
A High-Performance Double Precision Accumulator
Krishna K. Nagar and Jason D. Bakos

Dept. of Computer Science and Engineering, Univ. of South Carolina
Columbia, SC 29208 USA

{nagar,jbakos}@engr.sc.edu

Abstract—The accumulation operation Anew = Aold + X is

required for many numerical methods. However, when using a
floating-point adder with pipeline latency �, the data hazard that
exists between Anew and Aold creates design challenges for
situations where inputs must be delivered to the accumulator at a
rate exceeding 1/�. Each of the techniques proposed to address
this problem requires either static data scheduling or overly
complex micro-architectures having multiple adders, a large
amount of memory, or control overheads that force the
accumulator to operate at a diminished speed relative to the
adder on which it is based. In this paper we present a design for
a double precision accumulator that achieves high performance
without the need for data scheduling or an overly complex
implementation. We achieve this by integrating a coalescing
reduction circuit within the low-level design of a base-converting
floating-point adder. When implemented on our Virtex-2 Pro
100 FPGA, our design achieves a speed of 170 MHz.

I. INTRODUCTION
The accumulation operation must be performed in any

special-purpose architecture that performs a computation that
requires a summation. When used as a component of a micro-
architecture that supplies a new value to the accumulator
every clock cycle, the designer cannot use a simple feedback-
based accumulator circuit if the adder has a latency greater
than one cycle, since the latency prevents the adder from
providing the current sum before the next value to be
accumulated arrives. To make matters worse, in many
applications the incoming values belong to different
accumulation sets and there is no separation between values
belonging to different sets. This further complicates the
accumulator design.

FPGA kernel designers have dealt with this problem using
a number of different methods. Older designs used a static
approach, where inputs were delivered to the accumulator in
an ordering where the values belonging to different
accumulation sets were interleaved according to the latency of
the adder [1]. Newer designs use a dynamic approach.
Prasanna’s group at the University of Southern California has
written several seminal papers in this area [2,3,4]. Their most
recent design requires two memories of size �2 and a
significantly complex controller that makes the reduction
circuit operate more slowly than the adder upon which it is
based. An improved single-adder reduction architecture was
later developed at the University of Twente [5]. This
architecture reduced the memory requirement to

� � 2lg3 �� ��� but still required complex control.
Both of these designs are based on instancing pre-made

floating-point adders into a top-level reduction architecture.

In an alternative approach, which is limited to single-precision,
the adder itself is changed such that its de-normalization and
significand addition step are designed to have a single cycle
latency and a feedback loop is formed over only this stage.
Since the only portions of a floating-point adder that need be
involved in the accumulator’s feedback loop are the de-
normalize and significand addition, this turns the adder into an
accumulator. The other aspects of the adder, specifically
those that deal with IEEE 754 formatting, need not be
included in the adder data path. In order to make this
approach practical, the designer must minimize the latency
across both the de-normalize (composed of a comparison and
subtraction of the exponents) and the significand addition (an
integer addition). Intel and a group from Princeton
accomplished this by increasing the integer adder width while
decreasing the width of the exponent comparator by
converting the significand from base-2 to base-32 [6,7].

Our goal is to design a double precision accumulator that
requires minimal memory and control logic such that its speed
is limited only by the speed of the significand adder. Because
double precision requires a wider exponent compare and
significand addition, we pipeline this portion of the
architecture instead performing this in a single stage. To
solve the resultant internal data hazard, we apply a simplified
reduction technique within the adder design.

II. ACCUMULATOR ARCHITECTURE
Our top-level accumulator architecture is shown in Figure 1.

As shown in the figure, the first two stages are used to
condition the incoming value. The base conversion step (box
1) converts the incoming value from base 2 to an arbitrary
base, which is set as a “generic” parameter in our VHDL. For
base b, this step performs the following:

1. adds a 1-bit to the left-hand side of the 52-bit significand
value (the implied leading binary digit to the left of the
decimal point),

2. shifts the significand value to the left by the value stored
in the low order lg b bits in the exponent field (note that
this effectively adds b - 1 bits to the width of the
significand),

3. strips the lower lg b bits from the exponent, and
4. adds a sign bit and carry-out bit “00” to the left side of the

resultant (53 + b - 1)-bit base-b significand value,
resulting in (54 + b) total bits.

The next stage performs an arithmetic negation of this
value if the original sign bit was set to one (box 2).

978-1-4244-4377-2/09/$25.00 © 2009 IEEE FPT 2009500

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:12:40 UTC from IEEE Xplore. Restrictions apply.

The third stage is where the de-normalize and significand
addition begins. This is comprised of the following steps:

1. compare the high-order 11-(lg b) bits of both exponents,
exp1 and exp2 (corresponding to base-b significands sig1
and sig2),

2. if exp1 > exp2, shift sig2 to the right by b*(exp1-exp2)
bits, else shift sig1 to the right by b*(exp2-exp1) bits,

3. add the resultant sig1 and sig2, and
4. if the addition caused the carry out bit of the sum to be set,

add one to max(exp1,exp2) and shift the sum b bits to the
right.

This step involves sequential operations on both the high
order bits of the original exponent and the base-converted
significands. Larger values of b will result in lower latency
exponent operations but a wider and thus higher latency
integer addition, while lower values of b will result in wider
and thus higher latency exponent operations and lower latency
integer addition.

Table 1 shows this trade-off as the base b is increased. The
single-precision accumulator designs from the literature
perform these operations in one cycle and they chose 32 as the
base without providing any justification or analysis of why
this value was chosen. Since our accumulator is double
precision, we performed a synthesis-based analysis to
determine how the base value affects the resultant speed of the
adder. We describe this analysis in the next section.

The remaining stages are used to re-condition the base-
converted sum into IEEE 754 format. Box 6 computes the
absolute value of the sum, box 7 counts the number of leading
zeros, and box 8 uses this information to shift the significand
and adjust the exponent in order to convert the significant
back to base 2 and to re-normalize. The last stage repackages
the value into IEEE 754 format.

In order to determine the base value that provides the
highest performance, we synthesized versions of the design
shown in Figure 1 over a range of base values. For each base
value, we also added delays to the outputs of the de-
normalize/add stage and enabled re-timing and pipelining in
the synthesizer to give it the ability to distribute this step
across multiple pipeline stages. In other words, we added
cycles of latency to the de-normalize/add step to improve the
overall pipeline speed of the accumulator. Note that in
addition to the exponent comparison, exponent subtraction,
and significand addition, there are also two shifters involved
in this step (de-normalize and renormalize for a carry-out).

In our analysis the versions of the design having a de-
normalize/add latency greater than one are not functionally
correct without the addition of the reduction features
described later in this paper. However, since this analysis is
for timing purposes only and the reduction features will
require only minimal timing overhead, we do not include them
in this analysis. Our analysis included base values ranging
from 4 to 512.

Figure 2 shows the results of the analysis. We used
Synplify Pro 8.8.0.4 as the synthesizer and targeted both our
in-house Virtex-2 Pro 100 FPGA as well as the Xilinx Virtex-
5 LX 330T for comparison. The Virtex-2 Pro 100 design
achieves its highest pipeline speed with a pipeline depth of 3
and base of 128, while the Virtex-5 LX 330T design achieves
its highest pipeline speed with a pipeline depth of 3 and a base
of 64.

III. REDUCTION CIRCUIT
The reduction circuit must reconcile the data hazard created

by the three cycle latency of de-normalize/add step, since each
input to this step depends on the most recent output. Note that
any of the previously designed reduction circuits from the
literature would fulfil this requirement. However, these
previous reduction circuits were designed for much longer
pipelines (i.e. an entire floating-point adder pipeline as
opposed to only the de-normalize/add pipeline). In this case,
we only need a reduction circuit to operate over a three-stage
pipeline, which gives us the opportunity to design a reduction
circuit that is significantly less complex than previous designs.

The goal of our reduction circuit design is to make its
implementation as simple as possible in order to not impose
any additional timing overhead on the overall adder pipeline.
In other words, the addition of the logic required for the
reduction circuit should not shift the critical path from the de-
normalize/add stages. In previously reported work, the

TABLE I
EXPONENT COMPARISON WIDTH VS. ADDER WIDTH

Base
Exponent
Compare

Adder
Width

32 6 86
64 5 118
128 4 182
256 3 310
512 2 566

Fig. 1. Top-level design of accumulator architecture. Alpha represents the pipeline latency of de-normalize/addition datapath.

501

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:12:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Configuration states for the reduction circuit.

control and memory overheads required by the reduction
circuit scale with the depth of the pipeline. The goal of our
design is to keep the memory requirements constant, needing
only to scale the control logic for the pipeline depth.

After a sufficient number of clock cycles have passed
reducing a single input set, the reduction circuit operates in
steady-state mode, where it routes the current input value and
the output of the pipeline back into the input of the pipeline.
In this operating state, the pipeline contains � partial sums,
where � is the pipeline depth. When there is a change in input
set, the pipeline must take a series of actions to coalesce these
partial sums while still accepting values from the next input
set.

As shown in Figure 3, our reduction circuit design requires
a single input buffer and a single output buffer. The inputs to
the pipeline can be routed according to the following four
different configurations:
� Configuration A: buffer the incoming value, route the

buffered output value and the output currently being
produced by the pipeline back into the pipeline. For a
pipeline depth of �, this must occur once for every
internal node of a binary tree having � leaves, equalling
��- 1 occurrences. To ensure that the buffer depth may be
limited to one, the value in the input buffer must be
consumed (using configuration C) once between each
instance of configuration A.

� Configuration B: add the incoming value with the value
currently being produced by the pipeline. This is the
“steady-state” configuration, and is used when
accumulating the current input set into � partial sums.

� Configuration C: add the buffered input value with the
incoming input value. This occurs during cycles when
the output of the pipeline need not re-enter the pipeline.
This includes the cycles where the pipeline output is

buffered (which must occur once before the architecture
enters configuration A) and the cycles where an input set
is reduced to a final sum (which occurs once per input
set).

� Configuration D: add the incoming value with zero.
This only occurs one time per input set, prior to the first
time an input is buffered.

As shown in Table 2 for a pipeline depth of � = 3, starting
with the first cycle where the incoming value belongs to a new
input set, the controller will instruct the reduction circuit to
cycle through a deterministic series of configuration changes
for the following eight cycles that will reduce the previous
input set to a single sum while continuing to accept values
from the new input set. In the table, �1, �2, and �3 represent
the partial sums from the previous input set.

The controller is implemented as a single 9-state FSM,
where all state transitions are unconditional except for the
input state where the next input set (incoming from stage 2 of
the accumulator pipeline) differs from the current input set.
This is detected by comparing the input set from stage 3 and
stage 2 in the top-level accumulator pipeline.

Routing is performed with a 2-input mux before the first
input and a 3-input mux before the second input to the de-
normalize/add pipeline. Note that each input value consists of
a (54 + b)-bit significand and a (11-lg b)-bit upper exponent
value. The controller also raises the data_valid flag to
indicate the output sum is valid for each input set.

For this reduction technique, there is a minimum set size
that must be enforced in order to allow for the coalesce
process for the previous input set to finish before the current
set ends. For a pipeline depth of �, the minimum set size is
� � 11lg ���� cycles, since after each �-cycle pass, there

are half the number of partial sums in the pipeline.
IV. ACCUMULATOR CHARACTERISTICS

The total latency of the accumulator is 7 cycles for the base
conversion and IEEE 754 overheads plus 8 cycles for the
reduction, totalling 15 cycles. The synthesis-based timing
analysis described in Section III did not include routing delays.
To determine the actual performance of the accumulator, we
placed and routed the fully-designed base-32, base-64, base-
128, and base-256 accumulators, including the reduction
circuit, and placed each inside a system-specific wrapper that

Fig. 2. Synthesis results for Virtex 2 Pro 100 (top) and Virtex-5 LX
330T (bottom), as operating frequency versus base value.

502

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:12:40 UTC from IEEE Xplore. Restrictions apply.

TABLE II
 EXAMPLE OF THE REDUCTION CIRCUIT OPERATING OVER A PIPELINE OF DEPTH 3.

Clock
cycle

Accum.
input

Input
buffer Adder pipeline Output

buffer Notes

0 Configuration B
(Steady-state)

1 B1 �3 �2 �1
Configuration D
Set A complete, adder pipeline
full

2 B2 B1+0 �3 �2 �1 Configuration A
3 B3 B2 �1+��2 B1+0 �3 Configuration C
4 B4 B2+B3 �1+��2 B1+0 �3 Configuration B
5 B5 B1+B4 B2+B3 �1+��2 �3 Configuration A
6 B6 B5 �1+��2+��3 B1+B4 B2+B3 Configuration B
7 B7 B5 B2+B3+B6 �1+��2+��3 B1+B4 Configuration B

8 B8 B5 B1+B4+B7 B2+B3+B6 �1+��2+��3

Configuration C
Set A accumulation complete,
use this cycle to clear input
buffer

9 B9/C1 B5+B8 B1+B4+B7 B2+B3+B6
Configuration B/D
Earliest valid cycle for input set
C to begin

TABLE III
 ACCUMULATOR RESOURCE AND PERFORMANCE RESULTS

Base Slices
Maximum Actual
Operating Freq.

32 1884 160 MHz
64 2045 170 MHz

128 2986 130 MHz
256 5336 125 MHz

allows each accumulator to be instanced on the FPGA and the
host to send it inputs and sample its outputs, through FIFOs
that are accessible by programmed I/O calls from the host.
Using this technique, we incrementally increased the
accumulator pipeline speed, and after each increase we
compare the results from the accumulator with results
computed on the host. Using this technique we can determine
the maximum speed for each base value on our Virtex-2 Pro
100 FPGA on our Annapolis Micro Systems WildStar-II Pro
card.

The performance and resource usage results are shown in
Table 3. The resource usage was measured by placing and
routing the accumulator only, while the performance results
were measured with additional host-FPGA interface logic.
The performance of each circuit is higher than the synthesis
results indicated. Contrary to the results shown during our
synthesis analysis, the base-64 version of the accumulator
achieves the highest speed. We assume this is due to
inaccuracies in the synthesizer estimate. The resource usage
results show that these circuits, except for the base-256
version, use significantly less resources than the accumulators
from the literature.

V. CONCLUSION
In this paper we describe a new design technique for high

performance, low resource double precision accumulators.
Our approach combines elements from two previous

techniques. The first is the use of base-converted adders to
expose a reduced-latency addition operation, as opposed to
basing the accumulator feedback around a full floating-point
adder architecture. The second technique is to use a
simplified version of the reduction architecture described in
several recent publications.

We tested our accumulator on a Virtex-2 Pro 100 FPGA on
our Annapolis computing card. Through these tests, we have
achieved an observed maximum speed of 170 MHz and a
minimum resource usage of 1884 slices.

VI. ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under Grant Nos. CCF-0844951 and
CCF-0915608.

REFERENCES

[1] M. deLorimier, A. DeHon, “Floating-point sparse matrix-vector
multiply for FPGAs,” Proc. 13th ACM/SIGDA Symposium on Field-
Programmable Gate Arrays (FPGA 2005).

[2] L. Zhou, V. K. Prasanna, “Sparse Matrix-Vector Multiplication on
FPGAs,” Proc. 133h ACM/SIGDA Symposium on Field-
Programmable Gate Arrays (FPGA 2005).

[3] L.Zhuo, V. K. Prasanna, “High-Performance Reduction Circuits Using
Deeply Pipelined Operators on FPGAs,” IEEE Trans. Parallel and Dist.
Sys., Vol. 18, No. 10, October 2007.

[4] Jason D. Bakos, Krishna K. Nagar, "Exploiting Matrix Symmetry to
Improve FPGA-Accelerated Conjugate Gradient," 17th Annual IEEE
International Symposium on Field Programmable Custom Computing
Machines, April 5-8, 2009.

[5] M. Gerards, “Streaming Reduction Circuit for Sparse Matrix Vector
Multiplication in FPGAs”. Master Thesis, University of Twente, The
Netherlands, August 15, 2008.

[6] S. R. Vangal, Y. V. Hoskote, N. Y. Borkar, A. Alvandpour, “A 6.2-
GFlops Floating-Point Multiply-Accumulator With Conditional
Normalization,” IEEE Journal of Solid-State Circuits, Vol. 41, No. 10,
Oct. 2006.

[7] Z. Luo, M. Martonosi, "Accelerating Pipelined Integer and Floating
Point Accumulations in Configurable Hardware with Delayed Addition
Techniques," IEEE Transactions on Computers, Vol. 49 No. 3 March
2000.

503

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:12:40 UTC from IEEE Xplore. Restrictions apply.

