
FPGA vs. GPU for Sparse Matrix Vector Multiply
Yan Zhang1, Yasser H. Shalabi1, Rishabh Jain2, Krishna K. Nagar1, Jason D. Bakos1

Dept. of Computer Science and Engineering, Univ. of South Carolina
Columbia, SC 29208 USA

{zhangy,shalabi,nagar,jbakos}@engr.sc.edu1

rishabh.iitd.11@gmail.com2

Abstract—Sparse matrix-vector multiplication (SpMV) is a
common operation in numerical linear algebra and is the
computational kernel of many scientific applications. It is one of
the original and perhaps most studied targets for FPGA
acceleration. Despite this, GPUs, which have only recently
gained both general-purpose programmability and native
support for double precision floating-point arithmetic, are
viewed by some as a more effective platform for SpMV and
similar linear algebra computations. In this paper, we present an
analysis comparing an existing GPU SpMV implementation to
our own, novel FPGA implementation. In this analysis, we
describe the challenges faced by any SpMV implementation, the
unique approaches to these challenges taken by both FPGA and
GPU implementations, and their relative performance for
SpMV.

I. INTRODUCTION

FPGAs have been used as co-processors for scientific
computing for many years. Recently, GPUs have begun to
rapidly grow in this role. On the surface, GPUs seem to have
several clear advantages over FPGAs: easier to program, less
expensive in both hardware and development software, more
ubiquitous, and have manufacturer-backed, standardized, and
consistent programming abstractions, programming models,
host interfaces, and system architectures.

GPUs are quickly becoming the dominant platforms for
computational accelerators. GPUs have already demonstrated
success in accelerating statistical phylogenetics [1], biological
sequence alignment [2,3], image processing [4,5],network
modelling [6], and computing cosmological data analysis [7].

Recent studies that have directly compared FPGAs and
GPUs for scientific computing have concluded that GPUs do
indeed outperform and are easier to program than FPGAs for
several types of computations [8,9,10,11]. However, given
that both technologies exploit parallelism using different
techniques, it is clear that any comparisons between them
must consider a particular type of computation.

One common computation that has not yet been used in a
comparative study is sparse matrix-vector multiplication
(SpMV). SpMV describes solving y = Ax, where y and x are
vectors and A is a large matrix that is mostly composed of
zero entries. SpMV is used as the kernel for many scientific
applications, including those that include iterative linear
system solvers (which is a kernel for solving many scientific
problems such as approximating systems of partial differential
equations).

Double-precision SpMV is a popular target for FPGA
implementation because it is a notoriously difficult
computation to accelerate. There are two reasons for this.

First, the performance of any implementation is inherently
dependent on memory bandwidth. Second, each element of
the result vector must ultimately be computed by an
accumulation of serially-delivered values, and the
accumulation must be performed using a potentially deeply-
pipelined double-precision floating-point adder. This creates
a data hazard between each value to be accumulated and the
previous value of the running sum.

In this paper, we describe a novel FPGA-based SpMV
architecture that is built around our customized double-
precision floating-point accumulator. Unlike FPGA
application development, it is not possible to develop and
integrate custom arithmetic units into GPU applications, so we
use this as an opportunity to compare this SpMV architecture
and its performance to an existing state-of-the-art
implementation of a GPU-based SpMV kernel. We show that,
despite the GPU’s advantages in ease of programming, clock
speed, and memory bandwidth, the GPU’s inability to tailor
the lower-level features of its microarchitecture limits its
performance for certain types of computations.

II. GRAPHICS PROCESSOR UNITS

Early implementations of non-graphics-based accelerators
were achieved by mapping the desired general-purpose
behaviors onto existing graphics APIs such as OpenGL and
ActiveX. This technique was originally termed “General
Purpose GPU (GPGPU)”. However, this practice is no longer
necessary, as general-purpose development environments and
parallel programming models have recently become available
for GPUs, including Compute Unified Device Architecture
(CUDA), Stream (SDK), and OpenCL. In this section, we
provide a brief overview of current-generation NVIDIA GPUs
and the CUDA programming framework.

A. GPU Memory Hierarchy
NVIDIA’s Tesla architecture, the GPU microarchitecture

that we target in this paper, has a complex memory
organization with multiple types of on-chip memories as well
as off-chip, on-board DRAM. Each of these memories is
optimized for specific access patterns, and one of the primary
challenges when writing GPU code lies in efficiently mapping
input, output, and state data to these memories, which for the
most part must be manually performed by the program code.

The off-chip, on-board memory, called the “device
memory,” can be read and written by both the host and the
GPU and its synchronization is handled by the execution
framework. This memory is primarily used for sharing input

978-1-4244-4377-2/09/$25.00 © 2009 IEEE FPT 2009255

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

and output data between the host and GPU, but can also be
used as a backing store for the GPU to store state data. The
GPU’s on-chip memories are generally used for intermediate
results and caching input data.

B. GPU Microarchitecture
An overview of the NVIDIA GPU microarchitecture is

provided in the CUDA Programming Manual [12]. At the top
level, the GPU consists of a set of “streaming multiprocessors
(SM)”. State-of-the-art GPUs have approximately 30 SMs
(the GeForce GTX 260 card we use in our experiments has 27
as reported by the API but only 24 as reported in the
programming manual).

Each SM contains an on-chip, programmer-controlled static
memory called the shared memory, since this memory space is
shared by all the threads running on the SM. This memory
size is 16K x 32 bits and is organized in sixteen banks.

Each SM also contains two hardware-maintained, read-only
caches that are hardware managed and therefore behave as a
traditional memory cache to the off-chip texture memory and
the constant memory. These caches are optimized for 3D
rendering computations but are available for use for other
types of computations.

Within each SM, there are eight scalar processor (SP) cores.
Each SP contains its own register file that is managed by the
compiler. There are 16,384 32-bit registers per SM (2,048 per
SP). Organized this way, our GPU is effectively a 27 x 8 =
216-core, single-chip (“manycore”) multiprocessor.

Each SM contains an issue unit that issues a single
instruction across all eight SPs, and each of these can execute
four copies of the instruction in parallel. Each SM is thus
capable of issuing a single instruction (but with different
operands) from up to 32 threads in true parallel. However,
this is only possible when all the threads are executing the
same instruction. In other words, it requires that all 32 threads
to agree on a common execution path (i.e. no divergent
control behavior). A grouping of threads that are grouped for
this reason is referred to as a warp.

This approach is referred to as the SIMT (single-instruction,
multiple-thread) technique. SIMT is similar to SIMD (single-
instruction, multiple data), with the key difference being that
SIMT abstracts away the data width from the programmer.
However, the SIMT architecture exposes a weakness of the
SM architecture, as the SIMT architecture only reaches full
capacity of 32 parallel threads only when the control flow of
all threads is identical (i.e. only the input data differs between
the threads). In cases where threads follow divergent control
paths through if-statements or loops, the threads must be
serialized. This results in warps having less than 32 active
threads. In the case, the warp must be issued multiple times
having disjoint sets of active threads. For example, the warp
may be issued once with threads 0-15 active, again with
threads 16-23 active, and again with threads 24-31 active.
This serialization hinders performance. As such, the SIMT
architecture is optimized for data-parallel, control independent
computations.

While threads are parallelized within warps and multiple
warps are executed in parallel, each individual warp is not
parallelized. Specifically, only one instance, at most, of any
warp may be active in the execution pipeline at any time.
This allows the SM architecture to exclude hardware for
detecting data hazards among registers. The programming
manual also implies that the SM does not perform any type of
dynamic scheduling, out-of-order instruction execution,
register renaming, branch prediction, or speculative execution.
Presumably the lack of these features, which are present in
nearly any modern microprocessor, constitutes the trade-off
that allows each SM to contain more registers and functional
units than modern microprocessors.

C. CUDA Programming Model
In this paper we use CUDA as the GPU development

environment. The CUDA programming model is a 2-level
hierarchy that defines groupings that encompass both
programs and data. The finest granularity for parallelization is
the thread, and up to 512 threads can be grouped within a
block. All threads within a block share the on-chip shared
memory, texture cache, and constant cache. The shared
memory can be used for inter-thread communication and
synchronization primitives are available.

Each block is assigned to a single SM. Multiple blocks can
be assigned the same SM at the same time, although the
maximum number of threads per SM is 1024 so a single SM
can only support two maximum-sized blocks. There can be
more blocks than SMs to execute them, but in this case block
execution is serialized over the available SMs (the GPU does
not support context switching). This gives the CUDA
programming model transparent scalability. Blocks are
organized into a 1, 2, or 3-dimensional grid, which is intended
to be organized to match the structure of the input data. The
maximum grid size is limited to 65535 blocks.

D. GPU Utilization and Throughput Metrics
GPU performance can be measured by the CUDA profiler

using two metrics. The first is occupancy, which is the ratio
of active warps to the maximum number of active warps per
SM. For our GPU, the maximum number of active warps per
SM is 16. Each SM can execute at most 32 active warps,
equalling at most 1024 threads, An occupancy of 1 is
desirable, but it is limited by the number of registers required,
the amount of shared memory required, and instruction count
required by the threads. Occupancy only measures the
number of active warps per SM, but since the warps
themselves can either be fully active or partially active,
occupancy is not an accurate indicator of SM utilization or
ratio of maximum to actual instruction throughput.

Instruction throughput ratio is another metric that measures
the ratio of achieved instruction rate to peak instruction rate.
Since each warp can have at most one instance of itself in the
execution pipeline, if all warps are active, no instructions can
be issued until active instructions complete. This situation
causes the instruction throughput ratio to fall below one. This
is commonly caused when memory latency cannot be

256

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. FPGA-based SpMV architecture.

overlapped with arithmetic instructions, by bank conflicts on
shared memory, and by inactive threads within a warp due to
thread divergence.

III. SPARSE MATRIX-VECTOR MULTIPLY (SPMV)
Both the FPGA and GPU SpMV implementations

described in this paper use the Compressed Sparse Row (CSR)
format. The CSR format stores a matrix in three arrays, val,
col, and ptr. val and col contain the value and corresponding
column number for each non-zero value in the matrix,
arranged in an order starting with the upper-left of the matrix
and continuing column-wise left-to-right and then row-wise
from the top to bottom. The ptr array stores the indices within
val and col where each row begins, terminated with a value
that contains the total length of val and col (i.e. ptr[0]=0, ptr[4]
= the index within val/col where row 4 begins, ptr[nr]=nz,
where nr = the number of rows and nz = the number of non-
zero values).

CPU, FPGA, and GPU implementations of sparse matrix-
vector multiply achieve only a fraction of the peak floating-
point throughput [13,14]. It is normally the case that sparse
matrices are too large to fit in on-chip memory and thus must
be read from an off-chip source. Also each storage element of
the matrix (a double-precision floating-point value and
corresponding column number) is used only for a single
multiply-accumulate operation (two floating-point operations).
This high ratio of communication to computation makes the
overall computation highly dependent on memory bandwidth.
 The CSR format allows the matrix data to be read
sequentially and thus its access pattern is known a priori. As
such, the memory access latency can be hidden by making
multiple outstanding requests for matrix data and “streaming”
the matrix data into the SpMV co-processor. The vector data,
on the other hand, is randomly accessed. Its access pattern
depends on the sequence of incoming matrix value column
numbers. However, since repeated references can be made to
a single entry, the vector data has the potential for temporal
locality. It is normally the case that the vector is small enough

to be stored in on-chip memory. In most cases, multiple
copies of the vector are stored on-chip to exploit on-chip
memory parallelism.

There is also a challenge for implementing the dot-product
computation. Since it is not feasible to perform all scalar
multiplications required for each dot product in parallel, there
is an unavoidable requirement to perform an accumulation of
serially-delivered floating-point values. Since each addition
performed during the accumulation depends on the result of
the previous addition, the latency of the adders creates a data
hazard.

IV. FPGA SPMV ARCHITECTURES

In this section we describe previous work in FPGA-based
SpMV implementations, which are summarized in Table 1.
There is a significant amount of literature in this area, but we
only highlight a few significant examples.

deLorimier and DeHon designed an SpMV architecture that
worked around the accumulator data hazard by forcing the
host to statically schedule and zero-pad the input matrix
values such that the rows are interleaved [15]. However, this
scheduling adds significant input data overhead that makes the
architecture’s performance highly dependent on the structure
of the matrix. The peak performance of their architecture on a
Xilinx Virtex-II 6000 was 2240 MFLOPS and on average they
expect this architecture to achieve 66% of its peak, although
these results do not include the computational.

Prasanna’s group at the University of Southern California
was one of the first to design an SpMV architecture based on
the design shown in Figure 1 [16]. Prasanna’s design was
notable for being the first to incorporate a specialized
“reduction circuit” to solve the dot product accumulation
problem dynamically, without needing to perform static data
scheduling. However, this early reduction circuit had several;
drawbacks, such as the requirement for it to be flushed
between matrix rows and a maximum set size. They
estimated that their design would achieve approximately 45%
of its peak performance on average. Prasanna later developed
two improved reduction architectures called the double- and
single-strided adders (DSA, SSA) that solved many of the
problems of earlier accumulator design [17]. These new
architectures required significantly less adders, did not limit
the maximum number of values that can be accumulated and
did not need to be flushed between data sets. However, the
performance of each of these reduction circuits was limited by
their extensive control and memory overhead as compared to
performance of the floating-point adder upon which they were
based.

V. GPU SPMV ARCHITECTURES

To date there have been two primary contributions to the
development of double-precision sparse matrix-vector
multipliers for NVIDIA GPUs. The first was developed at
NVIDIA Research and was noted for supporting a wide range
of matrix storage representations, including DIA, ELL, HYB,
and CSR [18]. The second was developed by a group at Ohio
State, apparently on behalf of IBM [14]. Their

257

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. SpMV Architecture. The FPGA can read five matrix values and
their corresponding column values per cycle. The FPGA associates a
copy of the input vector, a multiplier, and an accumulator with each.

Fig 2. Memory organization of the GPU-based SpMV implementation.

implementation was built on top of NVIDIA’s SpMV CSR
kernel and added several optimizations, mostly involving
memory management.

Figure 2 shows the memory organization used in their
implementation. The matrix was stored in device (off-chip)
memory, the input vector is stored in texture memory (and
cached in each SM’s on-chip texture cache), and the output
vector is stored in the shared memory of each SM.

To achieve the highest possible off-chip memory
bandwidth, memory references must be organized carefully in
the GPU code. Simultaneous memory accesses by the threads
in a half-warp may be coalesced into single aligned memory
transactions of 32, 64, or 128 bytes. To ensure this, the
programmer must use the thread ID as an offset within the
array index to guarantee address alignment.

In the SpMV implementation, each matrix row is assigned
among a group of sixteen threads (one half warp). In other
words, each thread is assigned one sixteenth of the non-zero
elements in a row. The matrix data is pre-processed by the
host such that each row is zero-padded to force the number of
non-zero elements per row to be a multiple of sixteen. Each
thread exits after processing its portion of the row.

Each group of sixteen threads can read 64 or 128 bytes in a
single memory load transaction. When reading from the val
array, each thread receives eight bytes (one double precision
value) each, and when reading the corresponding col array,
each thread receives 4 bytes (one integer) each. 512 threads
are assigned to each block (the maximum allowable). This
allows each block to process 32 rows. The number of blocks
is set to total number of rows divided by 32 rounded up.

In order to determine GPU utilization, we ran a set of test
matrices through the GPU SpMV implementation using the
GPU profiler and recorded the occupancy and instruction
throughput ratio for each matrix. The input vectors are
randomly generated.

Table 3 lists the matrices used in this analysis and GPU
instruction throughput utilization for each. Each of the
matrices were obtained from Matrix Market [19] and the
University of Florida Sparse Matrix Collection [20].

The occupancy achieved by the GPU SpMV for all the
matrices was one, meaning that each thread used a sufficiently

small amount of registers and shared memory that each SM
was capable of executing the maximum number of threads
possible. Surprisingly, the instruction throughput ratio is
relatively constant across all matrices, ranging from 0.799 to
0.886. However, the GPU’s off-chip memory bandwidth and
performance in GFLOPS is correlated to the average number
of non-zero elements per row. As such, there is a
performance penalty associated with threads having low
iteration counts. The GPU code computes GFLOPS by
dividing the total number of non-zero elements by two (since
each element must be multiplied and accumulated) and
dividing it by the kernel execution time.

VI. FPGA SPMV ARCHITECTURE

Our SpMV architecture is shown in Figure 3 and is built
around our novel double precision accumulator architecture.
The architecture is based on instancing parallel dot product
modules, each of which includes a copy of the vector in
BRAM, a multiplier, and an accumulator. In this
configuration, each accumulator will perform a dot product
between the input vector and each row of the input matrix.
For this to work, all values from each matrix row must be
mapped to the same accumulator.

We chose this organization rather than the one depicted in
Figure 1 for two reasons. First, the accumulator architecture,
which we describe below, has a minimum set size of eight,
which gives us a minimum number of non-zero values per row
as eight. In the original organization shown in Figure 1, the
minimum number of non-zero values per row would instead
be the product of eight and the number of multipliers (40 in
this case). Second, in this new configuration each
accumulator functions independently, which allows the
architecture to easily be scaled up for FPGA boards that
provide more memory bandwidth than ours as long as there

258

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

are sufficient resources on the FPGA. However, in order to
guarantee this data mapping, the matrix data must be
scheduled.

Our FPGA card, the Annapolis Micro Systems WildStar-II
Pro, has a 432-bit interface to its on board SRAM (six banks
of 36-bit wide DDR2 SRAM). Using 16-bit column values
requires 80 bits per value/column pair, thus our SpMV
architecture can read five value/column pairs per cycle (using
400 of the 432 bits). This is equivalent to a memory
bandwidth of 5 GB/s at a 100 MHz clock and 10 GB/s at a
200 MHz clock. Note that this is approximately six times less
bandwidth than our GeForce GTX 260 card and 8-16% of its
1.24 GHz clock rate (note the GPU was manufactured on a 65
nm process, the FPGA on 0.13 process).

A. Data Scheduling
The matrix data must be pre-processed and scheduled

before being sent to the FPGA card’s on-board memory. In
the hardware design, each of the five multipliers keep track of
which matrix row is currently being processed, and they are
initialized with rows 0, 1, 2, 3, and 4. Non-zero values from
each matrix row are scheduled to be sent to a single multiplier
until all the non-zero values from the row are exhausted. At
this point, there is a zero termination where the value is set to
0.0 and the column value is used to specify which row will
scheduled to appear next for that multiplier.

Since our accumulator requires a minimum set size of eight
non-zero values, any rows that have less than this number
must be zero-padded. Zero padding must also be used near
the end of the matrix data when there are less than five rows
that still contain non-zero values in the matrix data. Pad
values have a value of 0.0 and a column value of 0.

Figure 4 shows an example of a matrix data file. As shown,
the matrix data is constructed as a sequence of 400-bit packets,
corresponding to the FPGA’s memory interface width. Each
packet contains five slots, one for each accumulator. In the
figure, the first subscripted value represents to the row number.
The second subscripted value counts each non-zero value in
the row.

B. Accumulator Architecture
Our top-level accumulator architecture is shown in Figure 5.

As shown in the figure, the first two stages are used to
condition the incoming value. The base conversion step (box
1) converts the incoming value from base 2 to an arbitrary
base, which is set as a “generic” parameter in our VHDL. For
base b, this step performs the following:
1. adds a 1-bit to the left-hand side of the 52-bit significand

value (the implied leading digit to the left of the decimal
point),

2. shifts the significand value to the left by the value stored
in the low order lg b bits in the exponent field (note that
this effectively adds b - 1 bits to the width of the
significand),

3. strips the lower lg b bits from the exponent, and
4. adds a zero sign bit and zero carry-out bit (“00”) to the

left side of the resultant (53 + b - 1)-bit base-b significand
value, resulting in (54 + b) total bits.

The next stage performs an arithmetic negation of this
value if the original sign bit was set to one (box 2).

The third stage is where the de-normalize (box 4) and
significand addition begins. This is comprised of the
following steps:
1. compare the high-order 11-(lg b) bits of exp1 and exp2

(corresponding to base-b significands sig1 and sig2),
2. if exp1 > exp2, shift sig2 to the right by b*(exp1-exp2)

bits, else shift sig1 to the right by b*(exp2-exp1) bits,
3. add the resultant sig1 and sig2, and
4. if the addition caused the carry out bit to be set to one,

add one to max(exp1,exp2) and shift the sum b bits to the
right (box 5).

This series of steps involves sequential operations on both

Fig. 5. Top-level design of accumulator architecture. Alpha represents the pipeline latency of de-normalize/addition datapath.

Fig. 4. Matrix data scheduling technique. In this case, 400-bit “packets,” that
are read each cycle, are composed of five “slots”—one for each accumulator.

259

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

the high order bits of the original exponent and the base-
converted significands. Larger values of b will result in lower
latency exponent operations but a wider and thus higher
latency integer addition, while lower values of b will result in
wider and thus higher latency exponent operations and lower
latency integer addition.

Table 1 shows how the exponent comparison (and exponent
subtraction) width versus adder width scale as the base is
increased. The remaining stages are used to re-condition the
base-converted sum into IEEE 754 format. Box 6 computes
the absolute value of the sum. In the next stage, box 7 counts
the number of leading zeros. In the next stage, box 8 uses this
information to shift the significand and adjust the exponent in
order to convert the significant back to base 2 and then to re-
normalize. The last stage repackages the value into IEEE 754
format.

Since the de-normalize/add step is the critical logic path in
the accumulator design, the trade-off between the exponent
comparator width and the adder width will give different
levels of circuit performance as the base is varied. In order to
determine the base that provides the highest performance, we
synthesized versions of the design shown in Figure 5 over a
range of base values.

For each base value, we also added delays to the outputs of
the de-normalize/add stage and enabled retiming and
pipelining in the synthesizer to give it the ability to further
pipeline the normalize/add step. In other words, we added
cycles of latency to the de-normalize/add step to improving
the overall pipeline speed of the accumulator. Note that in
addition to pipelining the exponent comparison, exponent
subtraction, and significand addition, there are also two
shifters involved in this step (de-normalize and renormalize in
the case of a carry-out).

In this analysis, the versions of the design having a de-
normalize/add latency greater than one are not functionally
correct without the addition of the reduction features
described later in this paper. However, since this analysis is
for timing only, and because the reduction features will
require only minimal timing overhead, we do not include them
in this analysis. Our analysis included base values ranging
from 4 to 512. We used Synplify Pro 8.8.0.4 as the synthesis
tool and targeted our in-house Virtex-2 Pro 100 FPGA. From
these results, we have selected a pipeline depth of 3 and base
values of 32 to 128 for carrying the accumulator design
forward into the later steps of the design flow.

C. Reduction Circuit
The de-normalize/add step is pipelined over three stages

and thus creates a data hazard. To solve this, we designed a
novel reduction circuit that is specifically tailored to operate
over this shallow pipeline, which allows the reduction
algorithm to be simplified and thus not impose control
overhead on the performance of the adder. The trade-off
required for the simplified implementation is a minimum set
size, but since it is computed as a function of the adder latency
it doesn’t present a significant problem. For a three cycle

latency the minimum set size is eight, which is small enough
to be manageable for this application.

Under normal operation, the reduction circuit operates in
steady-state mode where it routes the current input value and
the output of the pipeline back into the input of the pipeline.
In this operating state, the pipeline contains � partial sums,
where � is the pipeline depth. When there is a change in input
set, the pipeline must take a series of actions to coalesce these
partial sums while still accepting values from the next input
set.

As shown in Figure 6, our reduction circuit design requires
a single input buffer and a single output buffer. The inputs to
the pipeline can be routed according to the following four
different configurations:
� Configuration A: buffer the incoming value, route the

buffered output value and the output currently being
produced by the pipeline back into the pipeline. For a
pipeline depth of �, this must occur once for every
internal node of a binary tree having � leaves, equalling
��- 1 occurrences. To ensure that the buffer depth may
be limited to one, the value in the input buffer must be
consumed (using configuration C) once between each
instance of configuration A.

� Configuration B: add the incoming value with the
value currently being produced by the pipeline. This is
the “steady-state” configuration, and is used when
accumulating the current input set into � partial sums.

� Configuration C: add the buffered input value with
the incoming input value. This occurs during cycles
when the output of the pipeline need not re-enter the
pipeline. This includes the cycles where the pipeline
output is buffered (which must occur once before the
architecture enters configuration A) and the cycles
where an input set is reduced to a final sum (which
occurs once per input set).

� Configuration D: add the incoming value with zero.
This only occurs one time per input set, prior to the first
time an input is buffered.

For a pipeline depth of � = 3, starting with the first cycle
where the incoming value belongs to a new input set, the
controller will instruct the reduction circuit to cycle through a
deterministic series of configuration changes for the following
eight cycles. This sequence of configurations will reduce the
previous input set to a single sum while continuing to accept
values from the new input set. The required controller can be
implemented as a single 9-state FSM, where all state
transitions are unconditional except for the condition when the
next input set differs from the current input set. This is
detected by comparing the input set from stage 3 and stage 2
in the top-level accumulator pipeline. Starting with the cycle
immediately prior to an input set change (i.e. row number
change), the controller cycles through the sequence B, D, A, C,
B, A, B, B, C, B/D (depending if a new set enters this cycle).

Routing can be performed with a 2-input mux before the
first input and a 3-input mux before the second input to the de-
normalize/add pipeline. Note that each input value consists of
a (54 + b)-bit significand and a (11-lg b)-bit upper exponent

260

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

TABLE II
TEST MATRICES AND PERFORMANCE RESULTS

Matrix GPU Performance Metrics FPGA Performance Metrics

Matrix
Order/

dimensions nz

Ave.
nz/row

Inst.
Thrghpt.

Mem.
Bndwdth. GFLOPS

Data
Utilization
@actual

bandwidth

GFLOPS
at 170

MHz (8.5
GB/s)

Data
Utilization
@adjusted
bandwidth

Adj.
GFLOPS

TSOPF_RS_b162_c3 15374 610299 40 0.799 58.00
GB/s 10.08 0.941 1.60

0.940
@51.0

GB/s (x6)
9.59

E40r1000 17281 553562 32 0.859 57.03
GB/s 8.76 0.970 1.65

0.968
@51.0

GB/s (x6)
9.87

Simon/olafu 16146 1015156 32 0.824 52.58
GB/s 8.52 0.984 1.67

0.983
@51.0

GB/s (x6)
10.03

Garon/garon2 13535 373235 29 0.814 49.16
GB/s 7.18 0.965 1.64

0.963
@42.5
GB/s
(x5)

8.18

Mallya/lhr11c 10964 233741 21 0.839 40.23
GB/s 5.10 0.875 1.49

0.873
@34 GB/s

(x4)
5.94

Hollinger/
mark3jac020sc 9129 52883 6 0.842 26.64

GB/s 1.58 0.646 1.10
0.643
@25.5

GB/s (x3)
3.28

Bai/dw8192 8192 41746 5 0.827 25.68
GB/s 1.28 0.637 1.08

0.635
@25.5

GB/s (x3)
3.24

YCheng/psse1 14318 x
11028 57376 4 0.875 27.66

GB/s 1.24 0.498 0.85
0.497
@25.5

GB/s (x3)
2.54

GHS_indef/
ncvxqp1 12111 73963 3 0.886 27.08

GB/s 0.98 0.663 1.13
0.662
@25.5

GB/s (x3)
3.38

value. The controller also raises the data_valid flag to
indicate the output sum is valid for each input set.

The reduction algorithm described above has a latency that
inherently requires a minimum set size in order to allow for
the coalesce process for the previous input set to finish before
the current set ends. For a pipeline depth of �, the minimum

set size is � � 11lg ���� cycles, since after each �-cycle
pass, there are half the number of partial sums in the pipeline.
As shown in the example above, the minimum set size for
�=3 is 8, while for �=4 is 11. Note that for deeper pipelines,
the minimum set size imposed by this reduction algorithm is
prohibitive.

VII. EXPERIMENTAL RESULTS

Table 2 shows the performance results of both the GPU and
FPGA SpMV implementations. For the FPGA results, we
compute the GFLOPS using the same method as the GPU
implementation, where the execution time is divided by the
number of non-zero values from the matrix multiplied by 2.
The utilization column indicates the number of non-zero
matrix values stored in the input data divided by the total
number of entries, showing the level of zero-padding required
by each matrix when encoded into the data format required by
the FPGA implementation.

Our FPGA SpMV implementation operates at 170 MHz on
our Annapolis Micro Systems WILSTAR 2 Pro card. The
clock speed is limited by the maximum operating speed of the

Fig. 6. Configuration states for the reduction circuit.

TABLE I
EXPONENT COMPARISON WIDTH VS. ADDER WIDTH

Base
Exponent
Compare

Adder
Width

2 11 54
32 6 86
64 5 118

128 4 182
256 3 310
512 2 566
1024 1 1078
2048 0 2102

261

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

accumulators (note that the Virtex-2 Pro does not contain any
hardware adders like the Virtex-4 and later—as such, the
adders in our implementation are implemented are LUT-
based). This gives a maximum theoretical throughput of 1.7
GFLOPS. The actual time required by the FPGA
implementation depends on the level of encoding overhead
required by the data encoding format, which depends on the
structure of the matrix.

Our FPGA card has significantly less memory bandwidth
than our GPU card, but this is due to limitations of the
FPGA’s system board and not of the FPGA (i.e. our board
only devotes 396 of the Virtex-2 Pro’s 1164 user I/O pins for
its six SRAM banks and the on-board SRAM modules
themselves are relatively low speed). As a result, for each test
we also provide a theoretical result where the performance of
the FPGA architecture is scaled by the memory bandwidth
achieved by the GPU for each test. Note that in this scaling,
we do not account for the possibility that the scaled
architecture will not fit in the available FPGA resources or if
there enough user-defined pins on the FPGA to support the
scaled bandwidth amount (although our architecture and data
encoding format can be trivially scaled across multiple
FPGAs).

We do, however, consider the effect that scaling will have
on matrix encoding efficiency, since increasing the packet size
will decrease the utilization. This occurs as a result of
additional zero padding that is necessary near the end of the
matrix data when the number of remaining rows is less than
the number of slots in the scaled packet.

While these theoretical results provide a more fair
comparison between the FPGA and GPU, there are still biased
toward the GPU. This is because, as shown in the table, the
bandwidth achieved by the GPU depends on the number of
non-zero entries of the input matrix. This is presumably due
to the fact that smaller matrices generate less threads and thus
less warps to cover memory latency of the other warps. This
leads to lower average instruction throughput (due to the load
instructions), which results is lower effective memory
bandwidth. On the other hand, the FPGA implementation will
always use all of its available memory bandwidth reading the
formatted matrix file regardless of the size of the input matrix.
Even so, even when given equivalent memory bandwidth to
the GPU’s effective bandwidth for each matrix, the FPGA
exceeds the GPU implementation in all but one of the tests.

VIII. CONCLUSIONS

In this paper we describe and compare the implementation
and performance of a GPU and FPGA SpMV kernel. The
GPU greatly outperforms the FPGA, but the FPGA co-
processor board is severely disadvantaged by low memory
bandwidth as compared to the GPU co-processor board. The
FPGA exceeds the performance to the GPU when its memory
bandwidth is artificially scaled to match the bandwidth
achieved by the GPU. This is primarily due to the ability to
design a customized accumulator architecture for the FPGA
implementation, allowing it to make more efficient use of the
memory bandwidth.

IX. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. CCF-0844951 and
CCF-0915608.

REFERENCES

[1] M. A. Suchard, A. Rambaut, “Many-Core Algorithms for Statistical
Phylogenetics,” Bioinformatics Vol. 25 no. 11 2009, pages 1370–1376.

[2] W. Liu, B. Schmidt, G. Voss, W. Muller-Wittig, “Streaming
Algorithms for Biological Sequence Alignment on GPUs,” IEEE Trans.
on Parallel and Distributed Systems, Vol. 18, No. 9, Sept. 2007.

[3] W. Liu, B. Schmidt, G. Voss, A. Schroder, W. Muller-Wittig, “Bio-
Sequence Database Scanning on a GPU,” Proc. 20th International
Symposium on Parallel and Distributed Processing (IPDPS 2006), Apr.
25-29, 2006.

[4] J. L. T. Cornwall, O. Beckmann, P. H. J. Kelly, “Automatically
Translating a General Purpose C++ Image Processing Library for
GPUs,” Proc. 20th International Symposium on Parallel and Distributed
Processing (IPDPS 2006), Apr. 25-29, 2006.

[5] M. Gong, R. Yang, “Image-gradient-guided Real-time Stereo on
Graphics Hardware,” Proc. 5th International Conference on 3D Digital
Imaging and Modeling (3DIM05), June 13-16, 2005.

[6] Z. Xu, R. Bagrodia, “GPU-accelerated Evaluation Platform for High
Fidelity Network Modeling,” Proc. 21st International Workshop on
Principles of Advanced and Distributed Simulation (PADS 07), June
12-15, 2007.

[7] D. W. Roeh, V. V. Kindratenko, R. J. Brunner, "Accelerating
cosmological data analysis with graphics processors", Proc. 2nd
Workshop on General Purpose Processing on Graphics Processing
Units, 2009.

[8] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach. “Accelerating
Compute Intensive Applications with GPUs and FPGAs.” In
Proceedings of the IEEE Symposium on Application Specific
Processors (SASP), June 2008. (pdf)

[9] Z.K. Baker, M.B. Gokhale, J.L. Tripp, "Matched Filter Computation on
FPGA, Cell and GPU," Proc. 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2007. FCCM 2007.

[10] X. Tian, K. Benkrid, "High Performance Quasi-Monte Carlo Financial
Simulation: FPGA vs. GPP vs. GPU," ACM Transactions on
Reconfigurable Technology and Systems, to appear.

[11] J. Chase, B. Nelson, J. Bodily, Z. Wei, D.-J. Lee, "Real-Time Optical
Flow Calculations on FPGA and GPU Architectures: A Comparison
Study," Proc. 16th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 2009. FCCM 2009.

[12] NVIDIA CUDA Programming Guide 2.2, http://www.nvidia.com.
[13] Jason D. Bakos, Krishna K. Nagar, "Exploiting Matrix Symmetry to

Improve FPGA-Accelerated Conjugate Gradient," 17th Annual IEEE
International Symposium on Field Programmable Custom Computing
Machines, April 5-8, 2009.

[14] M. M. Baskaran; R. Bordawekar, "Optimizing Sparse Matrix-Vector
Multiplication on GPUs," IBM Technical Report RC24704. 2008.

[15] M. deLorimier, A. DeHon, “Floating-point sparse matrix-vector
multiply for FPGAs,” Proc. 13th ACM/SIGDA Symposium on Field-
Programmable Gate Arrays (FPGA 2005).

[16] L. Zhou, V. K. Prasanna, “Sparse Matrix-Vector Multiplication on
FPGAs,” Proc. 133h ACM/SIGDA Symposium on Field-
Programmable Gate Arrays (FPGA 2005).

[17] L.Zhuo, V. K. Prasanna, “High-Performance Reduction Circuits Using
Deeply Pipelined Operators on FPGAs,” IEEE Trans. Parallel and Dist.
Sys., Vol. 18, No. 10, October 2007.

[18] N. Bell, M. Garland, "Efficient Sparse Matrix-Vector Multiplication on
CUDA", NVIDIA Technical Report NVR-2008-004, December 2008.

[19] Matrix Market, http://math.nist.gov/MatrixMarket.
[20] The University of Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices.

262

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

