
High-Level Synthesis of a Genomic Database Search Engine

Rasha Karakchi, Jordan A. Bradshaw, Jason D. Bakos

Department of Computer Science and Engineering
University of South Carolina

Columbia, SC USA
Email: karakchi@email.sc.edu, bradshja@email.sc.edu, jbakos@cse.sc.edu

Abstract—Genomic database search is an I/O-bound problem,

so avoiding unnecessary I/O transactions is a key consideration for
improving search throughput. Many approximate search tools
such as NCBI BLAST perform a database scan for each query,
lacking a mechanism to avoid access to portions of the database
that offer no potential for a match. In this paper we present an
approach for using an FPGA-based pattern filter to convert each
search query into a set of potential database matches that reduces
the average portion of the database accessed per query. The
approach is based on a hardware design for a pattern filter that
can achieve a sustained recognition rate of one pattern per cycle.
We used Vivado HLS to design the filter. Despite the presence of
loop-carried dependencies, the final design meets the maximum
possible throughout as constrained by the code's arithmetic
intensity and available memory bandwidth. In this paper we
describe the filter implementation and our code tuning
methodology.

Keywords—reconfigurable computing, heterogeneous
computing, high-performance computing, FPGA, BLAST,
approximate string matching, regular expression, pattern matching,
sequence alignment, automata processor, database search,
computational biology, bioinformatics, comparative genomics,
genomic analysis, finite automata, regular expression

I. INTRODUCTION

Genomic database search relies on a type of approximate
string matching that is based on assigning biologically-
significant contributions and penalties to specific aspects of
similarity and dissimilarity between two character strings
representing DNA or protein data. The Smith-Waterman [1] and
NCBI BLAST (Basic Local Alignment Search Tool) [2,3]
algorithms are well-suited for this task but both require a full
database scan for each query. This is not a serious limitation in
cases where queries are infrequent or when the database can fit
entirely in DRAM. However this becomes a major performance
bottleneck when large sets of queries are searched against a very
large database stored in non-volatile storage.

NCBI BLAST is more commonly-used than Smith-
Waterman for database search because it works on the principle
of database filtering, in which it identifies a subset of the
database that contains likely matches and then applies Smith-
Waterman to this subset. This filtering process is based on
searching for simple patterns shared between the query and each
of the database entries. These patterns are comprised of a pair
of short, fixed-length words, called seeds, which appear within
the same relatively short distance in both query and database
entry. Given a substitution matrix and score threshold, the seeds
are comprised of the subset of all n-character orderings whose
characters are among the highest-scoring against themselves and
others.

Any pair of seeds that occur within a user-defined distance
of each other are called high scoring pairs (HSPs). For each
HSP of the same length in both the query and database entry,
BLAST computes the score contribution of each of the
intervening characters. If each these contributions are positive,
BLAST will flag the corresponding database entry as a likely
match and send it for further processing. Matching the query
HSPs against the database HSPs consumes nearly all of NCBI
BLAST execution time.

Our approach to BLAST acceleration is to avoid the need to
read all the database entries by pre-computing a table of all
database HSP patterns and cross-reference these against each set
of query HSP patterns [4]. Although the set of database HSPs is
larger than the original database, only a small portion of it and
the original database need be accessed per query. This approach,
which filters the query using the database, is an inverted form of
NCBI BLAST, which filters the database using the query.

This paper describes a new FPGA-based design for
identifying HSPs in the query that match HSPs in the database.
The design uses an on-chip table to store HSPs as a set of start
and end seeds (referred to as prefix and suffix below), and a
second, off-chip table that stores the corresponding set of pattern
lengths that appear in the database. The length of each HSP
candidate identified by the on-chip table is compared against the
off-chip table. The design hides the latency of the off-chip table
through pipelining. The design involves complex control and
data movement, making it an ideal candidate for implementation
using high-level synthesis tools. Using Vivado HLS, our design
achieves a consistent throughput of 5.1 million query characters
per second on a Virtex-7.

II. RELATED WORK

Previous work has explored the potential performance
benefits of performing genomic database search on FPGAs. As
far as the authors know, CAAD BLAST is the current state-of-
the-art in published FPGA-based BLAST implementations [5].
CAAD BLAST is implemented across four Virtex-6 LX760
FPGAs and performs all components of the BLAST algorithm
on the FPGAs. CAAD BLAST is designed to generate results
that exactly match those of NCBI BLAST. To guarantee this,
the CAAD BLAST is a literal translation of the NCBI BLAST
algorithm into hardware; it closely follows the implementation
of NCBI BLASTP, where each query acts as a filter applied to
the database; i.e. for each query, the software must reconstruct
the filter and scan the database. The entire system achieves a
speedup of up to 11X vs. the software, which is remarkable
when considering that the FPGAs have only 3X the memory
bandwidth of a CPU.

This material is based upon work supported by the National Science Foundation under Grant No. 1421059.
978-1-5090-3707-0/16/$31.00 ©2016 IEEE

Other FPGA BLAST implementations that do not guarantee
exact result equivalency to NCBI BLAST use this freedom to
restructure the algorithm to more efficiently map to hardware.
Specifically there is previous work in restructuring the BLAST
two-hit filter as a systolic array, where the query and database
sequences are streamed into the FPGA alongside each other and
compared with an array of parallel comparators [6]. This
approach is notable in that it avoids the need for hash tables but
must repeatedly read the query while scanning the database,
requiring the FPGA to transact approximately twice as much
data as compared to CAAD BLAST and achieving less
performance.

III. BACKGROUND

As described in Section 1, NCBI BLASTP uses seeds as a
method for identifying points of interest in both the query and
database. To build the seed set, BLAST builds an initial set of
all n-character sequences (where n is normally 3 for BLASTP)
whose score relative to itself (as determined by the given
substitution table) exceeds a user-defined threshold value. From
each of the members of this initial set, BLAST adds any n-
character sequence whose score against it also exceeds the
threshold.

For protein BLAST (BLASTP), an HSP is comprised of a
pair of seeds separated by up to 40-wildcard characters. This
type of pattern is represented as a regular expression such as
ABC.{0,40}DEF, where ABC is the "prefix" seed and DEF is
the "suffix" seed. Note that one prefix instance in the query
starting at one offset may initiate multiple HSP occurrences
having corresponding suffixes at different offsets. A query may
contain several instances of this type of pattern. In the worst
case a query could contain up to 44 HSP patterns for every
character starting with character offset 44.

Using the default settings in NCBI BLAST of n = 3 over the
24-character protein alphabet there are 246 = 191 million HSP
permutations, of which 130 million are valid seeds under NCBI
BLASTP's default threshold of 13 and commonly-used
BLOSSUM62 substitution table. Storing all the valid HSPs on
chip is impractical using three-character so we reduce the seed

size to two, e.g. AB,{0,40}DE and make a corresponding
adjustment to the threshold, making it 11. This gives 244 = 331K
HSP permutations, of which 179K are valid under the conditions
previously described.

IV. APPROACH

A. Database Preprocessing

Figure 1 shows a top-level view of our approach. During the
preprocessing phase, a software tool generates three tables from
a given database and associated substitution matrix and
threshold. These tables are the suffix table, table of contents, and
the HSP Index Table.

1) Suffix Table
The suffix table is of a fixed size of 242 x 242 = 576 x 576

bits, which we round to 1024 x 1024 = 1 Mb for mapping to
BRAM, and is intended for on chip storage. It is addressed using
the 10-bit prefix hash, computed by subtracting 65 and masking
off the lower 5 bits of both ASCII characters of the prefix, and
then concatenating the resulting values. Each row of the suffix
table is a 1024-bit bit vector where bit n represents the validity
of the corresponding suffix, where n is the hash of the suffix
(computed using the same method as the prefix). The hardware
uses the suffix table to identify valid HSPs in the query.

2) HSP Index Table
The preprocessing step scans the database and identifies

each occurrence of each valid HSP having a total length in the
range of [4,44] and having a minimum total self-score value of
்௡

ଶ
, where T is the seed threshold and n is the match length. The

preprocessing tool stores the corresponding database index and
offset of each of these occurrences into the HSP Index Table.
Each HSP may have multiple hits, and may hit across multiple
records.

We generated HSP Index Tables for subsets of widely-cited
biological protein databases of various sizes (NR [7] and Uniref
[8]). Our results show that the resulting HSP Index Table is
approximately 10X the size of the input database, irrespective of
the database contents.

Fig. 1. Overall approach. The database is preprocessed to produce the HSP Suffix Table, Table of Contents, and HSP Index Table. The design filters queries

through these three tables to produce a set of potential database matches. Each of these are aligned in the traditional way, but the execution time of
BLAST is dominated by the first two filter stages implemented by these tables.

3) Table of Contents
The table of contents is indexed HSP and length, i.e. 20-bit

HSP (10 bits for both the prefix and suffix) and its corresponding
length. Each entry in the table of contents is either null (if the
HSP and length do not appear in the database) or points to an
offset and length in the HSP Index Table. There are 244 HSP
permutations and 40 possible lengths, giving 244 x 40 = 13
million entries in the table. Each entry provides the
corresponding 8-byte offset and 4-byte length to the
corresponding section in the HSP Index Table, giving a total size
of 128 MB.

B. Runtime Behavior

Figure 1 depicts the runtime behavior. For each query, the
design generates a set of query HSP hits, comprised of a four-
character prefix-suffix pair and length. If the corresponding
value stored in the table of contents is non-null, the design
returns the contents of the table of contents to the host CPU,
which will access the HSP Index Table and perform subsequent
filtering steps.

C. Initial Query Processor Design

In our previous work we described our initial design for the
query processor, a streaming architecture that converts each
query into a set of HSP hits. We designed this version in HDL
but it only generated hits from the suffix table and was not able
to access the table of contents due to the a relatively complex
dependency chain of table accesses. Our new design, described
in C for Vivado HLS, has pipeline stages for accessing the suffix
table, table of contents, and output arrays. The pipeline’s data
introduction interval (II) is matched to the DRAM bandwidth.

The operation of the query processor relative to the query
string is shown in Figure 2. The query processor contains one
HSP Suffix Table and 44 pipelined processing elements (PEs).
PE p can detect all HSPs whose prefix begins with query
character c, where c mod 44 = p. The query processor contains

a sufficient number of PEs such that there is one PE to track all
HSPs starting with any character in the query.

Whenever a PE begins tracking HSPs at a particular offset,
it latches the most recently-received pair of input characters as a
prefix candidate, latches that prefix's corresponding set of valid
suffixes as a 1024-wide suffix bitvector (stored as sixteen 64-bit
words in C), and then activates a counter.

The PE treats each subsequent two-character sequence as a
potential 10-bit suffix hash. It decodes each of these into a 1024-
wide bitvector and computes its bitwise-AND with the suffix
bitvector. Any one-bits in this result indicates a query HSP hit.
The PE encodes this result to compute the matching suffix value.
Another counter tracks the offset into the query, allowing both
counters provide the offset and length for each detected HSP.

D. Theoretical Performance Impact

In previous work we reported the results shown in Figure 3,
which extrapolates the potential performance improvement of

Fig. 3. End-to-end speedup of NCBI BLAST as a function of

database size, using 20 randomly selected queries from the

200K 400K 600K 800K 1M
4

4.5

5

5.5

6

6.5

7

7.5

8

Speedup vs. Database Size

Database Size

S
p

e
e

d
u

p

Fig. 2: Operation of query processor.

this approach by measuring the reduction in total I/O during the
HSP finder stage as compared to NCBI BLAST while also
considering the relative amount of execution time spent finding
HSPs as compared to the other portions of the code.

V. QUERY PROCESSOR DESIGN

This paper describes our new query processor design, which
is implemented as a systolic array using Vivado HLS 2016.1.

A. Query Processing Algorithm

Algorithm 1 shows a sketch of the algorithm for detecting
HSPs in the query. It also closely resembles the initial code
before optimization.

The outermost loop (line 2) iterates once for each query
character. The loop body begins by considering each symbol
and its predecessor as a potential suffix (line 3). The inner loop
(line 4) iterates once per processing element. For each that is
actively tracking an HSP (line 5), check to see if its maximum
length is exceeded (line 6) and if so, deactivate it (line 7).
Otherwise, if the bitwise-AND of the decoded form of the suffix
(conversion from 10-bit binary to 1024-bit unary) is non-zero,
the length greater than three, and there is an entry in the ToC
corresponding the resultant HSP and length, then output the HSP
(lines 8-11). To output an HSP, set the entries in output arrays
for its length, query offset, HSP Index Table offset, and HSP
Index Table length (lines 12-17). If the PE is not active and the
current symbol has not been considered as a potential suffix,
then allocate a new PE (lines 19-22).

The runtime operation of the code is illustrated in Figure 2.
Each of the 44 PEs identifies all valid HSPs within each
consecutive block of 44 query characters, with each PE's block
offset from the next PE by one character. Each PE may identify
multiple suffixes corresponding to its latched prefix within a
single 44-character span.

B. Design Considerations

Seven arrays (the query, two arrays that form the table of
contents, and the five output arrays) are allocated in off-chip
DRAM with shared access with the host CPU. The host CPU
performs the back end of the BLAST algorithm using the query
HSP hits and their corresponding addresses in the HSP Index
File as inputs. The host is responsible for retrieving the query
HSP hits from the HSP Index Table and performing the
extension and Smith-Waterman phases.

We associate an AXI master interface with each of the seven
input and output arrays. These ports share access to the device's
DRAM controller through an AXI crossbar to the FPGA's
DRAM controller. The generated pipeline schedules a cycle for
each access to each AXI master port, though the pipeline will
only perform the read and write accesses when needed. For
example, the code reads arrays ToC.offsets and ToC.lengths on
lines 10, 14, and 16, but the latter two are accessed only on an
HSP hit. Likewise, the pipeline schedules accesses to the output
arrays hspslength, offsetsquery, offsetsindex, and lengthsindex on lines
12, 13, 14, and 16 but it only performs the writes on an HSP hit.
This way, the required memory bandwidth depends on the
frequency of HSP hits. Lower hit frequency will reduce
contention for the DRAM controller and minimize pipeline
stalls.

ALGORITHM 1: Query HSP Search

Inputs: query (array of 8-bit characters),

 lengthquery (scalar),

 ToC.offsets (array of 64-bit values),

 ToC.lengths (array of 32-bit values)

Outputs: offsetsquery (array of 8-bit values),

 hspslength (array of 8-bit values),

 offsetsindex (array of 64-bit values),

 lengthsindex (array of 32-bit values)

Internal State:

 suffix_table (1024x1024 bit table)

 PE.active (bit vector; execution state of PEs)

 PE.suffixes (array of 44 1024-bit vectors)

 PE.offset (array of 44 16-bit values)

 PE.prefixes (array of 44 16-bit values)

 current_symbol_initiate (flags current prefix)

 suffix (current suffix candidate)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

PEactive0..numPEs := {0,0,...,0}

for i in 1 to lengthquery loop

 suffix := concat(query[i-1],query[i])

 for j in 0 to numPEs – 1 loop

 if PE.active[j] then

 if (i – PE.offset[j]) > 44 then

 PE.active[j] := false

 else if (decode(suffix) & PE.suffixes[j]) and

 ((i – PE.offset[j]) > 3) and

 ToC.offsets[concat(PE.prefix[j],suffix) x

 (i – PE.offset[j])] != null then

 hspslength [i*44+j] := i – PE,offset[j]

 offsetsquery[i*44+j] := PE.offset[j]

 offsetsindex[i*44+j] := ToC.offsets

 [concat(PE.prefix[j],suffix) * length]

 lengthsindex[i*44+j] := ToC.lengths

 [concat(PE.prefix[j],suffix) * length]

 else

 PE.active[j] := true

 PE.offset[j] := i - 1

 PE.prefix[j] := concat(query[i-1],query[i])

 PE.suffixes[j] := suffix_table[PE.prefix[j]]

Each iteration of the inner loop schedules reads of 16 bytes
(rounded up to the nearest multiple of 4): one byte from query,
8 bytes from ToC.offsets, and 4 bytes from ToC.lengths.

Each iteration of the outer loop writes 20 bytes (rounded up
to the nearest multiple of 4): 2 bytes to offsetsquery, one byte to
hspslength, 8 bytes to offsetsindex, and 4 bytes to lengthsindex.

Achieving a throughput of one cycle per inner loop iteration
requires in the worst case 36 bytes of memory access per cycle,
or 10.8 GB/s at 300 MHz.

We allocate all the internal arrays on BRAM. The suffix
array is a ROM, initialized from our database formatting tool.

C. Code Optimizations

Our initial implementation was a literal translation of
Algorithm 1 to C code. In order to provide additional flexibility
for the scheduler we completely unrolled the inner loop and
instructed the compiler to pipeline the i-loop with minimal
iteration interval (II). Our objective is to achieve an iteration
interval equal to 44, the number of PEs required to identify the
maximum number of HSPs per query character.

Our first optimization was to use a variable to register the
value of query[i-1] in order to avoid the need for an additional
access to the query array.

Our second optimization was to manually convert all the
internal arrays into scalar variables in order to encourage the
compiler to map as many arrays as possible to LUTs.

Our third optimization was to transform the code for
decoding the suffix value and matching its decoded value
against the corresponding bit in PE's suffix table row (line 8 in
Algorithm 1) by eliminating all control structures such as if-
statements and for-loops. We store the 1024-bit suffix bit vector
as sixteen 64-bit variables, each corresponding to a group of 64
consecutive bits in the 1024-bit value. For each decoded suffix
value we calculate its corresponding bit position within its
surrounding group of 64 consecutive bits by masking off the
low-order 6 bits of the suffix value:

௠௢ௗ଺ସݔ݂݂݅ݑݏ ൌ ܨ3ݔ0	&	ݔ݂݂݅ݑݏ

With this, we calculate an intermediate value masks by
isolating the bit position calculated above and repositioning it
into a new position corresponding to its group number:

ݏ݇ݏܽ݉ ൌራ ሺܲܧ. ሾ݅ሿݏ݁ݔ݂݂݅ݑݏ ≫ 64ሻ݀݋݉_ݔ݂݂݅ݑݏ ≪ ݅
ଵହ

௜ୀ଴

We calculate the group number by dividing the suffix by 64:

ௗ௜௩଺ସݔ݂݂݅ݑݏ ൌ ݔ݂݂݅ݑݏ ≫ 6

We then mask off the group number against its
corresponding bit position in masks:

௠௔௧௖௛ݔ݂݂݅ݑݏ ൌ ݏ݇ݏܽ݉ ≫ .ௗ௜௩଺ସ&1ݔ݂݂݅ݑݏ

D. Scalability

Table I shows the resource requirements as the query
processor is scaled from 12 to 44 processing elements (note that
the design requires 44 processing elements for correct
operation). The LUT and DSP requirements scale linearly, with
approximately 5,000 LUTs and one DSP required for each PE.
The number of BRAMs is constant irrespective of the number
of PEs.

Table II shows the pipeline performance as the number of
PEs is scaled from 12 to 44. In each case the compiler achieves
the minimum II—equal to the number of PES—as constrained
by the number of AXI master interfaces (since each additional

PE requires an additional access to the ToC). The pipeline depth
increases by one cycle for each PE. The clock rate is consistent
at 369 MHz for each scale. We calculate the pipeline throughput
as clock rate / II. At 44 PEs we achieve a throughput of 5.1
million query characters per second.

TABLE I: RESOURCE USAGE OF SYNTHESIZED PIPELINES ON VIRTEX-7 AS
REPORTED BY VIVADO HLS 2016.1

PEs LUTs DSPs BRAMs
12 59349 14 50
16 78990 18 50
20 98655 22 50
24 117989 26 50
28 137654 30 50
32 157276 34 50
36 176948 38 50
40 196258 42 50
44 216002 46 50

TABLE II: STATIC PERFORMANCE RESULTS OF QUERY PROCESSOR PIPELINE ON
VIRTEX-7 AS REPORTED BY VIVADO HLS 2016.1

PEs II
Pipeline
Depth

Clock
rate

(MHz)
Throughput
(Mchars/s)

12 12 40 369 9.2
16 16 44 369 8.4
20 20 48 369 7.7
24 24 52 369 7.1
28 28 56 369 6.6
32 32 60 369 6.2
36 36 64 369 5.8
40 40 68 369 5.4
44 44 72 369 5.1

E. DRAM Memory Latency

Vivado HLS assumes a default read latency of five cycles
for all top-level input arrays mapped to an AXI master interface.
Of these, four cycles are associated with the AXI master
interface and one additional cycle for the ap_bus interface.
Vivado HLS makes this assumption even when the port is used
to access an off-chip DRAM having potentially higher latency.
If the DRAM latency is greater than the latency assumption in
the generated design, the pipeline will stall on every access,
increasing the effective II value reported by the compiler and
reducing expected query throughput.

Since DRAM latency varies with the specific type of DRAM
on the target platform, we use Vivado HLS's ap_bus latency
directive to explicitly set the read latency of the modeled DRAM
and sweep it in order to evaluate its impact on the resource usage
and throughput of the generated design.

Table III shows the results of this analysis. The first column
shows the latency setting for the ap_bus (does not include the
additional four cycles for the AXI master interface). Even when
setting the DRAM latency as high as 30 cycles, Vivado HLS is
able to maintain an II of 44 and a clock rate of 369 MHz while
only increasing the pipeline latency. By deepening the pipeline

in this way we avoid the potential for lost throughput from
DRAM latency.

TABLE III: RESOURCE USAGE OF SYNTHESIZED PIPELINES ON VIRTEX-7 AS
REPORTED BY VIVADO HLS 2016.1

DRAM
Latency
(cycles) II

Pipeline
Depth

Clock
rate

(MHz)
5 44 80 369

10 44 90 369
15 44 100 369
20 44 110 369
25 44 120 369
30 44 130 369

F. Comparison with CPU

Using OpenMP we developed a multithreaded version of
query processor for software execution. For this we used the
same code as with Vivado HLS including the corresponding
code optimizations. The decoder implementation in particular
will reduce the number of branch instructions as compared to the
original unoptimized version.

To parallelize with OpenMP we made further adjustments to
the code. The outer for-loop, which iterates over each query
character, is made a parallel region and all its variables are made
private. Within the loop, the code block for each processing
element is prefaced with the following if condition that
effectively distributes the pool of PEs across the threads:

if (PE_number mod thread_count) == thread_number then

When running the software implementation we initialize the
ToC.offsets array to zero, which prevents the software from ever
writing any of the output arrays. This makes the software
behavior deterministic and provides an upper bound for the
throughput. In a separate run we initialize the ToC such that all
query HSPs are reported in the output arrays. This gives us a
lower bound on throughput.

TABLE IV: NUM_THREADS VS PERFORMANCE FOR SOFTWARE
IMPLEMENTATION

 Upper bound Lower bound

Threads

Time/
char
(ns)

Thrp't.
(Mc/s)

Time/
char
(ns)

Thrp't.
(Mc/s)

Ave.
Thrp’t

1 115 8.7 421 2.4 5.6
2 87 11.5 256 3.9 7.7
3 120 8.3 219 4.6 6.5
4 143 7.0 219 4.6 5.8
5 164 6.1 273 3.7 4.9
6 200 5.0 277 3.6 4.3
7 215 4.7 298 3.4 4.1
8 237 4.2 320 3.1 3.7

We ran each test on a 3.50 GHz four-core (eight logical core)
Intel i5-4690K. Since the CPU applies constant frequency
scaling according to load, our execution times are averaged over
5,000 runs using 100K character queries.

Our results are listed in Table IV. The best performance is
with two threads, achieving between 3.9 and 11.5 million
characters per second in the best and worst case. This is
compared to our FPGA implementation which achieves a
consistent performance of 5.1 million characters per second after
the pipeline is filled.

The software performs best with two threads, which
indicates that the performance is driven more by memory
performance than computational resources. The FPGA
performance falls between the upper and lower bounds of the
two-thread case and always outperforms the lower bound.

The FPGA suffers from three disadvantages as compared to
the CPU: (1) the FPGA has less than half the peak DRAM
bandwidth, (2) despite having random access, the 128 MB size
of the table of contents is sufficiently small to potentially benefit
from the CPU’s 6 MB L3 cache, and (3) as previously described
the FPGA pipeline schedule always allocates time for the worst
case memory behavior.

VI. CONCLUSIONS

In earlier work we developed a new NCBI BLASTP-
compatible database search algorithm optimized for throughput
on an FPGA-based coprocessor. This paper builds on this work
by describing the design of the query processor using the Vivado
high-level synthesis compiler. By using the HLS compiler we
are able to implement pipelined, indirect referencing through
multiple off-chip arrays. Specifically the design reads query
data, tracks character patterns, uses the resultant patterns to
address another off-chip array, and write its contents to off-chip
output arrays. Our design achieves a throughput consistent with
the memory bandwidth constraints, reaching a final throughput
of 5.1 million query characters per second. In future work we
will add downstream processing in our FPGA design.

REFERENCES

[1] Temple F. Smith, Michael S. Waterman, “Identification of Common
Molecular Subsequences,” Journal of Molecular Biology 147: 195–197,
1981, doi:10.1016/0022-2836(81)90087-5.

[2] S. F. Altschul, W. Gish, W. Miller, E.W. Myers, D. Journal Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology, 215
(190), 403-410.

[3] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J. Lipman, “Gapped
BLAST and PSI-BLAST: a new generation of protein database search
programs,” Nucleic Acids Research, 1997, Vol. 25, No. 17, 3389–3402.

[4] Jordan Bradshaw, Rasha Karakchi, Jason D. Bakos, "Two-Hit Filter
Synthesis for Genomic Database Search", Proc. 24th IEEE International
Symposium on Field-Programmable Custom Computing Machines.

[5] Atabak Mahram, Martin C. Herbordt, "NCBI BLASTP on High-
Performance Reconfigurable Computing Systems," Transactions on
Reconfigurable Technology and Systems (TRETS), Volume 7 Issue 4,
2015.

[6] Xinyu Guo, Hong Wang, Vijay Devabhaktuni, "A Systolic Array-Based
FPGA Parallel Architecture for the BLAST Algorithm," ISRN
Bioinformatics Volume 2012, Article ID 195658,
doi:10.5402/2012/195658.

[7] NR Database, available from http://nih.gov.

[8] Uniref100 Database, available from http://www.uniprot.org/downlo

