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ABSTRACT
In this paper, a method for real-time forecasting of the dy-

namics of structures experiencing nonstationary inputs is de-
scribed. This is presented as time series predictions across dif-
ferent timescales. The target applications include hypersonic ve-
hicles, space launch systems, real-time prognostics, and moni-
toring of high-rate and energetic systems. This work presents
numerical analysis and experimental results for the real-time
implementation of a Fast Fourier Transform (FFT)-based ap-
proach for time series forecasting. For this preliminary study,
a testbench structure that consists of a cantilever beam subjected
to nonstationary inputs is used to generate experimental data.
First, the data is de-trended, then the time series data is trans-
ferred into the frequency domain, and measures for frequency,
amplitude, and phase are obtained. Thereafter, select frequency
components are collected, transformed back to the time domain,
recombined, and then the trend in the data is restored. Finally,
the recombined signals are propagated into the future to the se-
lected prediction horizon. This preliminary time series forecast-
ing work is done offline using pre-recorded experimental data,

and the FFT-based approach is implemented in a rolling window
configuration. Here learning windows of 0.1, 0.5, and 1 s are
considered with different computation times simulated. Results
demonstrate that the proposed FFT-based approach can main-
tain a constant prediction horizon at 1 s with sufficient accu-
racy for the considered system. The performance of the system is
quantified using a variety of metrics. Computational speed and
prediction accuracy as a function of training time and learning
window lengths are examined in this work. The algorithm con-
figuration with the shortest learning window (0.1 s) is shown to
converge faster following the nonstationary when compared to
algorithm configuration with longer learning windows.

INTRODUCTION
Structures experiencing high-rate dynamics are subjected

to 1) large uncertainties in external loads; 2) high levels of
nonstationarities and heavy disturbances, and 3) the generation
of unmodeled dynamics from changes in system configuration
[1]. The development of a real-time monitoring and prediction
methodology that observes the current state of a structure and
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predicts its future state will enable active structures that can re-
spond to high-rate dynamics in real-time [2]. If an effective
framework can be developed, control commands can be initi-
ated to prevent further harm or complete system failure [3]. One
key challenge in the development of a real-time monitoring and
prediction methodology is its ability to operate through nonsta-
tionarities. A nonstationary event is one in which the statistical
representation of the signal changes. Stationarities can be classi-
fied as weak stationarity, covariance stationarity, or second-order
stationarity [4]. If a shift in time does not induce a difference in
the distribution form, a time series has stationarity, and therefore,
the distribution properties (e.g., mean, variance, and covariance)
are constant over time.

There are a variety of cases in which a time series does
not stay stationary. If these distribution properties are mis-
handled, the time series would display nonstationary attributes,
which is a significant test for a few fields. The nonstationary
time arrangement incorporates time trends, arbitrary strolls (ad-
ditionally called unit roots), and seasonality. Time trends in
a signal can also be thought of as low frequency components
with periods longer than the considered data set. Thus, a few
methodologies are created to break down the nonstationary at-
tributes. These methodologies can be characterized into two pri-
mary sorts: time strategies (e.g., Auto-Correlation Analysis strat-
egy, Regression technique, Seasonal Auto-Regressive Incorpo-
rated Moving Average, Break for Additive Trend and Season)
and Spectro-Temporal strategies [5]. Spectro-Temporal tech-
niques consider the portrayal of frequency varieties [6].

Time series forecasting of high-rate dynamics is difficult.
Specifically, a time series forecasting technique must be robust
enough to operate with noisy sensor data. Time series forecast-
ing is performed by studying patterns in a variable (or the rela-
tionships between variables), building a model, and using this
knowledge to build a model. The model is then used to ex-
trapolate the variable into the future. This demonstrating ap-
proach is especially valuable when little information is acces-
sible on the information-producing operation or when there is
no agreeable illustrative model that relates the expectation vari-
able to other illustrative factors. Much effort has been committed
to the improvement and development of time series forecasting
models [7]. The investigation of the time series can be separated
into two tasks. The initial task is to acquire the structure and
basic knowledge (i.e. dynamics) of the observed information.
The subsequent task is to fit a model that will be used to make
predictions. Observing past information can be utilized for the
examination of the dynamics of a structure under nonstationary
inputs as well as prediction of its future dynamics. A standard
methodology in dissecting time series is to decompose the mon-
itored variable into the three segments, trend, nonstationary, and
residual [8]. For the most part, time series examination can be
isolated into univariate and multivariate examinations. Univari-
ate time series includes a period arrangement containing a soli-

tary perception recorded consecutively over time. Multivariate
time arrangement is utilized when several time series factors are
included, and their connections are to be considered [9]. Com-
mon techniques for time series prediction incorporate the sliding
window, smoothing, and autoregressive expectation techniques,
which are broadly applied in a forecast of high rate dynamics
system states, financial turn of events, environmental change,
and energy interest. The sliding window technique is similar
to the single dramatic smoothing strategy while the smoothing
and autoregressive techniques are similar to the two-fold dra-
matic smoothing technique and the triple outstanding smoothing
strategy, respectively [10].

The main aim of this work is to investigate the real-time
implementation of time series forecasting over a nonstationary
event. In this work, a change in loading is introduced into a can-
tilever beam structure to generate a nonstationarity event. This is
intended to represent a structure subjected to a high-rate dynamic
event (e.g. impact) that changes the state (i.e. damage) of the
structure. This work presents a numerical analysis for the real-
time implementation of a Fast Fourier Transform (FFT)-based
approach for time series forecasting. For this preliminary study,
a testbench structure that consists of a cantilever beam subjected
to nonstationary inputs is used to generate experimental data. For
online time series forecasting, the FFT-based approach is imple-
mented in a rolling window configuration. The main contribution
of this paper is a investigation into how the FFT-based approach
responds before, during, and directly following a nonstationary
event, while considering different learning window lengths and
assumed computation times. The performance of the system is
quantified using a variety of metrics that investigate the qual-
ity of the prediction. The FFT-based approach with the shortest
learning time achieves the best performance. Here 0.1 s, 0.5 s,
and 1 s learning window length have been considered with dif-
ferent computation times simulated. The effect of learning win-
dow length in different states is described with MAE (mean ab-
solute time) and transient state. The mean absolute error (MAE)
can be used to classify errors that are uniformly distributed [11].
The computation time is an approximation of the actual com-
putation time needed for the FFT, signal extraction, and IFFT.
These values are reasonable approximations for actual hardware.
The effect of computational time is also analyzed in different
states and described with mean error and transient time. The al-
gorithm configuration with the shortest learning window that ex-
ceeds the lower bound set by the Nyquist sampling theorem (0.1
s) is shown to converge faster following the nonstationary when
compared to algorithm configurations with longer learning win-
dows. The shortest computational time (0.01 s) is also impactful
for smaller mean errors in different states and for obtaining the
shortest transient time.
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FIGURE 1. Experimental setup of a cantilever beam with key components and data acquisition setup.

FIGURE 2. Mode shapes and frequencies for the cantilever beam setup showing: (a) mode shape 1; (b) mode shape 2, and; (c) mode shape 3.

EXPERIMENTAL SETUP
The experimental setup is shown in Figure 1. For the pur-

pose of the experiment, a steel cantilever beam structure of 759 x
50.66 x 5.14 mm is used and a single Integral Electronics Piezo-
electric (IEPE) accelerometer (model J352C33 manufactured by
PCB Piezotronics) is mounted close to the edge of the beam
structure.The location of the accelerometer is 0.46 m from the
fixed point of the cantilever beam as shown in Figure 1.This ac-
celerometer has a frequency range of 0.5 Hz to 9k Hz with a
sensitivity of 100 mV/g. The sensor data is digitized using a 24-
bit NI-9234 IEPE signal conditioner manufactured by National
Instruments.

To ensure that the accelerometer was not placed at a node of
the beam, the mode shapes and natural frequencies for the first
three modes of the cantilever were computed via Euler’s formula
[12] and are shown in Figure 2. The node of the system for the
second mode is at 0.594 m while the nodes of the system for the
third mode are at 0.380 m and 0.659 m. Therefore, the location
of the accelerometer at 0.46 m does not lie directly at any node.

The beam is excited by an electromagnetic shaker (model

V203R manufactured by LDS), with a useful frequency range
of 5-13000Hz and a peak sine force of 17.8N, and is driven by a
power amplifier (model PA25E-CE manufactured by LDS). A 45
N load cell (model MLP-10 manufactured by Transducer Tech-
niques) is mounted in-between the shaker and beam structure. A
24-bit bridge input signal conditioner (NI-9237 manufactured by
National Instruments) is used to acquire the load-cell data. The
experiment is run through a control computer with a Virtual In-
strument written in LabVIEW.

Figure 3 reports the structure’s measured acceleration re-
sponse (xv) for a composite sinusoidal input from the shaker. In
this work, the composite signal is made up of 100, 120, and 150
Hz sinusoidal signals. Two sine wave signals are concatenated
together at t=0 where a 50% nonstationary is present. A 50%
nonstationary event is introduced at 0 s, as measured by a 50%
increase in the standard deviation of the signal. To achieve this,
an input signal of 0.25 V is used before t=0 while a signal of
0.375 V is used after t=0. The first half of the composite signal
is built from 100, 120, and 150 Hz frequencies while the second
half signal consists of 100 and 120 Hz frequencies. The entire
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FIGURE 3. The full 16-second test is shown in the upper plot while the inset shows the 1 second around the nonstationarity.

16-second test is shown in Figure 3 while the expanded view
shows the 1 s around the nonstationary. This data is available
in a public repository [13]. For this introductory work, only a
harmonic load with a single non-stationary event is considered.
Future work will consider non-harmonic loads.

METHODOLOGY
In this study, periodic structural vibration is analyzed. The

measured acceleration signal is xv = (x1, x2, x3, . . . ,xV ) where
V is the total sample points in the observed signal. A rolling
window, xa of size, N moves forward through time as time
progresses. By applying the FFT-based time series forecasting
method, a signal is generated that is M points long where M > N.
The difference, (M −N) presents the length of the prediction
horizon. By determining N and M, this method can be applied to
achieve a predicted signal of desirable length. The rolling win-
dow is xa = (xa1, xa2, xa3, . . . ,xaN). The first step is to remove
any trend line from the acceleration xa. To do this, a polynomial
function used where

xtrend = p(x) = c0 + c1x+ c2x2 + . . . .+ cqxq (1)

and q is the degree of the polynomial and c is a set of coeffi-
cients. In this work, q = 1. After removing the trend, the new
acceleration signal without trend is x = xa− xtrend which has the
same sample size as N. As considered, the acceleration signal
without the trend, x = (x1, x2, x3, . . . , xN), is a time series of
N-samples that the frequency content is extracted from. There-
fore, the discrete Fourier transform (DFT) of that series can be

expressed as

Xk =
N−1

∑
n=0

xne(−i2π(kn/N)) for k = 0, . . . , N (2)

where,

ω = 2π/N = 2π f (3)
(Xamp)k = |Xk| (4)

(Xphase)k = Xk/|Xk| (5)

Similarly, the inverse DFT can be written as

xn = 1/N
N−1

∑
k=0

Xke(i2πkn/N) for n = 0, . . . , N (6)

Now, consider a new series of M length where M >N. Using am-
plitude and phase information, the time series can be constructed
and written as

xm =
M−1

∑
k=0

((Xamp)k
˙cos(2π(km/M))+(Xphase)k) for m= 1, . . . , M

(7)
The xm time series with the trend information added back

can be expressed as

xa new = xm + xtrend (8)
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FIGURE 4. Schematic Algorithm diagram of FFT-based time series prediction algorithms.

The predicted series would then be xpred =
(xa new(N+1), xa new(N+2), xa new(N+3), . . . , xa new(M)). Fre-
quency domain Xk, measures for frequency ( f ), amplitude
(Xamp)k, and phase (Xphase)k. Here k is the index of components
in the frequency domain while n and m are the indexes in
the time domain for the original series and the new extended
series respectively. Thereafter, selective frequency components
are collected. For this work, only 28 frequencies are used for
propagating the frequencies forward. The selected frequencies
are those that have the most energy in the original signal. Here,
the list of collected frequencies are given in Table 1

TABLE 1. Collected frequencies

frequencies (Hz)

20 -20 60 -60 70 -70 80

-80 100 -100 120 -120 140 -140

150 -150 160 -160 170 -170 180

-180 200 -200 220 -220 240 -240

For time series forecasting, the FFT-based approach is im-
plemented in a rolling window configuration. In this work, the
sliding window length and the prediction window length is 1 s.
Here, three lengths of learning windows are used, they are: i) 0.1

s window length, ii) 0.5 s window length, and iii) 1 s window
length. The performance of this work has been analyzed with
different learning window length (L) and various computational
times (T ). Here, four computational times are assumed, intended
to model the latency of the FFT, signal extraction, and IFFT on
various hardware architectures. These are: i) 0.01 s, ii) 0.1 s, iii)
0.5 s, and iv) 1 s.

The algorithm is diagrammed in Figure 4. The left side of
the figure shows how the rolling window is used to enable time
series forecasting while the right-side flow chart shows how fre-
quency component extraction and time series prediction is per-
formed. Table 2 shows the parameter values.

TABLE 2. Parameter values

learning length computational time prediction length

L (s) T (s) P (s)

0.1, 0.5, 1 0.01 1

0.1, 0.5, 1 0.1 1

0.1, 0.5, 1 0.5 1

0.1, 0.5, 1 1 1
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FIGURE 5. time series prediction using various learning window lengths showing: (a) 0.01 s window length; (b) 0.02 s window length; (c) 0.03 s
window length; (d) 0.04 s window length; (e) 0.05 s window length; (f) 0.06 s window length; (g) 0.07 s window length; (h) 0.08 s window length; (i)
0.09 s window length; (j) 0.1 s window length; (k) 0.5 s window length; and (l) 1 s window length.
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FIGURE 6. Calculated instantaneous error over for the experiment data with various learning window lengths showing: (a) 0.01 s window length;
(b) 0.02 s window length; (c) 0.03 s window length; (d) 0.04 s window length; (e) 0.05 s window length; (f) 0.06 s window length; (g) 0.07 s window
length; (h) 0.08 s window length; (i) 0.09 s window length; (j) 0.1 s window length; (k) 0.5 s window length; and (l) 1 s window length.
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RESULTS AND DISCUSSION
The effect of two parameters on the algorithm have been an-

alyzed: the length of the learning window and the computational
time required to perform the FFT-based algorithm.

Figure 5 reports the time series prediction for the FFT-based
algorithm for the 12 window lengths considered. Figures 5(a)-(i)
show that when the learning window is shorter than the period
of the lowest frequency component of the signal, a periodicity in
the predicted signal develops. However, when the learning win-
dow exceeds the base period in the signal, the periodicity in the
predicted signal is removed; as shown in Figures 5(i)-(l). The
lowest frequency among the frequencies that compose the signal
is 20 Hz, as presented in Table 1. For a 20 Hz frequency, the
corresponding period is 0.05 s. Therefore, to capture this fre-
quency, the minimum learning window length needs to be twice
the period of the signal, per the Nyquist Theorem. Applying the
Nyquist Theorem, the minimum length of the learning window
should be 0.1 s. This minimum sampling rate requirement is
shown in Figures 5(j)-(l). For accurately capturing all the fre-
quencies listed in Table 1, the minimum period should be higher
than the Nyquist limit; for this data set the minimum learning rate
is about 0.15 s. As the length of the learning window increases
beyond 0.1 s, the quality of the reproduced signal improves. This
is shown in Figures 5(k)-(l) where Figure 5 (l) shows the best
prediction.

Signal convergence during the transient state is affected by
the length of the learning window. As shown in Figure 5(l), the
longest learning window length (1 s) takes approximately 1.3
seconds compared to the 0.4 s learning window length in Fig-
ure 5(j) which requires only 0.4 seconds to converge. For the
purpose of this paper, the system is said to be transient or in a
transient state when it has not converged to a steady-state, quan-
tified by looking at the change in error of the system.

The instantaneous (i.e. point-by-point) error for the FFT-
based algorithm for the 12 window lengths considered is shown
in Figure 6. The periodicity in the predicted signal is removed
when the learning window reaches twice the signal’s base fre-
quency, as seen in Figures 6(j)-(l). Figure 6(j) shows the error for
a learning window length is 0.1 s and has a slight periodic pat-
tern, this is due to it being at the Nyquist limit. In Figures 6(j)-(l),
the period of the signal that is in the transient state is denoted by
a significantly higher level of error.

Figures 5-6 consider the three learning window lengths of
0.1 s (j), 0.5 s (k), and 1 s (l) for further analysis. Figure 7 and
Table 3 report the effects of the selected learning window length
on both the MAE and the transient time. Figure 7(a) shows that
if the learning window length is increased, the mean error for the
considered state decrease. Moreover, Figure 7(b) shows that if
the learning length increases, the transient time also increases.
Therefore, the mean error and learning window length relation-
ship are inversely proportional while the transient time and learn-
ing window length relationship are proportional.

FIGURE 7. Effect of various learning window lengths (L) showing:
(a) MAE in different states, and; (b) transient time.

TABLE 3. Performance metrics for various learning window lengths.

learning window length

0.1 s 0.5 s 1 s

State MAE (m/s2)

Pre-event steady state 0.0112 0.0039 0.0038

Transient event 0.0409 0.0398 0.0335

Post-event steady state 0.0298 0.0103 0.0102

Transient time (s) 0.42 0.82 1.32

Following the analysis of learning window length, the com-
putational time of the algorithm is considered as another impor-
tant parameter. Figure 8 and Table 4 display the impact of four
simulated computational times (0.01 s, 0.1 s, 0.5 s, and 1 s) for
a constant learning length of 0.1 s. The learning length of 0.1 s
was chosen as it provides a nice trade-off between the considered
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FIGURE 8. Effect of various computational time (T ) in a specific
learning window length (L) showing: (a) MAE in different states, and;
(b) transient time.

metrics of MAE and transient time. Figure 8 and Table 4 show
that as the computational time increases, the MAE and transient
time increases. This is a proportional relationship. Figure 8(a)
depicts the MAE in various states. The MAE across the three
computational times varies by less than 3%, this relatively con-
stant error results from the benefits of a shorter computational
time only being leveraged when the system experiences a tran-
sient event it must respond to. Figure 8(b) and Table 4 shows
that the 0.01 s computational time results in a response with less
transient time than 1 s.

TABLE 4. Performance metrics for various computational times.
computational time

0.01 s 0.1 s 0.5 s 1 s

State MAE (m/s2)

Pre-event steady state 0.0099 0.0112 0.0175 0.0254

Transient event 0.0408 0.0409 0.0414 0.0441

Post-event steady state 0.0265 0.0298 0.0459 0.0666

Transient time (s) 0.32 0.42 0.82 1.32

CONCLUSION
This work describes a method for forecasting the state of dy-

namic structures experiencing nonstationary inputs, capable of
time series predictions across different timescales. Hypersonic
vehicles and space launch systems are the target applications
for this system. This work presents a mathematical examina-
tion and exploratory outcomes for the continuous execution of a
Fast Fourier Transform (FFT)-based methodology for time series
forcasting. For offline time series forecasting, the FFT-based ap-
proach is implemented in a rolling window configuration. Two
types of parameter effects have been analyzed for the algorithm.
The length of the learning window and the computational time
taken to run the FFT-based algorithm are the two parameters. The
effect of learning window length is described concerning mean
error and transient state. Learning window lengths are inversely
proportional with mean error in different states and proportional
with transient time. In the case of mean error, the longest lean-
ing window length of 1 s provides the best performance in the
steady-state condition. In the case of transient time or conver-
gence duration, the shortest learning window length that is above
the Nyquist limit (0.1 s) performs the best. The relationship be-
tween computational time and mean error in different states, as
well as transient time, is proportional. The shortest computa-
tional time (0.01 s) shows the best performance in MAE and also
in transient time. In future work, the FFT-based rolling window
prediction method will be implemented in hardware for real-time
online time series forecasting.
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