J Supercomput (2013) 66:94-117
DOI 10.1007/s11227-013-0887-x

Accelerating frequent itemset mining on graphics
processing units

Fan Zhang - Yan Zhang - Jason D. Bakos

Published online: 2 February 2013
© Springer Science+Business Media New York 2013

Abstract In this paper we describe a new parallel Frequent Itemset Mining algorithm
called “Frontier Expansion.” This implementation is optimized to achieve high per-
formance on a heterogeneous platform consisting of a shared memory multiproces-
sor and multiple Graphics Processing Unit (GPU) coprocessors. Frontier Expansion
is an improved data-parallel algorithm derived from the Equivalent Class Clustering
(Eclat) method, in which a partial breadth-first search is utilized to exploit maxi-
mum parallelism while being constrained by the available memory capacity. In our
approach, the vertical transaction lists are represented using a “bitset” representa-
tion and operated using wide bitwise operations across multiple threads on a GPU.
We evaluate our approach using four NVIDIA Tesla GPUs and observed a 6-30x
speedup relative to state-of-the-art sequential Eclat and FPGrowth implementations
executed on a multicore CPU.

Keywords Association rule mining - Frequent itemset mining - CUDA GPU
computing - Parallel computing

1 Introduction

The goal of Frequent Itemset Mining (FIM) is to find frequently appearing subsets
within a database of sets. Many scientific and industrial applications, including those
in machine learning, computational biology, intrusion detection, web log mining, and
e-business benefit from the use of frequent itemset mining. Much of the literature in
frequent itemset mining emphasizes the development of algorithmic improvements

F. Zhang - Y. Zhang - J.D. Bakos ()
University of South Carolina, Columbia, USA
e-mail: jbakos@cse.sc.edu

F. Zhang
e-mail: zhangf@email.sc.edu

@ Springer

mailto:jbakos@cse.sc.edu
mailto:zhangf@email.sc.edu

Accelerating frequent itemset mining on graphics processing units 95

as opposed to parallelizing existing algorithms. As such, state-of-the-art FIM imple-
mentations are generally single-threaded and there is relatively little effort devoted to
mapping these algorithms to high-performance platforms.

The objective of FIM is to analyze a database of itemsets and identify all item
subsets that appear more frequently than a given, user-specified threshold. A naive,
purely combinatorial solution to this problem is to generate all possible itemsets,
cross-referencing each to the database to determine its occurrence frequency. This
technique is generally not practical, which has motivated the development of more
efficient algorithms. Perhaps the three oldest and best-known of these are Apriori,
Eclat, and FPgrowth [2, 14, 24].

Apriori uses a method where it incrementally generates candidate subsets of in-
creasing size in a breadth-first search (BFS) order. Since support counting for each
candidates of the tree is independent, Apriori can be easily parallelized by parallel
computation of each branch. However, this results in extremely high memory usage
and slow support counting, making it impractical for processing large datasets. Eclat,
on the other hand, also uses a candidate generation strategy but uses a depth-first
(DFS) order which lowers its memory requirement but makes it impossible to paral-
lelize.

Unlike Apriori and Eclat, FPGrowth does not rely on candidate generation, but in-
stead constructs an “FPtree” that contains all the information from the input database.
It then traverses this tree to infer the frequent itemsets. FPGrowth generally has better
performance than Apriori and Eclat but its high memory requirement prevents it from
being used on large datasets. Single-threaded performance comparisons show that
the FPGrowth is faster than Apriori and Eclat. However, in certain situations, such
as when the frequency threshold is high, Apriori will outperform FP-Growth [13].
On the other hand, Apriori and Eclat contain more easily exploitable task- and data-
level parallelization. As such, while FPGrowth may outperform Apriori and Eclat on
a single processor, Apriori and Eclat have more performance potential for multi- and
many-core platforms. Aside from Apriori, Eclat, and FPGrowth, lesser-known and
more exotic FIM algorithms have been proposed, such as MAFIA [9], k-DCI [20],
and AIM [12].

Another challenge inherent in improving FIM performance is that most FIM algo-
rithms scale poorly as the dataset density increases [21]. The dataset density is defined
by the average transaction size divided by the total number of unique items. Figure 1
shows how the running time and memory requirement of Eclat and FPGrowth in-
creases linearly with the size of dataset, and non-linearly with dataset density.

In this paper, we propose a new parallel FIM algorithm that is optimized for a
heterogeneous platforms consisting of GPUs and CPUs. In our approach, software
on the host CPU dynamically controls the search boundary and expansion rate on be-
half of the GPU kernel. This allows for efficient utilization of the computational and
memory resources of the GPU coprocessor. We have also redesigned and optimized
the memory allocation strategy and added a data preprocessing procedure to improve
the memory utilization of the algorithm. The experimental results demonstrate the
performance benefit of our technique as compared to traditional FPgrowth and Eclat.
We show that our algorithm is able to process large datasets with over 15 million
transaction records (average size 4G). In most of the cases it can achieve up to a 10x
speed up compared to state-of-the-art CPU implementations.

@ Springer

96 F. Zhang et al.

3000 3000
2500 2500 -
2000 2000 -
Z 1500 @ 1500 -
3
g g
= 1000 = 1000 -
500 500 -+
0 0-
0 500 1000 1500 2000 2500 3000 3500 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Transaction number (K) Density (Avg Trans Len/ltem Num)
—e— Eclat —e— Eclat
—-0— FPGrowth —-0— FPGrowth
2000 2000
1800 1800 -
1600 1600 -
o 1400 g
= 4
e 1200 s 1400
=3 =)]
§ 1000 g 1200
> 800 E. 1000 -
g 600 E 800 -
=
= 400 600
200
0 400 -
T 200
0 500 1000 1500 2000 2500 3000 3500 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Transaction Number (K) Density (Avg Trans Len/ltem Num)
—e—— Eclat —e— Eclat
—-o— FPGrowth — -0 — FPGrowth

Fig. 1 A performance overview of FPGrowth and Eclat on database size and density variation, both of
the algorithms perform badly on large and dense datasets

The key contributions of this work consist of the following: (1) the implementation
of a finely parallelized GPU kernel for calculating the support of itemset candidates
using the vertical bitvector representation, (2) a dynamic frontier expansion approach
that maps candidates to blocks of GPU threads while enforcing a tight bound on
memory usage, and (3) an approach for scaling to multiple GPUs.

2 Background

The Frequent Itemset Mining problem was first discovered and studied by Agrawal
in 1994 [2] and has since seen intense research. Agrawal’s group also developed the
Apriori algorithm, a method to generate large frequent candidates from iteratively
merging small frequent candidates.

Since its development, FIM methods have been improved by many research
groups. Arguably, three of the most important improvements include: (1) changing
the horizontal representation for transactions to a vertical representation, improving
speed often the cost of additional memory requirement [23], (2) use of the trie data
structure for candidate generation, which saves both time and space for joining can-
didates from previous generations and inserting new candidates [6], and (3) the Eclat

@ Springer

Accelerating frequent itemset mining on graphics processing units 97

method, which organizes frequent candidates in a lattice structure, utilizing both of
the previous two methods and improving performance for many types of dataset [24].

A state-of-the-art implementation of Apriori is Borgelt Apriori [8], which carries
out a BFS on the subset lattice and determines the support of itemsets using subset
tests. Borgelt Apriori saves candidates in a trie and scans the transaction database
to determine the support for each candidate after each generation. Borgelt also im-
plemented Eclat using the “diffset” representation, which is a space-efficient method
for representing candidates and transactions [7]. Experiments using datasets from
the Frequent Itemset Mining Data Repository show that Eclat generally outperforms
Apriori by an order of magnitude [5].

3 Related work

There has been recent interest in developing parallel algorithms for data mining tar-
geting a diverse set of platforms and programming models. Current literature suggests
that Apriori and Eclat have higher potential for parallelization than other methods
[1, 19, 24]. Various parallel implementations of the Apriori algorithm have been de-
veloped for both shared memory and message-passing programming models. Signifi-
cant sequential and parallel implementations of FIM algorithms are described below.

3.1 Sequential implementations

A well-known implementation of Apriori was developed by Bodon et al. [6]. Bodon
Apriori utilizes the trie structure to improve performance. A DFS implementation
of Apriori was developed by Walter et al. for the purpose of improving memory
efficiency [15].

Later, Borgelt developed the well-known and highly optimized implementations
of both trie-based Apriori and Eclat, as well as an FPGrowth implementation [7].
The Borgelt Eclat is capable of detecting dataset characteristics and automatically
choosing the best corresponding data representation (including Tidset, Diffset, Bit-
set, and Rangelist). Most importantly, the Borgelt FIM implementations are publicly
available and are regularly updated (the most up-to-date version of Borgelt Eclat and
FPGrowth is dated Dec 2010).

3.2 Shared-memory parallel implementations

Parthasarathy et al. developed a frequent itemset mining algorithm using an SMP
platform [18]. Their implementation used a hash tree to maintain the algorithm’s core
data. Their contribution was a load balancing method for subdividing the candidate
trie amongst a group of threads. To do this, they developed a method called “candi-
date bitonic hashing” and corresponding data structures called the “common candi-
date partitioned database (CCPD)” and the “partitioned candidate common database
(PCCD)”. Their experiments on synthetic datasets showed an 8 x speedup on 12 pro-
cessors. Liu et al. developed a parallel implementation of FPGrowth on multicore
processors. Their implementation focused on improving cache performance for data

@ Springer

98 F. Zhang et al.

exchange [16]. For this, they developed a cache-aware hash tree (CC-Tree) to re-
place the traditional FP-Tree. The resultant speedup of their implementation on eight
processors was up to 6x.

3.3 Message-passing parallel implementations

A recent work by Ye et al. demonstrated a parallel Apriori algorithm based on a re-
vised Bodon implementation that achieved a 2 x speedup with eight processors [22].
Pramudiono et al. parallelized FP-Growth on a cluster and concluded that the com-
plicated data structure of FPGrowth was a great obstacle for parallelization. Their
resultant scalability was relatively low [19]. Craus et al. developed an MPI-based
parallel Apriori algorithm that distributed the transactions among computing nodes
prior to the start and had a fixed communication pattern [10]. However, their work
focused on theoretical analysis and no real experimental results were collected. An-
other trie-based MPI implementation based on Bodon’s algorithm was developed by
Ansari et al. [3]. Their method generated the local data structure and synchronized
data across nodes after candidate generation. The experimental results were collected
using an eight node cluster connected with MPICH2 and they achieved a speedup of
up to 6. Aouad et al. introduced a parallel FIM algorithm on a cluster consisting of
a diverse set of CPU architectures [4]. Their main contribution was to develop a load
balancing strategy to manage nodes having different capabilities. The results showed
that their method was able to gain 10x overall speedup under low support threshold.

3.4 GPU-accelerated implementations

Fang et al. developed a GPU implementation of Apriori [11]. In this case, two ver-
sions of their GPU implementation, one based on the “pure bitmap” representation
and another based on the “trie-based bitmap” representation were described. In their
approach, the candidates and vertical transactions are coded into bitmaps and manip-
ulated on the GPU. They used an NVIDIA GeForce GTX 280 GPU to test their algo-
rithm. Their method achieved a speedup of 2x—10x as compared with a CPU-based
serial Apriori implementation, but they were unable to outperform a CPU-based serial
FPGrowth implementation.

Our previous work accelerated Apriori using a GPU and achieves up to 80x
speedup over Apriori running on a CPU, though is not competitive when put against
more advanced FIM algorithms such as Eclat and FPGrowth [25]. The objective of
the work described in this paper is to develop a GPU implementation of Eclat that is
competitive with the most advanced FIM algorithms.

4 Preliminaries

In this section, we introduce the basic concepts and algorithms in FIM. We begin by
defining the problem that FIM is designed to solve and then discuss basic concepts in
FIM algorithm design.

@ Springer

Accelerating frequent itemset mining on graphics processing units 99

Fig. 2 A FIM example Transactions Minimal Support Ratio=75%
1,2,3,4,5 100% support: {3}
3,46, 75% support: {3,4} {4}
5'2'27 50% support: {2} {6} 12,3} (3,7}
2 {3,6}{4,6} {3,4,6}

25% support: {1} ...

4.1 Problem statement

FIM can be defined as follows: Given a transaction database and a minimum support,
find all the item subsets with occurrence frequency higher than the given thresh-
old. Using a supermarket metaphor, items represent merchandise—individual items
for sale. A transaction (sometimes called a “basket”) represents a receipt—a combi-
nation of items that were purchased together. An itemset is a subset of the items
that frequently appear in the transaction database. An itemset of size k is called a
k-itemset. A FIM algorithm scans all the transactions and counts the appearance of
k-itemsets within the dataset. The support of itemset X, or support(X) is the number
of the transactions that contain itemset X. An itemset is frequent iff its support is
greater than a threshold value min_sup. The frequent itemset mining problem is to
find all itemsets with support larger than min_sup in a given transaction database D.
Sometimes it is more informative to represent the frequency of an itemset relative to
the size of the transactions database (percentage rather than an absolute number). In
this case, support ratio is used instead of support value.

Figure 2 demonstrates a FIM example with minimal support ratio 75 %. In the
figure, the itemset {3} appears in all the transactions and is identified by support ra-
tio 100 %, itemsets {3, 4} and {4} appear in the first, second and fourth transactions
(75 %). The other item sets from the dataset containing one through five items have
25 % support. All the itemsets with support ratio higher than or equal to 75 % com-
prise the output.

4.2 Current algorithms

A naive method of finding frequent itemsets would be to generate all the k, k € {1..N}
subsets of the universe of m items, count their support by scanning the database, and
output those meeting minimum support criterion. The naive method exhibits expo-
nential complexity, since it requires the computation of the power set of m items, i.e.
Y7 (%) =2"—1 and is impractical.

The earliest solution, as formulated by the Apriori algorithm, is based on the prop-
erty that an item set is frequent iff all its sub-itemsets are frequent (support mono-
tonicity). Using this property, the search space of frequent itemsets can be reduced
by joining iteratively from smaller itemsets to larger ones and pruning candidates
with infrequent subsets. The Apriori algorithm then went through a period of inten-
sive study after first being published. Improvements are made in both the two critical
steps of FIM, candidate generation and support counting.

Candidate generation is used to generate k + 1 candidates from k frequent itemsets.
Assume that the number of k itemsets are N, a complete join from the N itemsets
expands candidate set size by O(N?). The cost of the complete join operation can

@ Springer

100 F. Zhang et al.

Fig. 3 Comparison of Transactions(horizontal) ~ Vertical Transaction lists
horizontal representation (a) and Index | Tansactions Candidate | Tidset | Bitset
vertical representation of 1 12,345 (4) 124 | 1101
transactions (b) 2 3,4,6 (5) 1 1000
3 2,3,7 (2,3) 1,3 1010
4 3,4,6,7 Vertical list of tidset and bitset
Candidates: (4),(5),(2,3)
(a) (b)

be decreased by clustering itemsets using Equivalent Class Clustering (ECC), which
prevents the creation of redundant candidates in each new generation. A detailed
description of Equivalent Class Clustering can be found in the Eclat paper [24]. Ap-
plying ECC is able to reduce the quadratic time complexity to O (§N), in which § is
the expectation of the equivalent class size. The Eclat algorithm is also the first FIM
method to utilize Depth First Search order (DFS) candidate generation. DFS candi-
date generation reduces the memory requirement and is especially beneficial when a
vertical data representation for support counting is used.

It is studied in Agrawal’s work that a hybrid approach of BFS and DFS can be used
to accelerate FIM on multiprocessors [1] for the candidate generation is independent
on each branch of the tree. Their approach uses a “multiple candidate generation,
single support counting” strategy. We will show in the next section that our approach
uses an advanced “multiple candidate generation, multiple support counting” strategy
that further parallelized the support couting.

Support counting is executed after the new candidates are generated; it counts the
support value of the candidates, decides which of them are true frequent itemsets
and removes infrequent candidates. Two ways to represent transactions in support
counting are horizontal representation and vertical representation.

In the horizontal representation, each transaction ID is associated with a list of
item IDs. The vertical representation is a transposition of this, where each item ID
is associated with a list of transaction IDs. When using horizontal representation,
support counting is performed by matching each candidate itemset against the sorted
transaction database using a binary search (as used in Apriori). When using the ver-
tical transaction representation, the support of new candidates are computed by in-
tersecting the vertical list of the previous generation with the vertical list of the item
that has been added to form the new candidate. The vertical representation speeds up
support counting by saving the occurrence information for the counted candidates but
in the other hand consumes more memory.

Figure 3 shows the horizontal and vertical transaction representation. Figure 3(a)
shows the horizontal representation and Fig. 3(b) shows two forms of the correspond-
ing vertical transaction lists: tidset and bitset. A tidset records itemset’s occurrence
information as an array of the transaction IDs, and a bitset represents the same infor-
mation with a bit mask.

5 Algorithm and implementation

In this section, we describe the Frontier Expansion algorithm, which has two primary
objectives. The first objective is to finely parallelize Eclat’s computational kernel for

@ Springer

Accelerating frequent itemset mining on graphics processing units 101

GPU acceleration. The second objective is to achieve a dynamic tradeoff between
performance and memory requirement, allowing for a large dataset to be processed
with limited memory.

The candidates are stored in the data structure called “Frontier Stack” maintained
by the host (CPU). Each stack entry stores one candidate and a reference to its bit-
set vertical transaction list on GPU. The algorithm repeatedly expands the stack by
consuming old candidates, generating new candidates, and deleting the infrequent
candidates from the stack. The new candidates are generated by intersecting the old
candidates with the common prefix on the top of the stack (this is also known as Tail
Recursion). The frequency of the new candidates are computed by intersecting the
bitset vertical transaction lists (support counting) on GPU.

During the frontier expansion procedure, vertical lists are frequently generated
and discarded, calling for a large number of CUDA memory allocations and de-
allocations. To reduce the overhead of frequently invoking cudaMalloc, we devel-
oped a host-based runtime vertical list manager. It allocates space for the maximum
number of vertical lists from GPU and stores the free list addresses in a stack. When
the program needs a free vertical list, it pops and returns an address stored. When a
vertical list is deallocated by the program, the manager revokes its address.

The vertical list manager uses a greedy strategy. It allocates the largest possible
contiguous block of free memory on the GPU in order to process datasets as large
as possible. More specifically, it determines the maximum GPU memory allocation
size using a binary trial-and-error search approach. Once it determines the maximum
memory pool, this value can be used to constrain the size of the dynamic frontier to
place an upper bound on the GPU’s memory usage.

5.1 Data preprocessing

Data Preprocessing is executed before the frontier stack is initialized. It takes three
steps to preprocess the dataset for the purpose of reducing memory usage.

(1) Transactions, originally stored in horizontal format, are read from disk and con-
verted to vertical format, using the (item, bitvector) representation.

(2) Because infrequent items will not appear in any frequent itemset, they can safely
be removed from the dataset without altering the FIM results. In the second step,
the frequency of each item is counted and the infrequent items and their corre-
sponding vertical lists are deleted from the vertical list.

(3) The remaining items will be sorted by frequency from low to high and remapped
to build a better balanced expansion search space.

Figure 4 shows an example of the steps in data preprocessing. After the prepro-
cessing, the frontier stack is initialized by the frequent 1-item sets.

5.2 CPU candidate generation
In order to demonstrate the frontier expansion procedure, we introduce the concept
of “Equivalent Class”, which can be defined by a set of candidates with the same

size, assumed k, shared the common k — 1 prefix. For example, (1, 2, 3), (1, 2,4) and

@ Springer

102 F. Zhang et al.

Fig. 4 The transition steps in Convert dataset

data preprocessing to hash tabl
o hash table

1,2,3,4,5

3,4,6

2,3,7 Stepl)
3,4,6,7

(a)

1000 | 25%
1010 | 50%
1111 | 100%
75%
1000 | 25%
0101 | 50%
0011 | 50%

N | WwW(N(-
=
[
o
=

Remove

infrequent items

311101 [75% Step3 |[3] 1111 [100%
(d) ()

Remap item ID
by frequency

(1,2,5) are in the same equivalent class (1,2, —). (1,2,3) and (1, 3,4) are not in
the same equivalent class because they have the different 2-prefix (1,2) and (1, 3).
(1,2,3,4) and (1, 2, 3) are not in the same Equivalent Class because they have dif-
ferent size. All 1-item sets are in the same equivalent class.

The frontier stack is organized by grouping candidates into equivalent classes. The
initial contents of the stack are 1-itemset, and these are all in the same equivalence
class by definition. During the expansion, Equivalent classes are popped from the top
of the stack and self-joined to generate new equivalent classes (the set of the new
candidates). The support for each of these new candidates are then counted by GPU
kernel. Those that meet the minimum support standard are pushed back into the stack.
During the pushing-back and popping-out, the candidates in the stack are always or-
ganized in group of equivalent class and sorted descendently by their support values.
The expansion procedure is repeated until the stack is empty. During each candidate
generation, we keep popping equivalent classes from the stack and generate new can-
didates until the size of the new candidate list is larger than €. We choose the value
of ¢ equals the maximum parallelizable blocks number on the GPU.

Figure 5 shows an intermediate status of the frontier stack during the candidate
generation of solving the FIM problem whose transaction database is given by Fig. 2
and the minimum support ratio equals 25 %.

In the pseudo code shown in Fig. 6, the if-statement returns false if the
frontier_stack is empty (line 1 and 2). The while loop pops and generates new
nodes(candidates) until expansion_size exceeds ¢ (line 6 to 8). The support of the
new nodes will be counted on the GPUs by vertical list intersection (line 9). Infre-
quent nodes will be removed from the list and the frequent ones are pushed back to
the stack (line 10 to 12). The loop continues until the stack is empty.

If the search space of frontier expansion is organized in a prefix tree, the expansion
procedure can be modeled by tree-traversal—if the expansion strategy is pop-one-at-
a-time, it is a depth first search. If the strategy is pop-all-at-a-time, it is breath first
search. On a parallel computation architecture such as a multicore CPU or GPU, the
breadth first search can process more candidates in the support counting phase and

@ Springer

Accelerating frequent itemset mining on graphics processing units 103

Equivalent Class: 1,2,- Equivalent Class: 1,3,-
A A
r A r N
123 124 125 134 135
Top of the 25% 25% 25% 25% 25%
Stack
> >y N e
1234 1235 1245 1345
unknown| | unknown| [unknown| unknown
Support Counting
1234 1235 1245 1345
Topofthe | 25% 25% 25% 25% Push Back
Stack
Equivalent Class: Equivalent Class: 1,3,4,-
12,3~

Fig. 5 An example of Frontier Expansion with ¢ =4

Fig. 6 Pseudo code of Frontier

. Algorithm: Frontier Expansion
Expansion

Input: frontier_stack, €, min_sup, frequent_itemset
1. if frontier_stack is empty
2 return false
3. expansion_size=0
4. frequent_itemset=0
5. while expansion_size < €
6 pop equivalent class s_eqv from stack
7 t_eqv=expand(s_eqv)
8 expansion_size=expansion_size+size(t_eqv)
9 support_counting(t_eqv)
10. remove infrequent nodes from t_eqv
11. addt_eqvto frequent_itemset
12. push t_eqv to frontier_stack
13. return true

can potentially benefit more from the data parallelism but the trade off is that the
expansion requires a larger memory space. In the other hand, the expansion size (in
our algorithm ¢) can be chosen based on the parallelism capacity (on the GPU it is
the maximum block number), to guarantee the maximum speed up with the minimal
memory usage.

Figure 7 illustrates the advantage of Frontier Expansion compared with the breadth
first search and depth first search. In the figure, each node is marked with the loop
iteration in which each candidate is generated in the corresponding method. In other
words, the edges of the tree show the loop dependencies. The numbers associated
with each candidate show the size of the candidate set generated by each iteration,
which determines the memory requirement of that iteration. As such, when dispatch-

@ Springer

104 F. Zhang et al.

Fig. 7 Demonstration of the search tree of depth first search (a), breadth first search (b) and Frontier
Expansion (c), assume that only two nodes can be processed concurrently. In this example the Frontier
Expansion algorithm guarantees the maximum parallelism while keeping an efficient memory usage

ing a workload to a pool of processors, the set size determines the level of concur-
rency and thus the amount of exploitable parallelism.

Figure 7(a) demonstrates the depth first search method, it both minimizes the
memory usage and parallelism. Figure 7(b) is breadth first search, which maximizes
both memory usage and degree of parallelism. Figure 7(c) shows our scheduling strat-
egy. The expansion size is adjusted according to the computation capacity of GPU
devices to guarantee minimum memory usage under the maximum parallelism avail-
able of the GPUs.

Ideally, the size of each set of candidates sharing the same number will equal the
number of processors while not exceeding the amount of available memory. Since
the number of processors on a platform is limited, breadth first search is inefficient
because it generates more candidates that can be processed in parallel and consumes
more memory than required, while depth first search has no exploitable parallelism.

In other words, an optimal expansion factor ¢ is correlated with both the maxi-
mum parallelism available from GPU (maximum node number that can be processed
simultaneously) and the size of GPU memory. Choosing a small ¢ does not fully
utilize the CUDA computation units and choosing a large ¢ does not provide more
parallelism but could cause memory exhaustion. A carefully selected & from our ex-
periments is the number of CUDA cores on Tesla T10 card which is the minimum

@ Springer

Accelerating frequent itemset mining on graphics processing units 105

1 2 4 6 8 10 13 14 \11010101 01001100‘

HEAND,

1 2 3 4 5 6 8 10

AND

\11111101 01000000 \

1 2 4 5 6 8 10 ‘11010101 01000000 ‘

(a) Tidset intersection is uncoalesced (b) Bitset intersection is coalesced

Fig. 8 A comparison between tidset intersection and bitset intersection. Tidset intersection may cause
uncoalesced memory accesses on GPU. Bitset intersection is continuous in address and well coalesced

value to guarantee full parallelism on the GPU. This number is hardware dependent
and should be modified if the implementation is compiled and executed on other GPU
platforms.

5.3 GPU support counting

After candidate generation, the references of the vertical transaction lists of the can-
didates are passed to CUDA implemented GPU support counting kernel.

The CUDA thread structure consists of blocks and threads. In each thread, inher-
ited parameter blockldx and threadldx can be used for self-identification. 32 threads
within the same block (usually called warp) will be grouped on to the same SIMD
stream processor, each stream processor is assigned to a set of warps, only one warp
will be active at a time, and the stream multiprocessor rotates between warps [17].

Our GPU support counting kernel computes the vertical list intersection and sums
the support value for each candidate (computed as the population count after the
intersection). The GPU support counting kernel is passed a “work list” which is an
& x 3 array. The array is a set of triple of (src_vlistl, src_vlist2, dst_ vlist) and stores
the three operands for vertical list intersection (two source lists and one destination
list). GPU blocks read in the source vertical lists (src_vlistl, src_vlist2) indexed by
its block ID from the work list and execute an intersection operation. The intersection
results will be stored into the destination vertical list (dst_vlist).

The bitset representation is better suited for GPU-based support counting than the
tidset representation. As shown in Fig. 8, the tidset representation is compact but
performing intersection operations on tidsets is highly data dependent and difficult to
parallelize. On the other hand, the bitset representation is less data dependent. The
length of the bitset equals the number of the transaction in the database. Each “0” or
“1” represents whether the corresponding transaction contains the candidate or not.
Intersection of two bit-represented transaction lists can be performed by a “bitwise
and” operation between the two bitsets.

Figure 9 demonstrates how support counting is computed on the GPU. Each list
intersection will be computed by one block. Threads in the block will process in-

@ Springer

106 F. Zhang et al.

32 bits 32 bits 32 bits
A A A
4 ~N 4
0011010101.. 17011110 - 1700011 ..
0111100101.. 0111110 .. 1710010 ..
Thread 1: Thread 2: Thread 3:
Intersection Intersection Intersection
001101000 1. 0010100 - . 1700010 ..
FT !_7{7/)
Y \ \i Y
Parallel
summation < | 6 | | Y | | 3 | | 6 |
<]
reduction -t
\

\i
Eaflea
Block 1

Y

([22]

Fig. 9 Diagram of GPU support counting on one block

tersections of a word-length subset. The size of vertical lists are rounded to be the
multiple of 64 bytes to ensure coalesced memory reads.

The intersection results of each thread are stored in a 32-bit integer, and the num-
ber of “1” bits in the integer is counted by CUDA popcount function and stored in an
integer array sup[thread_num] in shared memory. The parallel summation reduction
algorithm [17] is used to add all the values in sup[thread_ num] recursively into its
first element sup[0]. The support number for the candidate is then written back to an
output buffer on GPU memory and transferred back to host memory.

We applied several code optimization techniques in the kernel implementation,
including: (1) work list preloading at the beginning of the kernel execution in which
addresses of the source and destination vertical lists are preloaded to shared memory
to prevent repeated global memory reads, (2) hot loop unrolling, and (3) determining
the optimal number of threads per block to be 256 using trial-and-error-based tuning.

5.4 Producer consumer model on multi-GPUs

In order to scale our method to a multi-GPU platform, we used a producer-consumer
model for splitting up the frontier stack into multithreads. The idea is that the equiv-
alent classes can be expanded separately. After the frontier stack is initialized, the
producer thread splits the stack into separate equivalent classes and stored them into
the producer buffer. The consumer threads reads and process one equivalent class a
time from the producer buffer.

Pseudo code of producer algorithm is shown in Fig. 10(a). The producer is as-
signed a single CPU thread and is created after transactions are loaded and the job

@ Springer

Accelerating frequent itemset mining on graphics processing units 107

Algorithm: Producer Algorithm: Consumer
Input: Transaction file Input: Job FIFO
Output: job FIFO Output: Frequent Item set result hash table
1. Read transactions from file 1. do
2. Data preprocessing 2 if thread is asleep
3. for each candidate s 3 Wait for wake up signal
4, if thread is sleeping 4 if job FIFO is empty
5. Wait until wake up signal 5. Set wake up period = 100ms
6. if job FIFO is not full 6. Sleep
7. Expand s to equivalent class ¢ 7 else
8. Push cin to the job FIFO 8 Read equivalent s from job FIFO
9. else 9. Frontier_Expansion(s, €, min_sup)
10. Set wake up timer, period=100ms 10. while(FIFO is empty and producer
11. Sleep thread has returned)
12. return 11. return
(a) producer (b) consumer

Fig. 10 Pseudo code of producer and consumer processes

FIFO is initialized. Once the producer thread starts, it scans and preprocesses the
transaction database using the method described in Sect. 5.2. The producer thread
generates and inserts equivalent classes into the job FIFO until it is blocked by re-
ceiving a FULL signal from the job FIFO controller. Once it occurs, it will be put
to sleep until awaken up by a timer (sent every 100 ms) or sent an EMPTY signal
from the job FIFO. The producer thread returns once all the equivalent classes are
generated and inserted into the job FIFO.

Figure 10(b) shows the pseudo code of consumer thread. The consumer threads
read one equivalent class a time from the job FIFO and execute frontier expansion.
After the data are read, the consumer threads search for an available GPU and invoke
the device. The vertical transaction lists of the nodes will be copied to GPU. The con-
sumer thread will keep reading data from the job FIFO until it receives the EMPTY
signal. Once the EMPTY signal is received, the consumer thread queries the status
of producer thread. When all the data has been processed the producer thread termi-
nates. The GPU memory and GPU device will be released right before the consumer
thread terminates.

The algorithm takes in four parameters, the input and output files, minimum sup-
port ratio (in percentage), and number of GPUs. If the GPU number argument is
greater than the actual number of available GPU devices, it will be ignored and re-
placed by the actual device number. The output contains frequent itemsets, the total
running time, and the time spent in support counting and candidate generation.

In general, most datasets will allow for full utilization of the GPU. However, there
are certain dataset characteristics that can lead to runtime inefficiency, such as unbal-
anced and small datasets. Unbalanced datasets may potentially cause long branches
in the search tree and adds data dependency to candidate generation. On the other
hand, the vertical transaction list generated from small datasets are short. When pro-
cessed by GPU support counting kernel, those short bitsets may not fully utilized the
concurrent threads in stream multiprocessor and result in low throughput.

@ Springer

108 F. Zhang et al.

Table 1 Synthetic dataset selection and characteristic

Name Trans# Avg Trans Len Density Item number

T40110D100 K 100 K

T40110D500 K 500 K

T40I10D1000 K 1000 K

T40I10D1500 K 1500 K 0 o1 300

T40110D2000 K 2000 K

T40110D2500 K 2500 K

T10I5D3000 K 10 0.03

T15110D3000 K 15 0.05

T20110D3000 K 20 0.06

T25110D3000 K 3000 K 25 0.08 300

T30I110D3000 K 30 0.1

T35110D3000 K 35 0.12

T40110D3000 K 40 0.13
0.1 400

T40110D3000 K 3000 K 40 0.08 500
0.07 600
0.05 700

6 Results and analysis

In this section, we describe the performance of Frontier Expansion algorithm, and the
analysis on the experimental results.

Our results are tested and collected on a Dell PowerEdge R710 server. The server
was connected to a Tesla S1070 GPU server with four Tesla T10 Processors. The
code was written in C++ and compiled with CUDA 4.0.

In this section when we use the term “GPU” to describe the device itself, which in
our case contains 30 “streaming multiprocessor” cores, with each of these containing
eight scalar cores, for a total of 240 GPU cores.

In our results we compare the performance of GPU Frontier Expansion with three
algorithms, Borgelt Eclat 3.35 (which includes the tidset and bitset implementation),
the original FPGrowth implemented by Goathal et al., and the proposed approach
CPU Frontier Expansion (where the support counting is implemented on CPU instead
of GPU).

The synthetic datasets are generated by IBM Market-Basket Synthetic Data Gen-
erator from Paolo Palmerini’s DCI website with minor changes to allow for compila-
tion with g++ 4.4 [5]. The real datasets we use are collected from UCI Data Mining
Repository. To make the datasets sufficiently large to demonstrate the speed up of
GPU Frontier Expansion, we use randomize mutation algorithm to over-sample three
of the most commonly used datasets: accident, connect and chess. The characteristics
of the datasets can be found in Table 1 and Table 2.

@ Springer

Accelerating frequent itemset mining on graphics processing units 109

Table 2 Real dataset selection

and characteristic Name Trans# Avg Trans Len Item number
Accident 3400 K 34 468
Chess 1598 K 44 75
Connect 1351 K 37 127

100

80
———

o=

i i_——x—'{“i———'
7

£
=]
[+%
[C]
2
=
£ S

60
A :
c
2 10 /-i g —F%——e 2
L 7 2

g / 5 z 40
I3 v Y o
/ E

< _O——O——o——o0——"° F 20

/O] E‘ I
s 5
e . o L | 0 B R
100K 500K 1000K 1500K 2000K 2500K 3000K 100K 500K 1000K 1500K 2000K 2500K 3000K
Transaction Number Transaction Number
—-— GPU Frontier Expansion to FPGrowth m— CPU time |

—-0— GPU Frontier Expansion to Eclat (bitset) == GPU time
—-v— GPU Frontier Expansion to Eclat (tidset) _
—-4—GPU Frontier Expansion to CPU Frontier Expansion

(a) (b)

Fig. 11 Performance comparison between Eclat, FPGrowth and Frontier Expansion with variation on
transaction number, the other parameter of the datasets are: Average transaction length is 40, unique item
number is 300, minimum support ratio is 1 %, GPU number = 1

In each of the experimental subsections we demonstrate the overall performance
and analysis of the CPU and GPU workload. We run each experiment five times,
plotting the arithmetic mean with error bars.

The CPU-GPU workload analysis shows the computation workloads distribution
along X coordinate. The whole computation is comprised of three parts: initialization
(on CPU and GPU), candidate generation (on CPU), and support counting (on GPU).
We do not show the initialization part because in our approach we initialize the GPU
memory with the input dataset and this data remains in the GPU memory through-
out the entire execution. The resultant communication time is trivial. For example, a
typical dataset size is 500 MB requires approximately 300 ms to transfer to the GPU,
while typical execution times are on the order of minutes or (more commonly) hours,
and sometimes even days. We do not show the synchronization overhead because it
is also trivial due to the producer—consumer model used.

6.1 Performance on synthetic datasets

Figure 11 demonstrates the performance results with respect to the number of trans-
actions in the dataset. To obtain a clear understanding on how Frontier Expansion is
affected by database size, we fix the other parameters of the dataset generator to be
the following: (1) average transaction length = 40, (2) unique item number = 300.
The minimum support is set to 1 % and GPU number is set to 1. As shown, Frontier

@ Springer

110 F. Zhang et al.

100 ;;— 100
=1
o~)
T 80
N P
- ——
5 NN 3
~
T - _ = w 5 B0
E = b AN g
B \ TSI E
2 o L_ —oe i Z 40
« o~ \ ~g—_ o
\ T E
=
1 \\ > 20
‘ g ol .
200 300 400 500 600 700 800 300 400 500 600 700
Item Number Item Number
—-e— GPU Frontier Expansion to FPGrowth w— CPU time
—-0— GPU Frontier Expansion to Eclat (bitset) === GPU time
—-v— GPU Frontier Expansion to Eclat (tidset)
—-4—GPU Frontier Expansion to CPU Frontier Expansion
(a) (b)

Fig. 12 Performance comparison between Eclat, FPGrowth and Frontier Expansion with variation on
item number. The other parameters are set to: Transaction Number = 3000 K, minimum support ratio is
1 %, GPU number = 1

100 ;:g 100
>
o
A T, 2 80 -
~ZF =
° /ﬁ’ a
= e o
5 10 A S 60
[Xy =1
s d Y B
3 sy @
g /;# o —O—— O 2 40
n =&
=/ -5 2 |
?ég// =
1 o 20
. ptd 2
- u
T T T T T T @] .
5 10 156 20 25 30 35 40 45 10 15 20 25 30 35 40
Average Transaction Size Average Transaction Length
—-e— GPU Frontier Expansion to FPGrowth m— CPU time
—-0— GPU Frontier Expansion to Eclat (bitset) == GPU time
—-v— GPU Frontier Expansion to Eclat (tidset)
—-2— GPU Frontier Expansion to CPU Frontier Expansion
(a) (b)

Fig. 13 Performance comparison between Eclat, FPGrowth and Frontier Expansion with variation on
transaction length. The other parameters are set to: Transaction Number = 3000 K, minimum support
ratio is 1 %, GPU number = 1

Expansion achieves a speedup scales with dataset size, which is up to 10x compared
with FPGrowth and tidset Eclat, 3 x to bitset Eclat, and over 30x with the CPU ver-
sion.

Figure 12 demonstrates the performance and CPU-GPU workload with respect to
item number variation. The dataset size is set to 3000 K, minimum support is set to
1 % and GPU number is set to 1. The speed up ratio of Frontier Expansion grows
quadratically with denser datasets (less item number).

Figure 13 demonstrates the performance and CPU-GPU workload with respect to
transaction length variation. The dataset size is set to 3000 K, minimum support is

@ Springer

Accelerating frequent itemset mining on graphics processing units 111

100

g 100
=2
)
80
g N, g
& /} BN ¥~ ~< k=3 80
S 10 e N I s
3 X~ &
8 NE s 40
1) o ~ = -
-7 TT~go ~ E
-~ - ~ E
o O _ = ag
-5)
E
. ‘ e ol mem N
0 1 2 3 4 5 6 1 2 3 4 5
Support Ratio (%) ————— Support (%)
= CFU time
—-e— GPU Frontier Expansion to FPGrowth === GPU time
—-0— GPU Frontier Expansion to Eclat (bitset) I —
—-v— GPU Frontier Expansion to Eclat (tidset)
—-2— GPU Frontier Expansion to CPU Frontier Expansion

(a) (b)

Fig. 14 Performance comparison between Eclat, FPGrowth and Frontier Expansion with variation on

minimum support. The other parameters are set to: Transaction Number = 3000 K, density = 0.13, GPU
number = 4

set to 1 % and GPU number is set to 1. It is shown in the figures that GPU Frontier
Expansion performs better on the datasets with longer transactions.

Figure 14 demonstrates the performance with respect to support threshold vari-
ation. Minimum support determines the frequency threshold of FIM, which is used
by support counting to prune infrequent candidates from new candidate generation.
Minimum support affects both the number of output itemsets and the search depth of
the algorithm. Given a fixed-size dataset, a run with lower minimum support usually
requires more time.

Our results demonstrate that Frontier Expansion achieves a higher speedup over
Eclat and FPGrowth for low support ratios, which is the circumstance under which
sequential algorithms become expensive. This is because lower support ratios result
in more execution time required for support counting (GPU kernel), which is highly
parallelized.

6.2 Performance on real datasets

Figures 15, 16, 17 show the performance study of Frontier Expansion on the three real
datasets. The minimum support thresholds in the figures are scaled to a proper inter-
val that is sufficient to demonstrate the speedup variation. On dataset accident, GPU
Frontier Expansion achieves the best performance—3 x compared to FPGrowth and
over 30xcompared to other algorithms when support is lower than 30 %. However,
it is slightly slower than FPGrowth on the other two datasets, chess and connect.

6.3 Trade off between speedup and memory occupation

As described in Sect. 5, the expansion size ¢ is a parameter that controls the tradeoff
between running time and memory occupation. Figure 18 gives an analysis of ¢.
In the figure, we can clearly see the memory usage is inversely correlated with the
running time when ¢ changes.

@ Springer

112 F. Zhang et al.

o] —
100 g 100
=]
]
80
X 2
2 BN N N\ §
g w IR 5
2 o. > ~ B
%‘ ~< - S - N % 40
~_ ~ AN 2
B S L E
o—-“'_"‘“ig_‘é\ - E 20
~ = £
S % g
1 . ‘ ‘0 g 0
20 25 30 35 40 45 50 55 25 30 35 40 45 50
Support Ration (%) Support Ratio (%)
m— CPU time
—-e— GPU Frontier Expansion to FPGrowth === GPU time
—-0— GPU Frontier Expansion to Eclat (bitset)
—-v— GPU Frontier Expansion to Eclat (tidset)
—-a—GPU Frontier Expansion to CPU Frontier Expansion

(2)

(b)

Fig. 15 Performance comparison between Eclat, FPGrowth and Frontier Expansion on dataset accident

100 g 100
=
o %
o~ n > 80
~ ’_*\ =
S 40l \x z
& - = 2 e
Q
o] \ . = 40
13 _ =
] *o > I 4 e
1 ¥ E
_% > L1}
o o o oo * =
E
. . & 0 » . - .
30 40 50 60 70 80 90 30 40 B0 70 80 a0
Support Ratio (%) Support (%)
. - = CPU time
—-e— GPU Frontier Expansion to FPGrowth == GPU L:r:)e
—-0— GPU Frontier Expansion to Eclat (bitset)
—-v— GPU Frontier Expansion to Eclat (tidset)
—-2— GPU Frontier Expansion to CPU Frontier Expansion
(a) (b)

Fig. 16 Performance comparison between Eclat, FPGrowth and Frontier Expansion on dataset connect

6.4 Work load analysis

Figure 19 shows the relationship between the total running time Ty and the sup-
port counting kernel work load factor Txemel/ Tan- To correctly show the work load
distribution before acceleration, we performed an experiment where we performed
support counting on the CPU instead of the GPU, in order to determine the amount
of execution time spent in support counting before acceleration. In the figure we can
see that the workload on the support counting kernel rises with the total running time
and eventually becomes the bottleneck of the program.

@ Springer

Accelerating frequent itemset mining on graphics processing units 113

100 g 100
=
& %
o
v __ No. w 80
- \g ;
g 104 \‘ §g %
& e N 5 g 60
a \ _ox-e e
= AN]
3 N 2 5 40
o > i =
o1 o’ oy 3
- E
el E 20
£
£
g
0.1 T T o i)
30 40 50 60 70 80 90 30 40 50 60 70 a0 80
Support Ratio (%) Support (%)
- - m— CPU ti
—-e— GPU Frontier Expansion to FPGrowth r— gpld ‘:r:; |
—-0— GPU Frontier Expansion to Eclat (bitset) |
—-— GPU Frontier Expansion to Eclat (tidset)
—-2— GPU Frontier Expansion to GPU Frontier Expansion
(a) (b)

Fig. 17 Performance comparison between Eclat, FPGrowth and Frontier Expansion on dataset chess

180 320
160 300
280
140 A o
g 260
@ 120 § 240
E 2 220
i= 100 g 200
€
80 § 180
160
60
140
40 120
500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Varepsilon Varepsilon
(a) (b)
Fig. 18 Analysis of ¢ on dataset T40110D500 K
Fig. 19 Work load shifting
curve 1.0
0.9
T
-
T
£ 08 1
Q
2
=
0.7 A
0.6 T v
100 1000 10000
Tai

@ Springer

114

F. Zhang et al.

Fig. 20 Multiple GPU
scalability results on
T20110D3000 K,
T30110D3000 K,
T40110D1000 K,
T40110D2000 K and
T40110D3000 K

Table 3 Real Dataset selection
and characteristic

6.5 Multi-GPU scalability

3.5
S
3.0 e
RS
p=l A/':?’/ .
5 25 ¢ i
" S
5 ’//4."
3 A
o 2.0 1
@&
%
¥
15 4
1.0 T -
1 2 3 4
Number of GPU
—e—— T40110D1000K
w0 T40110D1500K
—-——v-- T40110D2000K
—+=&-—- T40110D2500K
— —a—- T40110D3000K
Name Support ratio Utilization rate
T40110D500 K 1% 0.99
accident 25 % 0.86
chess 50 % 0.81
connect 60 % 0.91

Factors that influence scalability of our algorithm over multiple GPUs includes the

following:

1. Synchronization between consumer and producer threads: the job FIFO is pro-
tected by a mutex and sometimes causes threads to wait.
2. Computation/communication ratio: for this application, the GPU is limited by

memory bandwidth.

3. Unbalanced branch size of the tree: we use a producer-consumer model to sched-
ule the GPUs, using a first-come, first served order. However, some jobs are of an
abnormally large size and remain in computation after some jobs have finished.
This limits the parallelism in the final stages of computation.

As shown in Fig. 20, despite these factors, Frontier Expansion is able to gain up
to 3x speed up on four GPUs.

6.6 Multi-GPU utilization

Table 3 shows the utilization rate of multi-GPU Frontier Expansion on dataset
T40I10D500 K (synthetic), accident, chess and connect (real). Let T; equal the active
running time of consumer thread i (i € {1, ..., N}). The utilization rate (a.k.a. UR)
is defined by Eq. (1). The utilization rate could be brought down by an unbalanced

@ Springer

Accelerating frequent itemset mining on graphics processing units 115

Table 4 Characteristic of the large datasets

Name Trans# Avg Trans Len Size

T100120D5 M SM 100 1.8 GB
T100120D10 M 10M 100 3.5GB
T100120D15 M I5M 100 5.3GB
T80120D10 M 10M 80 29GB
T90I120D10 M 10M 90 32GB
T110120D10 M 10M 110 39GB
T120120D10 M 10M 120 4.2 GB

Table 5 Speed up on large dataset, four core GPU vs. four core CPU

Dataset Time (CPU) Time (GPU) Speed up
T100120D5 M 5273 839 6.28
T100120D10 M 11149 1797 6.20
T100120D15 M 13341 2111 6.32
T80I120D10 M 2450 1104 2.21
T90120D10 M 4922 1281 3.84
T110120D10 M 23733 1395 17.0
T120120D10 M 57296 1824 31.4

search tree (see Sect. 5 for details of the tree modeling), which is caused by bad data
distribution and emerged more in real datasets. An over-weighted branch of the tree
could make the other finished consumer threads wait before joining. We have

2i(T)

UR= ———
N x max; (T;)

ey

6.7 Results on large dataset

We also tested Frontier Expansion on a set of large datasets. Each of these datasets
is too large to be processed by the current FIM implementations (Borgelt Eclat and
FPGrowth). Table 4 lists the datasets and their characteristics.

The results are shown in Table 5. Because the Borgelt Eclat and FPgrowth are not
able to process the datasets, we compare the performance of GPU and CPU Frontier
Expansion only. For this experiment, we compare the performance of four GPUs with
four CPUs to demonstrate the GPU speed up.

The results show that on the large datasets, the GPU version is able to achieve a
speed up to 30 x. As the density increases, the speed up ratio grows non-linearly. The
algorithm performs a stable speed up when the density is fixed, from the first three
rows of the table we can discover that the speed up ratios on 5 M, 10 M and 15 M are
relatively constant.

@ Springer

116 F. Zhang et al.

7 Conclusion

In this paper we describe Frontier Expansion, consisting of both a GPU kernel for
FIM support counting based on bitset representation and a technique for dynami-
cally managing frontier size during candidate search, allowing us to place bounds on
memory use while maximizing the amount of exploitable parallelism.

We evaluated this approach for real datasets and synthetic datasets by varying
dataset size, density, and the target support threshold. Our results indicate that our
approach can achieve up to 30x speedup over state-of-the-art CPU-only serial im-
plementations for datasets with high density. These results demonstrate that GPU
acceleration can be beneficial for a non-uniform dynamic application and establishes
a new state-of-the-art for GPU-accelerated frequent itemset mining.

We provide source code of Frontier Expansion on our research project website
http://tachyon.cse.sc.edu/gpufim.html. Also we have developed a GPU mining web-
server for public usage. It allows users to upload a data file, specify the minimum
support, and will display the FIM results and the running time comparison of Fron-
tier Expansion with a set of current CPU-based FIM algorithm. We are currently
adding new features (noisy data preprocessing, analysis and visualization) to the web
server and will also organize our other related research work on GPU data mining in
the same page.

Acknowledgements This material is based upon work supported by the National Science Foundation
under Grant Nos. CCF-0844951 and CCF-091560.

References

1. Agrawal R, Shafer JC (1996) Parallel mining of association rules. IEEE Trans Knowl Data Eng 8:962—
969

2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proc of 20th intl conf
on VLDB, pp 487499

3. Ansari E, Dastghaibifard G (2008) Distributed frequent itemset mining using trie data structure. Int J
Comput Sci 35(3):377-381

4. Aouad LM, Na L-k (2007) Distributed frequent itemsets mining in heterogeneous platforms. J Eng
Comput Arch 1(2), ISSN: 1934-7197

5. Bart G (2004) Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data/

6. Bodon F (2005) A trie-based APRIORI implementation for mining frequent item sequences. In: Pro-
ceedings of the 1st international workshop on open source data mining: frequent pattern mining im-
plementations, OSDM ’05. ACM Press, New York, pp 56-65

7. Borgelt C (2003) Efficient implementations of apriori and eclat. In: Proc 1st IEEE ICDM workshop
on frequent item set mining implementations (FIMI 2003), pp 90-99

8. Borgelt C, Kruse R (2002) Induction of association rules: apriori implementation. In: 15th conference
on computational statistics, pp 395400

9. Burdick D, Calimlim M (2001) Mafia: a maximal frequent itemset algorithm for transactional
databases. In: Proceedings 17th international conference on data engineering, pp 443-452

10. Craus M (2008) A new parallel algorithm for the frequent itemset mining problem. In: International
symposium on parallel and distributed computing, 2008, ISPDC 08, pp 165-170

11. Fang W, Lu M (2009) Frequent itemset mining on graphics processors. In: Proceedings of the fifth
international workshop on data management on new hardware, DaMoN ’09. ACM Press, New York,
pp 34-42

12. Fiat A, Shporer S (2003) AIM: another itemset miner. In: IEEE ICDM workshop on frequent itemset
mining implementations (FIMI’03)

@ Springer

http://tachyon.cse.sc.edu/gpufim.html
http://fimi.ua.ac.be/data/

Accelerating frequent itemset mining on graphics processing units 117

13.

14.

15.

16.

17.

20.

21.

22.

23.
24.

25.

Goethals B, Zaki MJ (2004) Advances in frequent itemset mining implementations: report on fimi’03.
ACM SIGKDD Explor Newsl 6(1):109-117

Han J, Pei J (2004) Mining frequent patterns without candidate generation: a Frequent-Pattern tree
approach. Data Min Knowl Discov 8:53-87

Kosters WA, Pijls W (2003) APRIORI, a depth first implementation. In: Proc of the workshop on
frequent itemset mining implementations

Liu L, Li E (2007) Optimization of frequent itemset mining on Multiple-Core processor. In: VLDB
’07, pp 1275-1285

NVIDIA (2011) NVIDIA CUDA compute unified device architecture programming guide. NVIDIA,
Santa Clara

. Parthasarathy S, Zaki MJ (1996) Parallel data mining for association rules on shared-memory multi-

processors. In: Proc Supercomputing’96, pp 43—-64

. Pramudiono I, Kitsuregawa M (2003) Parallel FP-Growth on PC cluster. In: Advances in knowledge

discovery and data mining. Lecture notes in computer science, vol 2637. Springer, Berlin/Heidelberg,
pp 467-473

Salvatore O, Claudio L (2003) kdci: a multi-strategy algorithm for mining frequent sets. In: Goethals
B, Zaki MJ (eds) FIMI 03, frequent itemset mining implementations. Proceedings of the ICDM
2003 workshop on frequent itemset mining implementations, 19 December 2003, Melbourne, Florida,
USA, CEUR-WS.org, CEUR workshop proceedings, vol 90

Sucahyo YG, Gopalan RP (2003) Efficiently mining frequent patterns from dense datasets using a
cluster of computers. In: Australian conference on artificial intelligence’03, pp 233-244

Ye Y, Chiang C (2006) A parallel apriori algorithm for frequent itemsets mining. In: Fourth interna-
tional conference on software engineering research, management and applications, pp 87-94

Zaki MJ, Gouda K (2003) Fast vertical mining using diffsets. In: Proc SIGKDD, pp 326-335

Zaki MJ, Parthasarathyi S (1997) New algorithms for fast discovery of association rules. In: 3rd intl
conf on knowledge discovery and data mining. AAAI Press, Menlo Park, pp 283-286

Zhang F, Zhang Y, Bakos J (2012) Gpapriori: Gpu-accelerated frequent itemset mining. In: IEEE
international conference on cluster computing, pp 590-594

@ Springer

	Accelerating frequent itemset mining on graphics processing units
	Abstract
	Introduction
	Background
	Related work
	Sequential implementations
	Shared-memory parallel implementations
	Message-passing parallel implementations
	GPU-accelerated implementations

	Preliminaries
	Problem statement
	Current algorithms

	Algorithm and implementation
	Data preprocessing
	CPU candidate generation
	GPU support counting
	Producer consumer model on multi-GPUs

	Results and analysis
	Performance on synthetic datasets
	Performance on real datasets
	Trade off between speedup and memory occupation
	Work load analysis
	Multi-GPU scalability
	Multi-GPU utilization
	Results on large dataset

	Conclusion
	Acknowledgements
	References

