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Abstract—Genomic database search is an I/O-bound problem, 

so avoiding unnecessary I/O transactions is a key consideration for 
improving search throughput.  Many approximate search tools 
such as NCBI BLAST perform a database scan for each query, 
lacking a mechanism to avoid access to portions of the database 
that offer no potential for a match.  In this paper we present an 
approach for using an FPGA-based pattern filter to convert each 
search query into a set of potential database matches that reduces 
the average portion of the database accessed per query.  The 
approach is based on a hardware design for a pattern filter that 
can achieve a sustained recognition rate of one pattern per cycle.  
We used Vivado HLS to design the filter.  Despite the presence of 
loop-carried dependencies, the final design meets the maximum 
possible throughout as constrained by the code's arithmetic 
intensity and available memory bandwidth.  In this paper we 
describe the filter implementation and our code tuning 
methodology. 
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I. INTRODUCTION 

Genomic database search relies on a type of approximate 
string matching that is based on assigning biologically-
significant contributions and penalties to specific aspects of 
similarity and dissimilarity between two character strings 
representing DNA or protein data.  The Smith-Waterman [1] and 
NCBI BLAST (Basic Local Alignment Search Tool) [2,3] 
algorithms are well-suited for this task but both require a full 
database scan for each query.  This is not a serious limitation in 
cases where queries are infrequent or when the database can fit 
entirely in DRAM.  However this becomes a major performance 
bottleneck when large sets of queries are searched against a very 
large database stored in non-volatile storage. 

NCBI BLAST is more commonly-used than Smith-
Waterman for database search because it works on the principle 
of database filtering, in which it identifies a subset of the 
database that contains likely matches and then applies Smith-
Waterman to this subset.  This filtering process is based on 
searching for simple patterns shared between the query and each 
of the database entries.  These patterns are comprised of a pair 
of short, fixed-length words, called seeds, which appear within 
the same relatively short distance in both query and database 
entry.  Given a substitution matrix and score threshold, the seeds 
are comprised of the subset of all n-character orderings whose 
characters are among the highest-scoring against themselves and 
others. 

Any pair of seeds that occur within a user-defined distance 
of each other are called high scoring pairs (HSPs).  For each 
HSP of the same length in both the query and database entry, 
BLAST computes the score contribution of each of the 
intervening characters.  If each these contributions are positive, 
BLAST will flag the corresponding database entry as a likely 
match and send it for further processing.  Matching the query 
HSPs against the database HSPs consumes nearly all of NCBI 
BLAST execution time. 

Our approach to BLAST acceleration is to avoid the need to 
read all the database entries by pre-computing a table of all 
database HSP patterns and cross-reference these against each set 
of query HSP patterns [4].  Although the set of database HSPs is 
larger than the original database, only a small portion of it and 
the original database need be accessed per query.  This approach, 
which filters the query using the database, is an inverted form of 
NCBI BLAST, which filters the database using the query. 

This paper describes a new FPGA-based design for 
identifying HSPs in the query that match HSPs in the database.  
The design uses an on-chip table to store HSPs as a set of start 
and end seeds (referred to as prefix and suffix below), and a 
second, off-chip table that stores the corresponding set of pattern 
lengths that appear in the database.  The length of each HSP 
candidate identified by the on-chip table is compared against the 
off-chip table.  The design hides the latency of the off-chip table 
through pipelining.  The design involves complex control and 
data movement, making it an ideal candidate for implementation 
using high-level synthesis tools.  Using Vivado HLS, our design 
achieves a consistent throughput of 5.1 million query characters 
per second on a Virtex-7. 

II. RELATED WORK 

Previous work has explored the potential performance 
benefits of performing genomic database search on FPGAs.  As 
far as the authors know, CAAD BLAST is the current state-of-
the-art in published FPGA-based BLAST implementations [5].  
CAAD BLAST is implemented across four Virtex-6 LX760 
FPGAs and performs all components of the BLAST algorithm 
on the FPGAs.  CAAD BLAST is designed to generate results 
that exactly match those of NCBI BLAST.  To guarantee this, 
the CAAD BLAST is a literal translation of the NCBI BLAST 
algorithm into hardware; it closely follows the implementation 
of NCBI BLASTP, where each query acts as a filter applied to 
the database; i.e. for each query, the software must reconstruct 
the filter and scan the database.  The entire system achieves a 
speedup of up to 11X vs. the software, which is remarkable 
when considering that the FPGAs have only 3X the memory 
bandwidth of a CPU. 
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Other FPGA BLAST implementations that do not guarantee 
exact result equivalency to NCBI BLAST use this freedom to 
restructure the algorithm to more efficiently map to hardware.  
Specifically there is previous work in restructuring the BLAST 
two-hit filter as a systolic array, where the query and database 
sequences are streamed into the FPGA alongside each other and 
compared with an array of parallel comparators [6].  This 
approach is notable in that it avoids the need for hash tables but 
must repeatedly read the query while scanning the database, 
requiring the FPGA to transact approximately twice as much 
data as compared to CAAD BLAST and achieving less 
performance. 

III. BACKGROUND 

As described in Section 1, NCBI BLASTP uses seeds as a 
method for identifying points of interest in both the query and 
database.  To build the seed set, BLAST builds an initial set of 
all n-character sequences (where n is normally 3 for BLASTP) 
whose score relative to itself (as determined by the given 
substitution table) exceeds a user-defined threshold value.  From 
each of the members of this initial set, BLAST adds any n-
character sequence whose score against it also exceeds the 
threshold. 

For protein BLAST (BLASTP), an HSP is comprised of a 
pair of seeds separated by up to 40-wildcard characters.  This 
type of pattern is represented as a regular expression such as 
ABC.{0,40}DEF, where ABC is the "prefix" seed and DEF is 
the "suffix" seed.  Note that one prefix instance in the query 
starting at one offset may initiate multiple HSP occurrences 
having corresponding suffixes at different offsets.  A query may 
contain several instances of this type of pattern.  In the worst 
case a query could contain up to 44 HSP patterns for every 
character starting with character offset 44. 

Using the default settings in NCBI BLAST of n = 3 over the 
24-character protein alphabet there are 246 = 191 million HSP 
permutations, of which 130  million are valid seeds under NCBI 
BLASTP's default threshold of 13 and commonly-used 
BLOSSUM62 substitution table.  Storing all the valid HSPs on 
chip is impractical using three-character so we reduce the seed 

size to two, e.g. AB,{0,40}DE and make a corresponding 
adjustment to the threshold, making it 11.  This gives 244 = 331K 
HSP permutations, of which 179K are valid under the conditions 
previously described. 

IV. APPROACH 

A. Database Preprocessing 

Figure 1 shows a top-level view of our approach.  During the 
preprocessing phase, a software tool generates three tables from 
a given database and associated substitution matrix and 
threshold.  These tables are the suffix table, table of contents, and 
the HSP Index Table. 

1) Suffix Table 
The suffix table is of a fixed size of 242 x 242 = 576 x 576 

bits, which we round to 1024 x 1024 = 1 Mb for mapping to 
BRAM, and is intended for on chip storage.  It is addressed using 
the 10-bit prefix hash, computed by subtracting 65 and masking 
off the lower 5 bits of both ASCII characters of the prefix, and 
then concatenating the resulting values.  Each row of the suffix 
table is a 1024-bit bit vector where bit n represents the validity 
of the corresponding suffix, where n is the hash of the suffix 
(computed using the same method as the prefix).  The hardware 
uses the suffix table to identify valid HSPs in the query. 

2) HSP Index Table 
The preprocessing step scans the database and identifies 

each occurrence of each valid HSP having a total length in the 
range of [4,44] and having a minimum total self-score value of 
்௡

ଶ
, where T is the seed threshold and n is the match length.  The 

preprocessing tool stores the corresponding database index and 
offset of each of these occurrences into the HSP Index Table.  
Each HSP may have multiple hits, and may hit across multiple 
records.  

We generated HSP Index Tables for subsets of widely-cited 
biological protein databases of various sizes (NR [7] and Uniref 
[8]).  Our results show that the resulting HSP Index Table is 
approximately 10X the size of the input database, irrespective of 
the database contents. 

 
Fig. 1. Overall approach.  The database is preprocessed to produce the HSP Suffix Table, Table of Contents, and HSP Index Table.  The design filters queries 

through these three tables to produce a set of potential database matches.  Each of these are aligned in the traditional way, but the execution time of 
BLAST is dominated by the first two filter stages implemented by these tables. 



3) Table of Contents 
The table of contents is indexed HSP and length, i.e. 20-bit 

HSP (10 bits for both the prefix and suffix) and its corresponding 
length.  Each entry in the table of contents is either null (if the 
HSP and length do not appear in the database) or points to an 
offset and length in the HSP Index Table.  There are 244 HSP 
permutations and 40 possible lengths, giving 244 x 40 = 13 
million entries in the table.  Each entry provides the 
corresponding 8-byte offset and 4-byte length to the 
corresponding section in the HSP Index Table, giving a total size 
of 128 MB. 

B. Runtime Behavior 

Figure 1 depicts the runtime behavior.  For each query, the 
design generates a set of query HSP hits, comprised of a four-
character prefix-suffix pair and length.  If the corresponding 
value stored in the table of contents is non-null, the design 
returns the contents of the table of contents to the host CPU, 
which will access the HSP Index Table and perform subsequent 
filtering steps. 

C. Initial Query Processor Design 

In our previous work we described our initial design for the 
query processor, a streaming architecture that converts each 
query into a set of HSP hits.  We designed this version in HDL 
but it only generated hits from the suffix table and was not able 
to access the table of contents due to the a relatively complex 
dependency chain of table accesses.  Our new design, described 
in C for Vivado HLS, has pipeline stages for accessing the suffix 
table, table of contents, and output arrays.  The pipeline’s data 
introduction interval (II) is matched to the DRAM bandwidth. 

The operation of the query processor relative to the query 
string is shown in Figure 2.  The query processor contains one 
HSP Suffix Table and 44 pipelined processing elements (PEs).  
PE p can detect all HSPs whose prefix begins with query 
character c, where c mod 44 = p.  The query processor contains 

a sufficient number of PEs such that there is one PE to track all 
HSPs starting with any character in the query. 

Whenever a PE begins tracking HSPs at a particular offset, 
it latches the most recently-received pair of input characters as a 
prefix candidate, latches that prefix's corresponding set of valid 
suffixes as a 1024-wide suffix bitvector (stored as sixteen 64-bit 
words in C), and then activates a counter. 

The PE treats each subsequent two-character sequence as a 
potential 10-bit suffix hash.  It decodes each of these into a 1024-
wide bitvector and computes its bitwise-AND with the suffix 
bitvector.  Any one-bits in this result indicates a query HSP hit.  
The PE encodes this result to compute the matching suffix value.  
Another counter tracks the offset into the query, allowing both 
counters provide the offset and length for each detected HSP. 

D. Theoretical Performance Impact 

In previous work we reported the results shown in Figure 3, 
which extrapolates the potential performance improvement of 

 
Fig. 3. End-to-end speedup of NCBI BLAST as a function of 

database size, using 20 randomly selected queries from the 
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Fig. 2:  Operation of query processor. 



this approach by measuring the reduction in total I/O during the 
HSP finder stage as compared to NCBI BLAST while also 
considering the relative amount of execution time spent finding 
HSPs as compared to the other portions of the code. 

V. QUERY PROCESSOR DESIGN 

This paper describes our new query processor design, which 
is implemented as a systolic array using Vivado HLS 2016.1. 

A. Query Processing Algorithm 

Algorithm 1 shows a sketch of the algorithm for detecting 
HSPs in the query.  It also closely resembles the initial code 
before optimization. 

The outermost loop (line 2) iterates once for each query 
character.  The loop body begins by considering each symbol 
and its predecessor as a potential suffix (line 3).  The inner loop 
(line 4) iterates once per processing element.  For each that is 
actively tracking an HSP (line 5), check to see if its maximum 
length is exceeded (line 6) and if so, deactivate it (line 7).  
Otherwise, if the bitwise-AND of the decoded form of the suffix 
(conversion from 10-bit binary to 1024-bit unary) is non-zero, 
the length greater than three, and there is an entry in the ToC 
corresponding the resultant HSP and length, then output the HSP 
(lines 8-11).  To output an HSP, set the entries in output arrays 
for its length, query offset, HSP Index Table offset, and HSP 
Index Table length (lines 12-17).  If the PE is not active and the 
current symbol has not been considered as a potential suffix, 
then allocate a new PE (lines 19-22). 

The runtime operation of the code is illustrated in Figure 2.  
Each of the 44 PEs identifies all valid HSPs within each 
consecutive block of 44 query characters, with each PE's block 
offset from the next PE by one character.  Each PE may identify 
multiple suffixes corresponding to its latched prefix within a 
single 44-character span. 

B. Design Considerations 

Seven arrays (the query, two arrays that form the table of 
contents, and the five output arrays) are allocated in off-chip 
DRAM with shared access with the host CPU.  The host CPU 
performs the back end of the BLAST algorithm using the query 
HSP hits and their corresponding addresses in the HSP Index 
File as inputs.  The host is responsible for retrieving the query 
HSP hits from the HSP Index Table and performing the 
extension and Smith-Waterman phases. 

We associate an AXI master interface with each of the seven 
input and output arrays.  These ports share access to the device's 
DRAM controller through an AXI crossbar to the FPGA's 
DRAM controller.  The generated pipeline schedules a cycle for 
each access to each AXI master port, though the pipeline will 
only perform the read and write accesses when needed.  For 
example, the code reads arrays ToC.offsets and ToC.lengths on 
lines 10, 14, and 16, but the latter two are accessed only on an 
HSP hit.  Likewise, the pipeline schedules accesses to the output 
arrays hspslength, offsetsquery, offsetsindex, and lengthsindex on lines 
12, 13, 14, and 16 but it only performs the writes on an HSP hit.  
This way, the required memory bandwidth depends on the 
frequency of HSP hits.  Lower hit frequency will reduce 
contention for the DRAM controller and minimize pipeline 
stalls. 

ALGORITHM 1:  Query HSP Search 

Inputs: query (array of 8-bit characters), 

 lengthquery (scalar), 

 ToC.offsets (array of 64-bit values), 

 ToC.lengths (array of 32-bit values) 

Outputs: offsetsquery (array of 8-bit values), 

 hspslength (array of 8-bit values), 

 offsetsindex (array of 64-bit values), 

 lengthsindex (array of 32-bit values) 

Internal State: 

 suffix_table (1024x1024 bit table) 

 PE.active (bit vector; execution state of PEs) 

 PE.suffixes (array of 44 1024-bit vectors) 

 PE.offset (array of 44 16-bit values) 

 PE.prefixes (array of 44 16-bit values) 

 current_symbol_initiate (flags current prefix) 

 suffix (current suffix candidate) 

1 
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PEactive0..numPEs := {0,0,...,0} 

for i in 1 to lengthquery loop 

 suffix := concat(query[i-1],query[i]) 

 for j in 0 to numPEs – 1 loop 

  if PE.active[j] then 

   if (i – PE.offset[j]) > 44 then 

    PE.active[j] := false 

   else if (decode(suffix) & PE.suffixes[j]) and 

     ((i – PE.offset[j]) > 3) and 

     ToC.offsets[concat(PE.prefix[j],suffix) x 

     (i – PE.offset[j])] != null then 

     hspslength [i*44+j] := i – PE,offset[j] 

     offsetsquery[i*44+j] := PE.offset[j] 

     offsetsindex[i*44+j] := ToC.offsets 

      [concat(PE.prefix[j],suffix) * length] 

     lengthsindex[i*44+j] := ToC.lengths 

      [concat(PE.prefix[j],suffix) * length] 

  else 

   PE.active[j] := true 

   PE.offset[j] := i - 1 

   PE.prefix[j] := concat(query[i-1],query[i]) 

   PE.suffixes[j] := suffix_table[PE.prefix[j]] 

Each iteration of the inner loop schedules reads of 16 bytes 
(rounded up to the nearest multiple of 4):  one byte from query, 
8 bytes from ToC.offsets, and 4 bytes from ToC.lengths. 

Each iteration of the outer loop writes 20 bytes (rounded up 
to the nearest multiple of 4):  2 bytes to offsetsquery, one byte to 
hspslength, 8 bytes to offsetsindex, and 4 bytes to lengthsindex. 



Achieving a throughput of one cycle per inner loop iteration 
requires in the worst case 36 bytes of memory access per cycle, 
or 10.8 GB/s at 300 MHz. 

We allocate all the internal arrays on BRAM.  The suffix 
array is a ROM, initialized from our database formatting tool. 

C. Code Optimizations 

Our initial implementation was a literal translation of 
Algorithm 1 to C code.  In order to provide additional flexibility 
for the scheduler we completely unrolled the inner loop and 
instructed the compiler to pipeline the i-loop with minimal 
iteration interval (II).  Our objective is to achieve an iteration 
interval equal to 44, the number of PEs required to identify the 
maximum number of HSPs per query character. 

Our first optimization was to use a variable to register the 
value of query[i-1] in order to avoid the need for an additional 
access to the query array. 

Our second optimization was to manually convert all the 
internal arrays into scalar variables in order to encourage the 
compiler to map as many arrays as possible to LUTs. 

Our third optimization was to transform the code for 
decoding the suffix value and matching its decoded value 
against the corresponding bit in PE's suffix table row (line 8 in 
Algorithm 1) by eliminating all control structures such as if-
statements and for-loops.  We store the 1024-bit suffix bit vector 
as sixteen 64-bit variables, each corresponding to a group of 64 
consecutive bits in the 1024-bit value.  For each decoded suffix 
value we calculate its corresponding bit position within its 
surrounding group of 64 consecutive bits by masking off the 
low-order 6 bits of the suffix value: 

௠௢ௗ଺ସݔ݂݂݅ݑݏ ൌ  ܨ3ݔ0	&	ݔ݂݂݅ݑݏ

With this, we calculate an intermediate value masks by 
isolating the bit position calculated above and repositioning it 
into a new position corresponding to its group number: 

ݏ݇ݏܽ݉ ൌራ ሺܲܧ. ሾ݅ሿݏ݁ݔ݂݂݅ݑݏ ≫ 64ሻ݀݋݉_ݔ݂݂݅ݑݏ ≪ ݅
ଵହ

௜ୀ଴
 

We calculate the group number by dividing the suffix by 64: 

ௗ௜௩଺ସݔ݂݂݅ݑݏ ൌ ݔ݂݂݅ݑݏ ≫ 6 

We then mask off the group number against its 
corresponding bit position in masks: 

௠௔௧௖௛ݔ݂݂݅ݑݏ ൌ ݏ݇ݏܽ݉ ≫  .ௗ௜௩଺ସ&1ݔ݂݂݅ݑݏ

D. Scalability 

Table I shows the resource requirements as the query 
processor is scaled from 12 to 44 processing elements (note that 
the design requires 44 processing elements for correct 
operation).  The LUT and DSP requirements scale linearly, with 
approximately 5,000 LUTs and one DSP required for each PE.  
The number of BRAMs is constant irrespective of the number 
of PEs. 

Table II shows the pipeline performance as the number of 
PEs is scaled from 12 to 44.  In each case the compiler achieves 
the minimum II—equal to the number of PES—as constrained 
by the number of AXI master interfaces (since each additional 

PE requires an additional access to the ToC).  The pipeline depth 
increases by one cycle for each PE.  The clock rate is consistent 
at 369 MHz for each scale.  We calculate the pipeline throughput 
as clock rate / II.  At 44 PEs we achieve a throughput of 5.1 
million query characters per second. 

TABLE I:  RESOURCE USAGE OF SYNTHESIZED PIPELINES ON VIRTEX-7 AS 
REPORTED BY VIVADO HLS 2016.1 

# PEs LUTs DSPs BRAMs 
12 59349 14 50 
16 78990 18 50 
20 98655 22 50 
24 117989 26 50 
28 137654 30 50 
32 157276 34 50 
36 176948 38 50 
40 196258 42 50 
44 216002 46 50 

TABLE II:  STATIC PERFORMANCE RESULTS OF QUERY PROCESSOR PIPELINE ON 
VIRTEX-7 AS REPORTED BY VIVADO HLS 2016.1 

# PEs II 
Pipeline 
Depth 

Clock 
rate 

(MHz) 
Throughput 
(Mchars/s) 

12 12 40 369 9.2 
16 16 44 369 8.4 
20 20 48 369 7.7 
24 24 52 369 7.1 
28 28 56 369 6.6 
32 32 60 369 6.2 
36 36 64 369 5.8 
40 40 68 369 5.4 
44 44 72 369 5.1 

E. DRAM Memory Latency 

Vivado HLS assumes a default read latency of five cycles 
for all top-level input arrays mapped to an AXI master interface.  
Of these, four cycles are associated with the AXI master 
interface and one additional cycle for the ap_bus interface.  
Vivado HLS makes this assumption even when the port is used 
to access an off-chip DRAM having potentially higher latency.  
If the DRAM latency is greater than the latency assumption in 
the generated design, the pipeline will stall on every access, 
increasing the effective II value reported by the compiler and 
reducing expected query throughput. 

Since DRAM latency varies with the specific type of DRAM 
on the target platform, we use Vivado HLS's ap_bus latency 
directive to explicitly set the read latency of the modeled DRAM 
and sweep it in order to evaluate its impact on the resource usage 
and throughput of the generated design. 

Table III shows the results of this analysis.  The first column 
shows the latency setting for the ap_bus (does not include the 
additional four cycles for the AXI master interface).  Even when 
setting the DRAM latency as high as 30 cycles, Vivado HLS is 
able to maintain an II of 44 and a clock rate of 369 MHz while 
only increasing the pipeline latency.  By deepening the pipeline 



in this way we avoid the potential for lost throughput from 
DRAM latency. 

TABLE III:  RESOURCE USAGE OF SYNTHESIZED PIPELINES ON VIRTEX-7 AS 
REPORTED BY VIVADO HLS 2016.1 

DRAM 
Latency 
(cycles) II 

Pipeline 
Depth 

Clock 
rate 

(MHz) 
5 44 80 369 

10 44 90 369 
15 44 100 369 
20 44 110 369 
25 44 120 369 
30 44 130 369 

F. Comparison with CPU 

Using OpenMP we developed a multithreaded version of 
query processor for software execution.  For this we used the 
same code as with Vivado HLS including the corresponding 
code optimizations.  The decoder implementation in particular 
will reduce the number of branch instructions as compared to the 
original unoptimized version. 

To parallelize with OpenMP we made further adjustments to 
the code.  The outer for-loop, which iterates over each query 
character, is made a parallel region and all its variables are made 
private.  Within the loop, the code block for each processing 
element is prefaced with the following if condition that 
effectively distributes the pool of PEs across the threads: 

if (PE_number mod thread_count) == thread_number then 

When running the software implementation we initialize the 
ToC.offsets array to zero, which prevents the software from ever 
writing any of the output arrays.  This makes the software 
behavior deterministic and provides an upper bound for the 
throughput.  In a separate run we initialize the ToC such that all 
query HSPs are reported in the output arrays.  This gives us a 
lower bound on throughput. 

TABLE IV:  NUM_THREADS VS PERFORMANCE FOR SOFTWARE 
IMPLEMENTATION  

 Upper bound Lower bound  

Threads 

Time/ 
char 
(ns) 

Thrp't. 
(Mc/s) 

Time/ 
char 
(ns) 

Thrp't.
(Mc/s) 

Ave. 
Thrp’t 

1 115 8.7 421 2.4 5.6 
2 87 11.5 256 3.9 7.7 
3 120 8.3 219 4.6 6.5 
4 143 7.0 219 4.6 5.8 
5 164 6.1 273 3.7 4.9 
6 200 5.0 277 3.6 4.3 
7 215 4.7 298 3.4 4.1 
8 237 4.2 320 3.1 3.7 

We ran each test on a 3.50 GHz four-core (eight logical core) 
Intel i5-4690K.  Since the CPU applies constant frequency 
scaling according to load, our execution times are averaged over 
5,000 runs using 100K character queries. 

Our results are listed in Table IV.  The best performance is 
with two threads, achieving between 3.9 and 11.5 million 
characters per second in the best and worst case.  This is 
compared to our FPGA implementation which achieves a 
consistent performance of 5.1 million characters per second after 
the pipeline is filled. 

The software performs best with two threads, which 
indicates that the performance is driven more by memory 
performance than computational resources.  The FPGA 
performance falls between the upper and lower bounds of the 
two-thread case and always outperforms the lower bound. 

The FPGA suffers from three disadvantages as compared to 
the CPU:  (1) the FPGA has less than half the peak DRAM 
bandwidth, (2) despite having random access, the 128 MB size 
of the table of contents is sufficiently small to potentially benefit 
from the CPU’s 6 MB L3 cache, and (3) as previously described 
the FPGA pipeline schedule always allocates time for the worst 
case memory behavior. 

VI. CONCLUSIONS 

In earlier work we developed a new NCBI BLASTP-
compatible database search algorithm optimized for throughput 
on an FPGA-based coprocessor.  This paper builds on this work 
by describing the design of the query processor using the Vivado 
high-level synthesis compiler.  By using the HLS compiler we 
are able to implement pipelined, indirect referencing through 
multiple off-chip arrays.  Specifically the design reads query 
data, tracks character patterns, uses the resultant patterns to 
address another off-chip array, and write its contents to off-chip 
output arrays.  Our design achieves a throughput consistent with 
the memory bandwidth constraints, reaching a final throughput 
of 5.1 million query characters per second.  In future work we 
will add downstream processing in our FPGA design. 
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