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Abstract—Sparse matrix-vector multiplication (SpMV) is a 
common operation in numerical linear algebra and is the 
computational kernel of many scientific applications.  It is one of 
the original and perhaps most studied targets for FPGA 
acceleration.  Despite this, GPUs, which have only recently 
gained both general-purpose programmability and native 
support for double precision floating-point arithmetic, are 
viewed by some as a more effective platform for SpMV and 
similar linear algebra computations.  In this paper, we present an 
analysis comparing an existing GPU SpMV implementation to 
our own, novel FPGA implementation.  In this analysis, we 
describe the challenges faced by any SpMV implementation, the 
unique approaches to these challenges taken by both FPGA and 
GPU implementations, and their relative performance for 
SpMV.  

I. INTRODUCTION

FPGAs have been used as co-processors for scientific 
computing for many years.  Recently, GPUs have begun to 
rapidly grow in this role.  On the surface, GPUs seem to have 
several clear advantages over FPGAs:  easier to program, less 
expensive in both hardware and development software, more 
ubiquitous, and have manufacturer-backed, standardized, and 
consistent programming abstractions, programming models, 
host interfaces, and system architectures. 

GPUs are quickly becoming the dominant platforms for 
computational accelerators.  GPUs have already demonstrated 
success in accelerating statistical phylogenetics [1], biological 
sequence alignment [2,3], image processing [4,5],network 
modelling [6], and computing cosmological data analysis [7]. 

Recent studies that have directly compared FPGAs and 
GPUs for scientific computing have concluded that GPUs do 
indeed outperform and are easier to program than FPGAs for 
several types of computations [8,9,10,11].  However, given 
that both technologies exploit parallelism using different 
techniques, it is clear that any comparisons between them 
must consider a particular type of computation. 

One common computation that has not yet been used in a 
comparative study is sparse matrix-vector multiplication 
(SpMV).  SpMV describes solving y = Ax, where y and x are 
vectors and A is a large matrix that is mostly composed of 
zero entries.  SpMV is used as the kernel for many scientific 
applications, including those that include iterative linear 
system solvers (which is a kernel for solving many scientific 
problems such as approximating systems of partial differential 
equations). 

Double-precision SpMV is a popular target for FPGA 
implementation because it is a notoriously difficult 
computation to accelerate.  There are two reasons for this.  

First, the performance of any implementation is inherently 
dependent on memory bandwidth.  Second, each element of 
the result vector must ultimately be computed by an 
accumulation of serially-delivered values, and the 
accumulation must be performed using a potentially deeply-
pipelined double-precision floating-point adder.  This creates 
a data hazard between each value to be accumulated and the 
previous value of the running sum. 

In this paper, we describe a novel FPGA-based SpMV 
architecture that is built around our customized double-
precision floating-point accumulator.  Unlike FPGA 
application development, it is not possible to develop and 
integrate custom arithmetic units into GPU applications, so we 
use this as an opportunity to compare this SpMV architecture 
and its performance to an existing state-of-the-art 
implementation of a GPU-based SpMV kernel.  We show that, 
despite the GPU’s advantages in ease of programming, clock 
speed, and memory bandwidth, the GPU’s inability to tailor 
the lower-level features of its microarchitecture limits its 
performance for certain types of computations. 

II. GRAPHICS PROCESSOR UNITS

Early implementations of non-graphics-based accelerators 
were achieved by mapping the desired general-purpose 
behaviors onto existing graphics APIs such as OpenGL and 
ActiveX.  This technique was originally termed “General 
Purpose GPU (GPGPU)”.  However, this practice is no longer 
necessary, as general-purpose development environments and 
parallel programming models have recently become available 
for GPUs, including Compute Unified Device Architecture 
(CUDA), Stream (SDK), and OpenCL.  In this section, we 
provide a brief overview of current-generation NVIDIA GPUs 
and the CUDA programming framework. 

A. GPU Memory Hierarchy 
NVIDIA’s Tesla architecture, the GPU microarchitecture 

that we target in this paper, has a complex memory 
organization with multiple types of on-chip memories as well 
as off-chip, on-board DRAM.  Each of these memories is 
optimized for specific access patterns, and one of the primary 
challenges when writing GPU code lies in efficiently mapping 
input, output, and state data to these memories, which for the 
most part must be manually performed by the program code. 

The off-chip, on-board memory, called the “device 
memory,” can be read and written by both the host and the 
GPU and its synchronization is handled by the execution 
framework.  This memory is primarily used for sharing input 
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and output data between the host and GPU, but can also be 
used as a backing store for the GPU to store state data.  The 
GPU’s on-chip memories are generally used for intermediate 
results and caching input data. 

B. GPU Microarchitecture 
An overview of the NVIDIA GPU microarchitecture is 

provided in the CUDA Programming Manual [12].  At the top 
level, the GPU consists of a set of “streaming multiprocessors 
(SM)”.  State-of-the-art GPUs have approximately 30 SMs 
(the GeForce GTX 260 card we use in our experiments has 27 
as reported by the API but only 24 as reported in the 
programming manual). 

Each SM contains an on-chip, programmer-controlled static 
memory called the shared memory, since this memory space is 
shared by all the threads running on the SM.  This memory 
size is 16K x 32 bits and is organized in sixteen banks. 

Each SM also contains two hardware-maintained, read-only 
caches that are hardware managed and therefore behave as a 
traditional memory cache to the off-chip texture memory and 
the constant memory.  These caches are optimized for 3D 
rendering computations but are available for use for other 
types of computations. 

Within each SM, there are eight scalar processor (SP) cores.  
Each SP contains its own register file that is managed by the 
compiler.  There are 16,384 32-bit registers per SM (2,048 per 
SP).  Organized this way, our GPU is effectively a 27 x 8 = 
216-core, single-chip (“manycore”) multiprocessor. 

Each SM contains an issue unit that issues a single 
instruction across all eight SPs, and each of these can execute 
four copies of the instruction in parallel.  Each SM is thus 
capable of issuing a single instruction (but with different 
operands) from up to 32 threads in true parallel.  However, 
this is only possible when all the threads are executing the 
same instruction.  In other words, it requires that all 32 threads 
to agree on a common execution path (i.e. no divergent 
control behavior).  A grouping of threads that are grouped for 
this reason is referred to as a warp.

This approach is referred to as the SIMT (single-instruction, 
multiple-thread) technique.  SIMT is similar to SIMD (single-
instruction, multiple data), with the key difference being that 
SIMT abstracts away the data width from the programmer.  
However, the SIMT architecture exposes a weakness of the 
SM architecture, as the SIMT architecture only reaches full 
capacity of 32 parallel threads only when the control flow of 
all threads is identical (i.e. only the input data differs between 
the threads).  In cases where threads follow divergent control 
paths through if-statements or loops, the threads must be 
serialized.  This results in warps having less than 32 active 
threads.  In the case, the warp must be issued multiple times 
having disjoint sets of active threads.  For example, the warp 
may be issued once with threads 0-15 active, again with 
threads 16-23 active, and again with threads 24-31 active.  
This serialization hinders performance.  As such, the SIMT 
architecture is optimized for data-parallel, control independent 
computations. 

While threads are parallelized within warps and multiple 
warps are executed in parallel, each individual warp is not 
parallelized.  Specifically, only one instance, at most, of any 
warp may be active in the execution pipeline at any time.  
This allows the SM architecture to exclude hardware for 
detecting data hazards among registers.  The programming 
manual also implies that the SM does not perform any type of 
dynamic scheduling, out-of-order instruction execution, 
register renaming, branch prediction, or speculative execution.  
Presumably the lack of these features, which are present in 
nearly any modern microprocessor, constitutes the trade-off 
that allows each SM to contain more registers and functional 
units than modern microprocessors. 

C. CUDA Programming Model 
In this paper we use CUDA as the GPU development 

environment.  The CUDA programming model is a 2-level 
hierarchy that defines groupings that encompass both 
programs and data.  The finest granularity for parallelization is 
the thread, and up to 512 threads can be grouped within a 
block.  All threads within a block share the on-chip shared 
memory, texture cache, and constant cache.  The shared 
memory can be used for inter-thread communication and 
synchronization primitives are available. 

Each block is assigned to a single SM.  Multiple blocks can 
be assigned the same SM at the same time, although the 
maximum number of threads per SM is 1024 so a single SM 
can only support two maximum-sized blocks.  There can be 
more blocks than SMs to execute them, but in this case block 
execution is serialized over the available SMs (the GPU does 
not support context switching).  This gives the CUDA 
programming model transparent scalability.  Blocks are 
organized into a 1, 2, or 3-dimensional grid, which is intended 
to be organized to match the structure of the input data.  The 
maximum grid size is limited to 65535 blocks. 

D. GPU Utilization and Throughput Metrics 
GPU performance can be measured by the CUDA profiler 

using two metrics.  The first is occupancy, which is the ratio 
of active warps to the maximum number of active warps per 
SM.  For our GPU, the maximum number of active warps per 
SM is 16.  Each SM can execute at most 32 active warps, 
equalling at most 1024 threads,  An occupancy of 1 is 
desirable, but it is limited by the number of registers required, 
the amount of shared memory required, and instruction count 
required by the threads.  Occupancy only measures the 
number of active warps per SM, but since the warps 
themselves can either be fully active or partially active, 
occupancy is not an accurate indicator of SM utilization or 
ratio of maximum to actual instruction throughput.  

Instruction throughput ratio is another metric that measures 
the ratio of achieved instruction rate to peak instruction rate.  
Since each warp can have at most one instance of itself in the 
execution pipeline, if all warps are active, no instructions can 
be issued until active instructions complete.  This situation 
causes the instruction throughput ratio to fall below one.  This 
is commonly caused when memory latency cannot be 
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Fig. 1.  FPGA-based SpMV architecture. 

overlapped with arithmetic instructions, by bank conflicts on 
shared memory, and by inactive threads within a warp due to 
thread divergence. 

III. SPARSE MATRIX-VECTOR MULTIPLY (SPMV)
Both the FPGA and GPU SpMV implementations 

described in this paper use the Compressed Sparse Row (CSR) 
format.  The CSR format stores a matrix in three arrays, val,
col, and ptr. val and col contain the value and corresponding 
column number for each non-zero value in the matrix, 
arranged in an order starting with the upper-left of the matrix 
and continuing column-wise left-to-right and then row-wise 
from the top to bottom.  The ptr array stores the indices within 
val and col where each row begins, terminated with a value 
that contains the total length of val and col (i.e. ptr[0]=0, ptr[4] 
= the index within val/col where row 4 begins, ptr[nr]=nz,
where nr = the number of rows and nz = the number of non-
zero values). 

CPU, FPGA, and GPU implementations of sparse matrix-
vector multiply achieve only a fraction of the peak floating-
point throughput [13,14].  It is normally the case that sparse 
matrices are too large to fit in on-chip memory and thus must 
be read from an off-chip source.  Also each storage element of 
the matrix (a double-precision floating-point value and 
corresponding column number) is used only for a single 
multiply-accumulate operation (two floating-point operations).  
This high ratio of communication to computation makes the 
overall computation highly dependent on memory bandwidth. 
  The CSR format allows the matrix data to be read 
sequentially and thus its access pattern is known a priori.  As 
such, the memory access latency can be hidden by making 
multiple outstanding requests for matrix data and “streaming” 
the matrix data into the SpMV co-processor.  The vector data, 
on the other hand, is randomly accessed.  Its access pattern 
depends on the sequence of incoming matrix value column 
numbers.  However, since repeated references can be made to 
a single entry, the vector data has the potential for temporal 
locality.  It is normally the case that the vector is small enough 

to be stored in on-chip memory.  In most cases, multiple 
copies of the vector are stored on-chip to exploit on-chip 
memory parallelism. 

There is also a challenge for implementing the dot-product 
computation.  Since it is not feasible to perform all scalar 
multiplications required for each dot product in parallel, there 
is an unavoidable requirement to perform an accumulation of 
serially-delivered floating-point values.  Since each addition 
performed during the accumulation depends on the result of 
the previous addition, the latency of the adders creates a data 
hazard. 

IV. FPGA SPMV ARCHITECTURES 

In this section we describe previous work in FPGA-based 
SpMV implementations, which are summarized in Table 1.  
There is a significant amount of literature in this area, but we 
only highlight a few significant examples. 

deLorimier and DeHon designed an SpMV architecture that 
worked around the accumulator data hazard by forcing the 
host to statically schedule and zero-pad the input matrix 
values such that the rows are interleaved [15].  However, this 
scheduling adds significant input data overhead that makes the 
architecture’s performance highly dependent on the structure 
of the matrix.  The peak performance of their architecture on a 
Xilinx Virtex-II 6000 was 2240 MFLOPS and on average they 
expect this architecture to achieve 66% of its peak, although 
these results do not include the computational. 

Prasanna’s group at the University of Southern California 
was one of the first to design an SpMV architecture based on 
the design shown in Figure 1 [16].  Prasanna’s design was 
notable for being the first to incorporate a specialized 
“reduction circuit” to solve the dot product accumulation 
problem dynamically, without needing to perform static data 
scheduling.  However, this early reduction circuit had several; 
drawbacks, such as the requirement for it to be flushed 
between matrix rows and a maximum set size.  They 
estimated that their design would achieve approximately 45% 
of its peak performance on average.  Prasanna later developed 
two improved reduction architectures called the double- and 
single-strided adders (DSA, SSA) that solved many of the 
problems of earlier accumulator design [ 17 ].  These new 
architectures required significantly less adders, did not limit 
the maximum number of values that can be accumulated and 
did not need to be flushed between data sets.  However, the 
performance of each of these reduction circuits was limited by 
their extensive control and memory overhead as compared to 
performance of the floating-point adder upon which they were 
based. 

V. GPU SPMV ARCHITECTURES

To date there have been two primary contributions to the 
development of double-precision sparse matrix-vector 
multipliers for NVIDIA GPUs.  The first was developed at 
NVIDIA Research and was noted for supporting a wide range 
of matrix storage representations, including DIA, ELL, HYB, 
and CSR [18].  The second was developed by a group at Ohio 
State, apparently on behalf of IBM [14].  Their 
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Fig. 3.  SpMV Architecture.  The FPGA can read five matrix values and 
their corresponding column values per cycle.  The FPGA associates a 
copy of the input vector, a multiplier, and an accumulator with each.  

Fig 2.  Memory organization of the GPU-based SpMV implementation. 

implementation was built on top of NVIDIA’s SpMV CSR 
kernel and added several optimizations, mostly involving 
memory management. 

Figure 2 shows the memory organization used in their 
implementation.  The matrix was stored in device (off-chip) 
memory, the input vector is stored in texture memory (and 
cached in each SM’s on-chip texture cache), and the output 
vector is stored in the shared memory of each SM. 

To achieve the highest possible off-chip memory 
bandwidth, memory references must be organized carefully in 
the GPU code.  Simultaneous memory accesses by the threads 
in a half-warp may be coalesced into single aligned memory 
transactions of 32, 64, or 128 bytes.  To ensure this, the 
programmer must use the thread ID as an offset within the 
array index to guarantee address alignment. 

In the SpMV implementation, each matrix row is assigned 
among a group of sixteen threads (one half warp).  In other 
words, each thread is assigned one sixteenth of the non-zero 
elements in a row.  The matrix data is pre-processed by the 
host such that each row is zero-padded to force the number of 
non-zero elements per row to be a multiple of sixteen.  Each 
thread exits after processing its portion of the row. 

Each group of sixteen threads can read 64 or 128 bytes in a 
single memory load transaction.  When reading from the val
array, each thread receives eight bytes (one double precision 
value) each, and when reading the corresponding col array, 
each thread receives 4 bytes (one integer) each.  512 threads 
are assigned to each block (the maximum allowable).  This 
allows each block to process 32 rows.  The number of blocks 
is set to total number of rows divided by 32 rounded up. 

In order to determine GPU utilization, we ran a set of test 
matrices through the GPU SpMV implementation using the 
GPU profiler and recorded the occupancy and instruction 
throughput ratio for each matrix.  The input vectors are 
randomly generated. 

Table 3 lists the matrices used in this analysis and GPU 
instruction throughput utilization for each.  Each of the 
matrices were obtained from Matrix Market [19 ] and the 
University of Florida Sparse Matrix Collection [20]. 

The occupancy achieved by the GPU SpMV for all the 
matrices was one, meaning that each thread used a sufficiently 

small amount of registers and shared memory that each SM 
was capable of executing the maximum number of threads 
possible.  Surprisingly, the instruction throughput ratio is 
relatively constant across all matrices, ranging from 0.799 to 
0.886.  However, the GPU’s off-chip memory bandwidth and 
performance in GFLOPS is correlated to the average number 
of non-zero elements per row.  As such, there is a 
performance penalty associated with threads having low 
iteration counts.  The GPU code computes GFLOPS by 
dividing the total number of non-zero elements by two (since 
each element must be multiplied and accumulated) and 
dividing it by the kernel execution time. 

VI. FPGA SPMV ARCHITECTURE

Our SpMV architecture is shown in Figure 3 and is built 
around our novel double precision accumulator architecture.  
The architecture is based on instancing parallel dot product 
modules, each of which includes a copy of the vector in 
BRAM, a multiplier, and an accumulator.  In this 
configuration, each accumulator will perform a dot product 
between the input vector and each row of the input matrix.  
For this to work, all values from each matrix row must be 
mapped to the same accumulator. 

We chose this organization rather than the one depicted in 
Figure 1 for two reasons.  First, the accumulator architecture, 
which we describe below, has a minimum set size of eight, 
which gives us a minimum number of non-zero values per row 
as eight.  In the original organization shown in Figure 1, the 
minimum number of non-zero values per row would instead 
be the product of eight and the number of multipliers (40 in 
this case).  Second, in this new configuration each 
accumulator functions independently, which allows the 
architecture to easily be scaled up for FPGA boards that 
provide more memory bandwidth than ours as long as there 
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are sufficient resources on the FPGA.  However, in order to 
guarantee this data mapping, the matrix data must be 
scheduled. 

Our FPGA card, the Annapolis Micro Systems WildStar-II 
Pro, has a 432-bit interface to its on board SRAM (six banks 
of 36-bit wide DDR2 SRAM).  Using 16-bit column values 
requires 80 bits per value/column pair, thus our SpMV 
architecture can read five value/column pairs per cycle (using 
400 of the 432 bits).  This is equivalent to a memory 
bandwidth of 5 GB/s at a 100 MHz clock and 10 GB/s at a 
200 MHz clock.  Note that this is approximately six times less 
bandwidth than our GeForce GTX 260 card and 8-16% of its 
1.24 GHz clock rate (note the GPU was manufactured on a 65 
nm process, the FPGA on 0.13 process). 

A. Data Scheduling 
The matrix data must be pre-processed and scheduled 

before being sent to the FPGA card’s on-board memory.  In 
the hardware design, each of the five multipliers keep track of 
which matrix row is currently being processed, and they are 
initialized with rows 0, 1, 2, 3, and 4.  Non-zero values from 
each matrix row are scheduled to be sent to a single multiplier 
until all the non-zero values from the row are exhausted.  At 
this point, there is a zero termination where the value is set to 
0.0 and the column value is used to specify which row will 
scheduled to appear next for that multiplier. 

Since our accumulator requires a minimum set size of eight 
non-zero values, any rows that have less than this number 
must be zero-padded.  Zero padding must also be used near 
the end of the matrix data when there are less than five rows 
that still contain non-zero values in the matrix data.  Pad 
values have a value of 0.0 and a column value of 0. 

Figure 4 shows an example of a matrix data file.  As shown, 
the matrix data is constructed as a sequence of 400-bit packets, 
corresponding to the FPGA’s memory interface width.  Each 
packet contains five slots, one for each accumulator.  In the 
figure, the first subscripted value represents to the row number.  
The second subscripted value counts each non-zero value in 
the row. 

B. Accumulator Architecture 
Our top-level accumulator architecture is shown in Figure 5.  

As shown in the figure, the first two stages are used to 
condition the incoming value.  The base conversion step (box 
1) converts the incoming value from base 2 to an arbitrary 
base, which is set as a “generic” parameter in our VHDL.  For 
base b, this step performs the following: 
1. adds a 1-bit to the left-hand side of the 52-bit significand 

value (the implied leading digit to the left of the decimal 
point), 

2. shifts the significand value to the left by the value stored 
in the low order lg b bits in the exponent field (note that 
this effectively adds b - 1 bits to the width of the 
significand), 

3. strips the lower lg b bits from the exponent, and 
4. adds a zero sign bit and zero carry-out bit (“00”) to the 

left side of the resultant (53 + b - 1)-bit base-b significand 
value, resulting in (54 + b) total bits. 

The next stage performs an arithmetic negation of this 
value if the original sign bit was set to one (box 2). 

The third stage is where the de-normalize (box 4) and 
significand addition begins.  This is comprised of the 
following steps: 
1. compare the high-order 11-(lg b) bits of exp1 and exp2

(corresponding to base-b significands sig1 and sig2), 
2. if exp1 > exp2, shift sig2 to the right by b*(exp1-exp2)

bits, else shift sig1 to the right by b*(exp2-exp1) bits, 
3. add the resultant sig1 and sig2, and 
4. if the addition caused the carry out bit to be set to one, 

add one to max(exp1,exp2) and shift the sum b bits to the 
right (box 5). 

This series of steps involves sequential operations on both 

Fig. 5.  Top-level design of accumulator architecture.  Alpha represents the pipeline latency of de-normalize/addition datapath.

Fig. 4. Matrix data scheduling technique.  In this case, 400-bit “packets,” that 
are read each cycle, are composed of five “slots”—one for each accumulator. 
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the high order bits of the original exponent and the base-
converted significands.  Larger values of b will result in lower 
latency exponent operations but a wider and thus higher 
latency integer addition, while lower values of b will result in 
wider and thus higher latency exponent operations and lower 
latency integer addition. 

Table 1 shows how the exponent comparison (and exponent 
subtraction) width versus adder width scale as the base is 
increased.  The remaining stages are used to re-condition the 
base-converted sum into IEEE 754 format.  Box 6 computes 
the absolute value of the sum.  In the next stage, box 7 counts 
the number of leading zeros.  In the next stage, box 8 uses this 
information to shift the significand and adjust the exponent in 
order to convert the significant back to base 2 and then to re-
normalize.  The last stage repackages the value into IEEE 754 
format. 

Since the de-normalize/add step is the critical logic path in 
the accumulator design, the trade-off between the exponent 
comparator width and the adder width will give different 
levels of circuit performance as the base is varied.  In order to 
determine the base that provides the highest performance, we 
synthesized versions of the design shown in Figure 5 over a 
range of base values. 

For each base value, we also added delays to the outputs of 
the de-normalize/add stage and enabled retiming and 
pipelining in the synthesizer to give it the ability to further 
pipeline the normalize/add step.  In other words, we added 
cycles of latency to the de-normalize/add step to improving 
the overall pipeline speed of the accumulator.  Note that in 
addition to pipelining the exponent comparison, exponent 
subtraction, and significand addition, there are also two 
shifters involved in this step (de-normalize and renormalize in 
the case of a carry-out). 

In this analysis, the versions of the design having a de-
normalize/add latency greater than one are not functionally 
correct without the addition of the reduction features 
described later in this paper.   However, since this analysis is 
for timing only, and because the reduction features will 
require only minimal timing overhead, we do not include them 
in this analysis.   Our analysis included base values ranging 
from 4 to 512.  We used Synplify Pro 8.8.0.4 as the synthesis 
tool and targeted our in-house Virtex-2 Pro 100 FPGA.  From 
these results, we have selected a pipeline depth of 3 and base 
values of 32 to 128 for carrying the accumulator design 
forward into the later steps of the design flow. 

C. Reduction Circuit 
The de-normalize/add step is pipelined over three stages 

and thus creates a data hazard.  To solve this, we designed a 
novel reduction circuit that is specifically tailored to operate 
over this shallow pipeline, which allows the reduction 
algorithm to be simplified and thus not impose control 
overhead on the performance of the adder.  The trade-off 
required for the simplified implementation is a minimum set 
size, but since it is computed as a function of the adder latency 
it doesn’t present a significant problem.  For a three cycle 

latency the minimum set size is eight, which is small enough 
to be manageable for this application. 

Under normal operation, the reduction circuit operates in 
steady-state mode where it routes the current input value and 
the output of the pipeline back into the input of the pipeline.  
In this operating state, the pipeline contains � partial sums, 
where � is the pipeline depth.  When there is a change in input 
set, the pipeline must take a series of actions to coalesce these 
partial sums while still accepting values from the next input 
set. 

As shown in Figure 6, our reduction circuit design requires 
a single input buffer and a single output buffer.  The inputs to 
the pipeline can be routed according to the following four 
different configurations: 
� Configuration A:  buffer the incoming value, route the 

buffered output value and the output currently being 
produced by the pipeline back into the pipeline.  For a 
pipeline depth of �, this must occur once for every 
internal node of a binary tree having � leaves, equalling 
��- 1 occurrences.  To ensure that the buffer depth may 
be limited to one, the value in the input buffer must be 
consumed (using configuration C) once between each 
instance of configuration A. 

� Configuration B:  add the incoming value with the 
value currently being produced by the pipeline.  This is 
the “steady-state” configuration, and is used when 
accumulating the current input set into � partial sums.   

� Configuration C:  add the buffered input value with 
the incoming input value.  This occurs during cycles 
when the output of the pipeline need not re-enter the 
pipeline.  This includes the cycles where the pipeline 
output is buffered (which must occur once before the 
architecture enters configuration A) and the cycles 
where an input set is reduced to a final sum (which 
occurs once per input set). 

� Configuration D:  add the incoming value with zero.  
This only occurs one time per input set, prior to the first 
time an input is buffered.  

For a pipeline depth of � = 3, starting with the first cycle 
where the incoming value belongs to a new input set, the 
controller will instruct the reduction circuit to cycle through a 
deterministic series of configuration changes for the following 
eight cycles.  This sequence of configurations will reduce the 
previous input set to a single sum while continuing to accept 
values from the new input set.  The required controller can be 
implemented as a single 9-state FSM, where all state 
transitions are unconditional except for the condition when the 
next input set differs from the current input set.  This is 
detected by comparing the input set from stage 3 and stage 2 
in the top-level accumulator pipeline.  Starting with the cycle 
immediately prior to an input set change (i.e. row number 
change), the controller cycles through the sequence B, D, A, C, 
B, A, B, B, C, B/D (depending if a new set enters this cycle). 

Routing can be performed with a 2-input mux before the 
first input and a 3-input mux before the second input to the de-
normalize/add pipeline.  Note that each input value consists of 
a (54 + b)-bit significand and a (11-lg b)-bit upper exponent 
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TABLE II
TEST MATRICES AND PERFORMANCE RESULTS

Matrix GPU Performance Metrics FPGA Performance Metrics 

Matrix 
Order/ 

dimensions nz

Ave. 
nz/row 

Inst. 
Thrghpt. 

Mem. 
Bndwdth. GFLOPS 

Data 
Utilization 
@actual 

bandwidth 

GFLOPS 
at 170 

MHz (8.5 
GB/s)  

Data 
Utilization 
@adjusted 
bandwidth 

Adj. 
GFLOPS 

TSOPF_RS_b162_c3 15374 610299 40 0.799 58.00
GB/s 10.08 0.941 1.60 

0.940 
@51.0 

GB/s (x6) 
9.59 

E40r1000 17281 553562 32 0.859 57.03
GB/s 8.76 0.970 1.65 

0.968 
@51.0 

GB/s (x6) 
9.87 

Simon/olafu 16146 1015156 32 0.824 52.58
GB/s 8.52 0.984 1.67 

0.983 
@51.0 

GB/s (x6) 
10.03 

Garon/garon2 13535 373235 29 0.814 49.16
GB/s 7.18 0.965 1.64 

0.963 
@42.5 
GB/s 
(x5) 

8.18 

Mallya/lhr11c 10964 233741 21 0.839 40.23
GB/s 5.10 0.875 1.49 

0.873 
@34 GB/s 

(x4) 
5.94 

Hollinger/ 
mark3jac020sc 9129 52883 6 0.842 26.64

GB/s 1.58 0.646 1.10 
0.643 
@25.5 

GB/s (x3) 
3.28 

Bai/dw8192 8192 41746 5 0.827 25.68
GB/s 1.28 0.637 1.08 

0.635 
@25.5 

GB/s (x3) 
3.24 

YCheng/psse1 14318 x 
11028 57376 4 0.875 27.66 

GB/s 1.24 0.498 0.85 
0.497 
@25.5 

GB/s (x3) 
2.54 

GHS_indef/ 
ncvxqp1 12111 73963 3 0.886 27.08

GB/s 0.98 0.663 1.13 
0.662 
@25.5 

GB/s (x3) 
3.38 

value.  The controller also raises the data_valid flag to 
indicate the output sum is valid for each input set. 

The reduction algorithm described above has a latency that 
inherently requires a minimum set size in order to allow for 
the coalesce process for the previous input set to finish before 
the current set ends.  For a pipeline depth of �, the minimum 

set size is � � 11lg ���� cycles, since after each �-cycle
pass, there are half the number of partial sums in the pipeline.  
As shown in the example above, the minimum set size for 
�=3 is 8, while for �=4 is 11.  Note that for deeper pipelines, 
the minimum set size imposed by this reduction algorithm is 
prohibitive. 

VII. EXPERIMENTAL RESULTS

Table 2 shows the performance results of both the GPU and 
FPGA SpMV implementations.  For the FPGA results, we 
compute the GFLOPS using the same method as the GPU 
implementation, where the execution time is divided by the 
number of non-zero values from the matrix multiplied by 2.  
The utilization column indicates the number of non-zero 
matrix values stored in the input data divided by the total 
number of entries, showing the level of zero-padding required 
by each matrix when encoded into the data format required by 
the FPGA implementation.  

Our FPGA SpMV implementation operates at 170 MHz on 
our Annapolis Micro Systems WILSTAR 2 Pro card.  The 
clock speed is limited by the maximum operating speed of the 

Fig. 6.  Configuration states for the reduction circuit. 

TABLE I
EXPONENT COMPARISON WIDTH VS. ADDER WIDTH

Base 
Exponent 
Compare 

Adder 
Width 

2 11 54 
32 6 86 
64 5 118 

128 4 182 
256 3 310 
512 2 566 
1024 1 1078 
2048 0 2102 
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accumulators (note that the Virtex-2 Pro does not contain any 
hardware adders like the Virtex-4 and later—as such, the 
adders in our implementation are implemented are LUT-
based).  This gives a maximum theoretical throughput of 1.7 
GFLOPS.  The actual time required by the FPGA 
implementation depends on the level of encoding overhead 
required by the data encoding format, which depends on the 
structure of the matrix. 

Our FPGA card has significantly less memory bandwidth 
than our GPU card, but this is due to limitations of the 
FPGA’s system board and not of the FPGA (i.e. our board 
only devotes 396 of the Virtex-2 Pro’s 1164 user I/O pins for 
its six SRAM banks and the on-board SRAM modules 
themselves are relatively low speed).  As a result, for each test 
we also provide a theoretical result where the performance of 
the FPGA architecture is scaled by the memory bandwidth 
achieved by the GPU for each test.  Note that in this scaling, 
we do not account for the possibility that the scaled 
architecture will not fit in the available FPGA resources or if 
there enough user-defined pins on the FPGA to support the 
scaled bandwidth amount (although our architecture and data 
encoding format can be trivially scaled across multiple 
FPGAs). 

We do, however, consider the effect that scaling will have 
on matrix encoding efficiency, since increasing the packet size 
will decrease the utilization.  This occurs as a result of 
additional zero padding that is necessary near the end of the 
matrix data when the number of remaining rows is less than 
the number of slots in the scaled packet. 

While these theoretical results provide a more fair 
comparison between the FPGA and GPU, there are still biased 
toward the GPU.  This is because, as shown in the table, the 
bandwidth achieved by the GPU depends on the number of 
non-zero entries of the input matrix.  This is presumably due 
to the fact that smaller matrices generate less threads and thus 
less warps to cover memory latency of the other warps.  This 
leads to lower average instruction throughput (due to the load 
instructions), which results is lower effective memory 
bandwidth.  On the other hand, the FPGA implementation will 
always use all of its available memory bandwidth reading the 
formatted matrix file regardless of the size of the input matrix.  
Even so, even when given equivalent memory bandwidth to 
the GPU’s effective bandwidth for each matrix, the FPGA 
exceeds the GPU implementation in all but one of the tests. 

VIII. CONCLUSIONS

In this paper we describe and compare the implementation 
and performance of a GPU and FPGA SpMV kernel.  The 
GPU greatly outperforms the FPGA, but the FPGA co-
processor board is severely disadvantaged by low memory 
bandwidth as compared to the GPU co-processor board.  The 
FPGA exceeds the performance to the GPU when its memory 
bandwidth is artificially scaled to match the bandwidth 
achieved by the GPU.  This is primarily due to the ability to 
design a customized accumulator architecture for the FPGA 
implementation, allowing it to make more efficient use of the 
memory bandwidth. 
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