIL 2012

Insert
Edges/
LB

Done Stepping or
Incomplete Tree

(Lowerbound >= Upperbound
or Tree# < Offset)

Stepping

Complete Tree and
Lowerbound < Upperbound
and Tree# >= Offset

Fig. 4. FSM representation of tree generation.

increasing number of edges. The tree state is striped across
four on-chip BRAMs, allowing up to four external edges to
be read and written in parallel. Each search state in the stack
includes a tree configuration and an insertion point for the
next edge to be added to “grow” the tree.

The controller computes the lower bound for every
search state, including partial trees in the intermediate
stages of tree generation. As each edge is written to the
stack, pairwise distances between leaves corresponding to
external edges are accumulated in order to keep a running
sum of the lower bound value for the current tree. Note that
when writing to the stack, four edges are written in parallel

Stack

Controller

Result
BRAM
INPUT BRAM
Distance Matrix
OUTPUT

Fig. 5. Black diagram of tree search processing element.

MINTZ AND BAKOS: A CLUSTER-ON-A-CHIP ARCHITECTURE FOR HIGH-THROUGHPUT PHYLOGENY SEARCH 583

every clock cycle. Since all four edges may potentially be
external edges, four copies of the distance matrix are stored
in BRAMs within each PE. A PE includes a binary adder
tree for accumulating the lower bound value.

As a branch-and-bound search, the PE computes a lower
bound value for each tree it generates. Trees are pruned
(i.e., skipped over) that have a corresponding lower bound
greater than or equal to the parsimony score of the best tree
found so far. Despite the fact that the PE computes the
lower bound for both partially constructed and fully
constructed trees, the PE will only prune fully constructed
trees. We made this decision because the potential of
pruning incomplete trees greatly increases the logic com-
plexity required to perform tree stepping (described below).
This extra logic complexity adds substantial stress to the
FPGA’s routing network, making it impossible to meet
timing closure on the PCI-X interface.

Whenever a full tree is constructed without being
pruned, it is considered a candidate tree and the PE stops
and holds the tree until it is either read by host or pruned
due to a global upper bound update.

3.1 Host-PE Interface

The host interface to the accelerator architecture allows the
host to communicate with each PE individually (for setting
control registers or retrieving trees whose lower bound is
less than the global upper bound) as well as through
broadcasts to all PEs (such as for initializing the distance
matrices for all PEs or setting the global upper bound).

All PEs are globally initialized with the number of
leaves, the initial upper bound value, and the pairwise
distances of the input species (computed in software during
initialization).

The upper bound value is stored in each PE and
determines the pruning behavior during the tree search.
Whenever one of the candidate trees found by a PE is
scored by the host and its score is less than the current
upper bound, the host broadcasts the new upper bound
value to all the PEs in order to increase pruning rate.

On the other hand, whenever a PE finds a candidate tree
whose lower bound value is less than the global upper
bound, the PE suspends its search to allow the host to read
the tree. Once the host has read the tree, it sends a continue
signal to the PE to force it to resume its search. When a PE is
waiting for the continue signal, a new upper bound may be
broadcast by the host as a result of it scoring a candidate
tree found by another PE. If this new upper bound is less
than or equal to the lower bound of the tree that is being
held, the PE will discard its current tree and continue
searching for the next valid candidate tree without waiting
for a continue signal from the host.

We use this polling approach as opposed to interrupts
because the host is always in a state where it is either
scoring a candidate tree or reading a candidate tree from a
PE. As such, there is no reason why the host would need to
be interrupted to read a candidate tree. Note that while we
assume the host is running only a single thread, this
interface model can easily be extended to multiple threads
on the host. In this case, one thread can be responsible for
reading candidate trees from the PEs and can instance
scoring threads as needed.

3.2 Parallelizing the Tree Search

The tree search is “embarrassingly parallel,” as the search
space can be equally divided across multiple processors.

GRAPPA includes a native cluster execution mode
implemented using OpenMPI. When GRAPPA is compiled
for cluster execution, the tree generation and bounding
procedure is parallelized by using a large set of processors
working together to explore the large tree space by equally
dividing the tree space into p sections, where p is the step
size (number of processors), and k is the offset (processor
identifier). Whenever a processor finds a better tree score, it
broadcasts this score to the other processors such that they
can update their upper bound and increase their pruning
rate. This broadcast is the only communication required in
this approach; thus, the tree search can achieve near linear
speedup.

In this operation mode, processor k will generate tree
number k, k + p, k+ 2p, ... We use the same strategy in this
project. In this case, p represents the number of PEs on the
FPGAC(s). In practice, this strategy results in effective load
balancing, as in our experiments we did not observe any PE
exhaust its search space significantly faster the other PEs in
the coprocessor.

Figs. 6 and 7 show how the stepping behavior is
implemented. The left side of Fig. 6 shows a snapshot of
the tree search where the current tree matches the one
shown in Fig. 3. After the PE reaches the bottom of the
search tree (and thus has constructed a complete phylo-
geny), it will pop the stack once, and continue to pop the
stack until it reaches a node that has enough bottom-level
descendents to accommodate the step size.

As shown in Fig. 7, the PE can readily determine the total
number of bottom-level descendents from an arbitrary node
by computing

n

IT @i-3),

i=5=2

where s is the stack size and n is the number of leaves.

Higher step values require a higher average number of
stack operations per visit to the bottom level of the search
tree than lower step values. Since there is control overhead
required for each stack operation, the PE loses some
efficiency for larger step sizes. As such, there is a point of
diminishing returns when scaling up the number of PEs
(and thus the step size for each individual PE).

Implementing the lower bound in hardware also allowed
us to unroll the loop used in the lower bound calculation
and use replicated copies of the distance matrix memory
(stored in on-chip memory banks) to perform multiple
iterations of the lower bound loop in parallel. Recall that the
lower bound loop looks up and accumulates the circular
pairwise distances between each neighboring external edge
in the edge ordering of the current tree, using the on-chip
distance matrix.

The stepping offset for each core is hard-coded based on
the PE’s unique identifier. We have implemented up to
20 parallel tree search PEs on our FPGA. This gives
stepping offsets ranging from 0 to 19 (i.e.,, PE 0 has an
offset of 0, PE 1 has a offset of 1,...,PE 19 has an offset of
19). As we increase the number of PEs instanced on the

584 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 4, APRIL 2012

Fig. 6. Graphical depiction of stepping behavior showing the search tree before and after a step of 16 phylogenies. Each node represents a search
state and is shown as the stack contents, where “R” represents the root, or three-leaf tree, and the numbers represent the insertion points relative to

its parent node.

FPGA, we decrease the number of trees each PE will need to
generate and perform the lower bound calculation. While
our FPGA has enough logic and memory resources to
accommodate 37 PEs, we were unable to achieve a
successful place-and-route for more than 20 PEs on our
device using Xilinx ISE Design Suite version 10.1. More
specifically, coprocessor designs with more than 20 PEs
contained very dense, highly connected logic. These
mappings produced routing complexities that were too
high to achieve timing closure on the fixed PCI-X interface
clock, which is a requirement for our FPGA board.

During operation, the host repeatedly scans each of the
instanced PEs, reads the waiting candidate tree (if there is
one) and its associated lower bound value, sorts the trees in
ascending order according to the lower board values, and
scores the trees in this order (the intuition is that trees with
lower lower bound values are scored first since these trees
are more likely to have actual parsimony scores lower than
trees with higher lower bounds). Whenever a tree is found
to have a lower score than the current upper bound, the
new upper bound is broadcast to all the cores and the host
will discard any candidate trees having a lower bound that
is greater than or equal to the new upper bound.

4 EXPERIMENTAL SETUP

In this section, we report our experimental results. The
GRAPPA source code, upon which our system is based, is a
heavily optimized C program in the sense that memory is
carefully managed, the code is written to be extremely
efficient, and it employs the most efficient and advanced
algorithms of its time.

Next Index is 6+1=7
Path from R.1.3.7
yields 9 trees

9is the last index
at this level

Trees left to step is

N on @) || row 16-9=7
-l I = [
= Pop 9 [Pop 6 == Pop 3

F
1 Y

We created a modified version of the GRAPPA code to
serve as the CPU code in our heterogeneous CPU/FPGA
system. We replaced the tree search code with programmed
input/output calls that serve as “hooks” into the FPGA-
based coprocessor. Communication from these program
calls was executed using the PCI-X interface. We use the
same host for characterizing the performance of both the
accelerated and standard versions of the application. Our
host machine is a Dell Precision with two 3.06 GHz Intel
2HT Xeon processors.

The FPGA accelerator was design using Mentor HDL
Design tools. Our FPGA card is an Annapolis Micro
Systems WILDSTAR II Pro card, attached to the host using
PCI-X and contains a single Xilinx Vertex-2 Pro 100 FPGA.
The FPGA operates at 47 and 40 MHz in the 16-PE and 20-
PE implementations, respectively.

4.1 Scalability Analysis

In our first set of tests, we characterized how the
performance of the accelerator architecture scales when
increasing the number of tree search PEs. As described
above, when multiple PEs are used to search a tree space,
the space is equally divided among the PEs.

For these tests, we used a set of synthetic data sets, where
each data set consists of the extracted leaf genomes from
randomly generated trees having 2 to 8 rearrangement
events on each edge and whose tree sizes range from 8 to 14
leaves. This corresponds to tree spaces sizes ranging from
10,395 (eight leaves) to 316,234,143,225 (14 leaves).

The goal of these tests is to measure the effective search
speed of a single PE and how the search speed scales as we
increase the number of PEs. To do this, we set up the test
such that no trees are scored by the host by artificially

Next Index is 3+1=4 First Index of

Path from R.1.4 new level is 1
yields 7%9 trees Path from R.1.4.1
yields 9 trees

Push 1

Fig. 7. The stack, as it changes from one search state to the next for a 7-leaf tree when the step size is 16.

MINTZ AND BAKOS: A CLUSTER-ON-A-CHIP ARCHITECTURE FOR HIGH-THROUGHPUT PHYLOGENY SEARCH

TABLE 1

Execution Times in Seconds for 8 to 14 Leaf Tree Spaces Generated Using GRAPPA’s Traditional Software
and Using the FPGA Parallel Architecture

585

FPGA

Leaves # Trees Software 1PE 8 PEs 16 PEs 20 PEs
8 1.04E+04 0.06 0.06 0.06 0.06 0.06
9 1.35E+05 0.14 0.11 0.08 0.08 0.08
10 2.03E+06 1.69 0.89 0.30 0.20 0.20
11 3.45E+07 44.00 14.00 2.81 1.95 1.92
12 6.55E+08 898.00 265.00 51.00 34.00 35.00
13 1.37E+10 20442.00 5807.00 1058.00 692.00 727.00
14 3.16E+11 > 604800.00 133172.00 23927.00 15516.00 16255.00

setting the initial upper bound to a value sufficiently low so
all trees are pruned by the PEs using the lower bound
computation. As such, these tests represent “raw” tree
generation and bounding throughput only, and do not
include the overheads that would otherwise be required
when scoring trees whose lower bound is less than the
upper bound. Note that in practice, the ratio of trees that
need to be scored (pruning rate) depends on the evolution
rate (cluster diameter) of the input set.

For these tests, we compared the time required for a
single processing element to search the entire tree space
against the time required for 8, 16, and 20 parallel PEs to
search the tree space using the stepping technique. Ideally,
a parallel multi-PE accelerator would exhibit a linear
speedup over a single PE accelerator, but this assumption
doesn’t consider the overhead required for tree stepping.

For each data set, we also compared the time required for
the GRAPPA code to search the same tree space, represent-
ing the nonaccelerated, software-only version of the search.

Table 1 shows the execution times of these tests
measured in seconds. We found that the software search
was unable to complete a search of the space corresponding
to a 14-leaf tree within a reasonable amount of time (less
than one week of CPU time).

Table 2 summarizes the speedups of the FPGA accel-
erator implementation over the nonaccelerated implemen-
tation, and it also shows the speedup as the number of PEs
is increased beyond 1 PE. As shown, a single PE, whose
only substantial advantage over software (aside from being

implemented in special-purpose hardware) is the fine-
grained memory parallelism that it exploits by performing a
parallelized lower bound computation, achieves up to 4.5X
speedup over software.

The speedup over software of the single PE increases
with the sizes of our input data sets (and thus the size of the
search space). Because our results include the host-PE
communication time required to initialize the coprocessor,
longer searches are subjected to less relative overhead.

Further analysis of the table also gives us an optimal
number of PEs. Increasing the number of PEs to 20 does not
yield the highest speedup in this experiment. There are
several factors that contribute to this. One factor is the
increased area and routing complexity on the FPGA as
the number of PEs is increased. In this case, our 16 PE design
operated with a 47 MHz clock rate and our 20 PE design
operated with a40 MHz clock rate. In addition to alower clock
speed, this implementation also has an increased fan-out
from the PCI-X interface and consequently required higher
pipeline latency for input written to the PEs (in this case, the
fan-out was pipelined to decrease routing complexity).

Finally, as described in Section 3.2, the PEs are subject to
higher relative control overhead for higher step sizes.
Although making the step size larger decreases the number
of trees each PE generates, it also increases the number of
memory accesses per tree generated for each PE and the
number of arithmetic operations per step. This is why there
is a point of diminishing returns after 16 PEs.

TABLE 2
Summary of Speedup

Speedup over GRAPPA Multi-PE speedup over 1 PE
Leaves # Trees 1PE 8 PEs 16 PEs 20 PEs 8 PEs 16 PEs 20 PEs
8 1.04E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 1.35E+05 1.29 1.81 1.81 1.81 1.40 1.40 1.40
10 2.03E+06 1.89 6.75 8.27 827 3.56 4.37 437
11 3.45E+07 3.14 15.64 2253 22.89 498 717 7.28
12 6.55E+08 3.39 17.61 26.41 25.66 520 7.79 7.57
13 1.37E+10 3.52 19.32 29.54 28.12 5.49 8.39 7.99
14 3.16E+11 > 454 >25.28 > 38.98 >37.21 557 8.58 8.19

586 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 4, APRIL 2012

TABLE 3
Execution Times for 13 Leaf Data Sets for GRAPPA
and the Parallel 16 PE Architecture with Stepping

Time(sec)
FPGA
Input # | GRAPPA FPGA | Speedup

1 173207 20793 8.33
2 41930 8856 473
3 40838 11207 3.64
4 56203 5554 10.12
5 51453 14121 3.64
6 21641 1578 13.71
7 110273 11161 9.88
8 28181 13168 214
9 148571 24114 6.16

When we increase the number of parallel PEs in the
accelerator to 16, we achieve a 40X speedup for larger tree
spaces.

When comparing the performance of a 16 PE accelerator
to a single PE accelerator, the results converged to an 8X
improvement. The gap between 8X and the optimal
speedup of 16X is also due to the overheads required for
the PEs to step through the search space with a step size
greater than one. In other words, it takes more cycles for the
PE to move to the next tree if it must step over the next n
trees as opposed to moving to the next tree according to the
search order that is implied by the tree construction
algorithm. These results indicate that the PEs require, on
average, twice as much time to take steps longer than one
when generating trees.

4.2 End-to-End Application Performance

Our second set of tests compare the end-to-end application
performance of the unmodified software application,
including the scoring of candidate trees whose lower bound
is less than the upper bound, to the accelerated application
where tree generation and bounding are performed on the
FPGA. Note that tree scoring is performed in software by
the host in both cases. In these tests, the accelerator consists
of 16 PEs, and the input consists of nine unique synthetic,
13-leaf input sets, generated from extracting the leaves of
randomly generated phylogenies having 2-8 evolutionary
events per edge.

Table 3 summarizes the performance. Even when
including the host-FPGA communication overheads, the
accelerated version of the application consistently out-
performed software, achieving a 3.64X to 13.71X speedup.
The variance in speedups is due to differences in both the
pruning rate and average scoring time across the input sets.

Input sets that result in higher ratios of scored trees tend
to experience lower PE utilization, since the software must
cease tree generation when scoring a tree, which can require
a significant amount of CPU time. On average, the PEs
spent 42 percent of their time searching and 58 percent of
their time waiting for their tree to be read by the host.

In the multiple PE implementation of the accelerator
architecture, trees are generated in a different order than in
the software implementation. This results in a different

TABLE 4
Number of Trees Scored by Both Implementations

of Trees Scored % of Trees Scored
Input # GRAPPA | FPGA | GRAPPA | FPGA

1 22310765 | 2912228 0.1623% 0.0212%
2 2772469 1041965 0.0202% 0.0076%
3 2434468 1415052 0.0177% 0.0103%
4 4177687 622079 0.0304% 0.0045%
5 2045558 936178 0.0149% 0.0068%
6 207910 222527 0.0015% 0.0016%
7 7483701 1325416 0.0544% 0.0096%
8 808902 1169870 0.0059% 0.0085%
9 21153803 | 4031965 0.1539% 0.0293%

number of scored candidate trees in the accelerated version
of the application.

Table 4 shows the differences in the number of trees
scored and the scoring percentages for each input set. In
addition, the time to score a candidate tree is not uniform
and can vary greatly depending on the candidate tree itself.

5 CONCLUSIONS

We have successfully demonstrated the use of heteroge-
neous computing with an FPGA-based coprocessor archi-
tecture to accelerate the performance of a branch-and-
bound computation. The non-O(n) tree generation kernel
contains complex control and looping behavior that we
implemented entirely on the FPGA, resulting in a 40X
speedup for an exhaustive search of a tree space containing
hundreds of billions of trees.

We have shown that processing these extremely large
data sets is made feasible through this parallelized FPGA
architecture that encompasses both fine- and coarse-grained
parallelism. By setting the number of processing elements to
16, we obtained our maximum performance. After integrat-
ing our accelerator into the GRAPPA algorithm, our parallel
architecture achieved an observed 14X end-to-end speedup
over the nonaccelerated version of the application.

ACKNOWLEDGMENTS

This material is based upon work supported by the US
National Science Foundation (NSF) under Grant Nos. CCF-
0844951 and CCF-0915608. The authors would like to
thank the anonymous reviewers for their helpful com-
ments that enabled them to make significant improve-
ments to this paper.

REFERENCES

[1] M.P. de Moraes Zamith, EW.G. Clua, A. Conci, A. Montenegro,
P.A. Pagliosa, and L. Valente, “Parallel Processing between GPU
and CPU: Concepts in a Game Architecture,” Proc. Computer
Graphics, Imaging and Visualisation (CGIV '07), pp. 115-120, Aug.
2007.

[2] B.DPieters, D. Van Rijsselbergen, W. De Neve, and R. Van de Walle,
“Motion Compensation and Reconstruction of H.264/AVC Video
Bitstreams Using the GPU,” Proc. Eighth Int’l Workshop Image
Analysis for Multimedia Interactive Services (WIAMIS '07), pp. 69-72,
June 2007.

MINTZ AND BAKOS: A CLUSTER-ON-A-CHIP ARCHITECTURE FOR HIGH-THROUGHPUT PHYLOGENY SEARCH

(3]
(4]

(5]
6]
[

8]

%]

[10]

(1]

(12]

(13]

(14]

[15]

[10]

(17

(18]

(19]

[20]

(21]

(22]

(23]

[24]
(23]

“PhysX PPU by Ageia,” http://www.ageia.com/pdf/ds_
product_overview.pdf, 2011.

“IBM Roadrunner Project,” http://www.ibm.com/ibm/
ideasfromibm /us/roadrunner /20080609 /index.shtml, retrieved,
Dec. 2008.

http://www.cray.com, Dec. 2007.

“SGI Products,” http:/ /www.sgi.com/products/rasc, Jan. 2009.
J.-W. Jang, S.B. Choi, and V.K. Prasanna, “Energy-and Time-
Efficient Matrix Multiplication on FPGAs,” IEEE Trans. Very Large
Scale Integration (VLSI) Systems, vol. 13, no. 11, pp. 1305-1319, Nov.
2005.

L. Zhuo and V.K. Prasanna, “Scalable and Modular Algo-
rithms for Floating-Point Matrix Multiplication on FPGAs,”
Proc. 18th Int’l Parallel and Distributed Processing Symp., p. 92,
Apr. 2004.

E. Allen Michalski and D.A. Buell, “The Scalable Architecture for
RSA Cryptography on Large FPGAs,” Proc. 16th Int’l Conf. Field
Programmable Logic and Applications (FPL '06), Aug. 2006.

P.D. Michailidis and K.G. Margaritis, “A Programmable Array
Processor Architecture for Flexible Approximate String Matching
Algorithms,”]. Parallel and Distributed Computing, vol. 67, no. 2,
pp. 131-141, 2007.

A. Boukerche, J.M. Correa, A.C.M.A. de Melo, R.P. Jacobi, and
AF. Rocha, “Reconfigurable Architecture for Biological Sequence
Comparison in Reduced Memory Space,” Proc. IEEE Int’l Parallel
and Distributed Processing Symp., Mar. 2007.

X. Lin, Z. Peiheng, B. Dongbo, F. Shengzhong, and S. Ninghui, “To
Accelerate Multiple Sequence Alignment Using FPGAs,” Proc.
Eighth Int’l Conf. High-Performance Computing in Asia-Pacific Region
(HPCASIA '05), Nov. 2005.

T. Oliver, B. Schmidt, D. Maskell, D. Nathan, and R. Clemens,
“Multiple Sequence Alignment on an FPGA,” Proc. 11th Int’l Conf.
Parallel and Distributed Systems—Workshops (ICPADS '05), July
2005.

ZK. Baker and V.K. Prasanna, “Automatic Synthesis of
Efficient Intrusion Detection Systems on FPGAs,” IEEE Trans.
Dependable and Secure Computing, vol. 3, no. 4, pp. 289-300,
Oct.-Dec. 2006.

F. Cardells-Tormo and P.-L. Molinet, “Area-Efficient 2-D Shift-
Variant Convolvers for FPGA-Based Digital Image Processing,”
IEEE Trans. Circuits and Systems II: Express Briefs, vol. 53, no. 2,
pp. 105-109, Feb. 2006.

M. Rawski, P. Tomaszewicz, H. Selvaraj, and T. Luba, “Efficient
Implementation of Digital Filters with Use of Advanced Synthesis
Methods Targeted FPGA Architectures,” Proc. Eighth Euromicro
Conf. Digital System Design, pp. 460-466, Aug./Sept. 2005.

A. Madanayake, L. Bruton, and C. Comis, “FPGA Architectures
for Real-Time 2D/3D FIR/IIR Plane Wave Filters,” Proc. Int’l
Symp. Circuits and Systems (ISCAS '04), vol. 3, pp. 613-616, May
2004.

LS. Uzun, A. Amira, A. Bouridane, and A., “FPGA Implementa-
tions of Fast Fourier Transforms for Real-Time Signal and Image
Processing,” IEE Proc. Vision, Image and Signal Processing, vol. 152,
no. 3, pp. 283-296, June 2005.

K.S. Hemmert and K.D. Underwood, “An Analysis of the Double-
Precision Floating-Point FFT on FPGAs,” Proc. 13th Ann. IEEE
Symp. Field-Programmable Custom Computing Machines (FCCM),
pp- 171-180, Apr. 2005.

K.S. Hemmert and K.D. Underwood, “An Analysis of the Double-
Precision Floating-Point FFT on FPGAs,” Proc. 13th Ann. IEEE
Symp. Field-Programmable Custom Computing Machines, 2005.

K.D. Underwood, “FPGAs vs. CPUs: Trends in Peak Floating-
Point Performance,” Proc. ACM/SIGDA 12th Int’l Symp. Field
Programmable Gate Arrays (FPGA), pp. 171-180, 2004.

K.D. Underwood and K.S. Hemmert, “Closing the Gap: CPU and
FPGA Trends in Sustainable Floating-Point BLAS Performance,”
Proc. 12th Ann. IEEE Symp. Field-Programmable Custom Computing
Machines (FCCM), pp. 219-228, 2004.

K.S. Hemmert and K.D. Underwood, “An Analysis of the Double-
Precision Floating-Point FFT on FPGAs,” Proc. 13th Ann. IEEE
Symp. Field-Programmable Custom Computing Machines (FCCM),
pp- 171-180, 2005.

J. Felsenstein, Inferring Phylogenies. Sinauer Assoc., 2004.

A. Stamatakis, “An Efficient Program for Phylogenetic Inference
Using Simulated Annealing,” Proc. 19th IEEE Int’l Parallel and
Distributed Processing Symp. (IPDPS), Apr. 2005.

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(371

(38]

(39]

[40]

(41]

587

J. Zola, D. Trystram, A. Tchernykh, and C. Brizuela, “Parallel
Multiple Sequence Alignment with Local Phylogeny Search by
Simulated Annealing,” Proc. 19th IEEE Int’l Parallel and Distributed
Processing Symp. (IPDPS), Apr. 2006.

D. Barker, “LVB: Parsimony and Simulated Annealing in the
Search of Phylogenetic Trees,” Bioinformatics, vol. 20, pp. 274-275,
2004.

M.]. Brauer, M.T. Holder, L.A. Dries, D.]. Zwickl, P.O. Lewis, and
D.M. Hillis, “Genetic Algorithms and Parallel Processing in
Maximum-Likelihood Phylogeny Inference,” Molecular Biology
and Evolution, vol. 19, no. 10, pp. 1717-1726, 2002.

AR. Lemmon and M.C. Milinkovitch, “The Metapopulation
Genetic Algorithm: An Efficient Solution for the Problem of Large
Phylogeny Estimation,” Proc. Nat’l Academy of Sciences, vol. 99,
no. 16, pp. 10516-10521, 2002.

N. Saitou and N. Nei, “The Neighbor-Joining Method: A New
Method for Reconstrucing Phylogenetic Trees,” Molecular Biology
and Evolution, vol. 4, pp. 406-425, 1987.

M. Blanchette, G. Bourque, and D. Sankoff, “Breakpoint Phylo-
genies,” Proc. Workshop Genome Informatics, pp. 25-34, S. Miyano
and T. Takagi, eds., 1997.

B.M.E. Moret, J. Tang, and T. Warnow, “Reconstructing Phylo-
genies from Gene-Content and Gene-Order Data,” Math. of
Evolution and Phylogeny, O. Gascuel, ed., pp 321-352, Oxford Univ.
Press, 2005.

G. Bourque and P. Pevzner, “Genome-Scale Evolution: Recon-
structing Gene Orders in the Ancestral Species,” Genome Research,
vol. 12, pp. 26-36, 2002.

B.M.E. Moret, J. Tang, L. Wang, and T. Warnow, “Steps toward
Accurate Reconstructions of Phylogenies from Gene-Order Data,”
J. Computer and System Sciences, vol. 65, no. 3, pp 508-525, Nov.
2002.

B.M.E. Moret, L.-S. Wang, T. Warnow, and S. Wyman, “New
Approaches for Reconstructing Phylogenies Based on Gene
Order,” Proc. Ninth Conf. Intelligent Systems for Molecular Biology
(ISMB '01) in Bioinformatics, vol. 17, pp. S165-5173, 2001.

B.M.E. Moret, S. Wyman, D.A. Bader, T. Warnow, and M. Yan, “A
New Implementation and Detailed Study of Breakpoint Analysis,”
Proc. Sixth Pacific Symp. Biocomputing (PSB), pp. 583-594, 2001.
B.M.E. Moret, D.A. Bader, and T. Warnow, “High-Performance
Algorithm Engineering for Computational Phylogenetics,”
J. Supercomputing, vol. 22, pp. 99-111, 2002.

D. Huson, S. Nettles, and T. Warnow, “Disk-Covering, a Fast
Converging Method for Phylogenetic Tree Reconstruction,”
J. Computational Biology, vol. 6, no. 3, pp. 369-386, 1999.

U. Roshan, BM.E. Moret, T.L. Williams, and T. Warnow, “Rec-I-
DCM3: A Fast Algorithmic Technique for Reconstructing Large
Phylogenetic Trees,” Proc. Third IEEE Computational Systems
Bioinformatics Conf. (CSB '04), pp. 98-109, 2004.

D. Huson, S. Nettles, and T. Warnow, “Disk-Covering, a Fast
Converging Method for Phylogenetic Tree Reconstruction,”
J. Computational Biology, vol. 6, no. 3, pp. 369-386, 1999.

J. Tang and B.M.E. Moret, “Scaling up Accurate Phylogenetic
Reconstruction from Gene-Order Data,” Proc. 11th Conf. Intelligent
Systems for Molecular Biology (ISMB '03) in Bioinformatics, vol. 19,
pp- i305-i312, 2003.

588 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 4, APRIL 2012

Tiffany M. Mintz received the BS degree in
computer engineering from the University of
South Carolina in 2003 and the PhD degree in
computer science and engineering at the Uni-
versity of South Carolina in 2010. She is
currently a Postdoctoral Research Associate at
Oak Ridge National Laboratory. Her research
interests include computer architecture and
parallel, reconfigurable, and heterogeneous
computing. She was a GAANN Fellowship
recipient from 2003 to 2005, a Pi Fellowship recipient in 2006, a mentor
for the US National Science Foundation (NSF) Research Experience for
Undergraduates (REU) program in 2006, and a SEAGEP fellow from
2009-2010. She is also a member of the IEEE and the IEEE Women in
engineering.

Jason D. Bakos received the BS degree in
computer science from Youngstown State Uni-
versity in 1999 and the PhD degree in computer
science from the University of Pittsburgh in
2005. He is currently serving as an assistant
professor in the Department of Computer
Science and Engineering at the University of
South Carolina. He has published two dozen
refereed publications, was the recipient of the
: ACM/DAC student design contest awards in
2002 and 2004, and received the US National Science Foundation
(NSF) CAREER award in 2009. He is currently serving as information
director for ACM Transactions on Reconfigurable Technology and
Systems. He is a member of the the IEEE, the IEEE Computer Society,
and the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

