
 

Fig. 1.  Serially-delivered accumulator. 
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ABSTRACT 
The accumulation operation, An+1 = An + X, is perhaps one of the 
most fundamental and widely-used operations in numerical 
mathematics and digital signal processing.  However, designing 
double-precision floating-point accumulators presents a unique set 
of challenges:  double-precision addition is usually deeply 
pipelined and without special micro-architectural or data 
scheduling techniques, the data hazard that exists between An+1 
and An requires that each new value of X delivered to the 
accumulator wait for the latency of the adder.  There have been 
several techniques proposed for alleviating this problem, but each 
carries significant overheads and/or restrictions on input 
characteristics.  In this paper we present a design for a double 
precision accumulator that requires no timing overhead relative to 
the underlying add operation.  We achieve this by integrating a 
coalescing reduction circuit within the low-level design of a base-
converting floating-point adder.  To demonstrate our accumulator 
design, we use it in a sparse matrix vector multiplication 
architecture, achieving a throughput of up to 3.7 GFLOPS.  

Keywords 
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(hybrid) systems, C.5.4 [Computer System Implementation]: 
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Styles—Pipeline 

General Terms:  Reconfigurable computing, high-performance 
computing, scientific computing, reduction, accumulator, double 
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1. INTRODUCTION 
The accumulation operation, depicted in Fig. 1, is required by any 
special-purpose architecture that performs a summation operation.  
When used as a component of a micro-architecture that supplies a 
new value to the accumulator every clock cycle, the designer 

cannot use a simple feedback-based accumulator circuit if the 
floating-point adder has a latency greater than one cycle, as this 
would prevent the adder from providing the current sum before 
the next value arrives.  Also, in many applications the sequence of 
input values may belong to different accumulation sets and there 
may be no separation between values belonging to different sets. 

Over the years, FPGA kernel designers have dealt with this 
problem using a number of different methods.  Older designs used 
a static approach, where inputs were delivered to the accumulator 
in an ordering where the values belonging to different 
accumulation sets were interleaved according to the latency of the 
adder [1].  The disadvantage to this approach is that input data 
must be pre-processed and, depending on the characteristics of the 
input data, often led to low adder utilization. 

Table 1.  Comparison with State of the Art for Double 
Precision Accumulation 

Accumulator Speed Resources Notes 
Prasanna 
DSA [3] 

142 MHz 
(Virtex 2 
Pro) 

2215 slices 
+ 2 d.p. 
adders + 3 
BRAMS 

Based on 892-
slice, 14-stage 
170 MHz 
adders 
 
Out-of-order 
outputs 

Prasanna 
SSA [3] 

165 MHz 
(Virtex 2 
Pro) 

1804 slices 
+ 1 d.p. 
adder + 6 
BRAMS 

Gerards [5] 200 MHz 
(Virtex-4 
LX 160) 

3556 slices 
that includes 
1 d.p. adder 
+ 9 BRAMS 
+ 3 DSP48 

Based on 
1220-LUT, 3-
DSP48, 12-
stage 324 
MHz adder 
 
In-order 
outputs 

This 
implementation 

370 MHz 
(Virtex-5 
LX sg-2) 

998 slices + 
3 DSP48 

In-order 
outputs 
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Fig. 2.  IEEE 754 Double Precision Floating Point 
Format 

2. PREVIOUS WORK 
The current state-of-the-art is a series of dynamic approaches that 
are summarized in Table 1.  Prasanna’s group at the University of 
Southern California has written several seminal papers in this area 
[2,3,4].  Their first design was essentially a collapsed a binary 
adder tree organized as a linear series of adders.  In this case the 
required number of adders is the log of the maximum number of 
expected input values to be accumulated.  Each adder in the 
system has an exponentially lower utilization than the adder 
before it.  This design also had a very long latency, had to be 
flushed between input sets, and the maximum input set size was 
fixed at design time. 

Their next design was based on the notion of using a 
“coalescing” adder, which uses a feedback loop but has an output 
buffer and special control logic that sends the last two partial 
sums from the adder output back to the adder input and allows the 
adder to go through several passes to compute a final sum.  Since 
this requires several cycles, they added a second adder such that 
while one adder coalesces the other adder begins reading the next 
set.  This design required only two adders and an input FIFO of 

size  1lg   where  is the adder latency.  However, the 

controller complexity required by this technique reduced its 
maximum speed by nearly 20% relative to the maximum speed of 
the floating-point adders that it was built around. 

Their final design overcame this limitation and required only 
one adder but also required two memories of size 2 and a control 
overhead speed reduction of about 3%. 

An improved single-adder reduction architecture was later 
developed at the University of Twente [4].  This architecture 

reduced the memory requirement to   2lg3    but its 
timing overheads imposed a 38.3% reduction in speed relative to 
the adder upon which it was based. 

A team from UT-Knoxville and Oak Ridge National 
Laboratory recently developed another accumulator where inputs 
are striped across a bank of  adders [5].  The main disadvantage 
of this design was the number of adders that are required. 

Each of these previous designs is based on instancing pre-made 
floating-point adders (usually generated with Xilinx Core 
Generator) into a top-level reduction architecture.  In an 
alternative approach that is currently limited to single-precision, 
the adder itself is changed such that the de-normalization and 
significand addition step are designed to have a single cycle 
latency, making it possible to use a simple feedback-based 
accumulation technique.  The other aspects of the adder, 
specifically those that deal with IEEE 754 housekeeping, need not 
be included in the feedback.  In order to make this approach 

practical, the designer must minimize the latency across both the 
de-normalize (composed of a comparison and subtraction of the 
exponents and a shift of one of the significands) and the 
significand addition (an integer addition).  Both Intel and a group 
from Princeton accomplished this by increasing the adder width 
while decreasing the width of the exponent comparison for the de-
normalize step by converting the significand from base-2 to base-
32 [6,7]. 

Our goal was to design a double precision accumulator that 
requires minimal memory and control logic such that its speed is 
limited only by the speed of the significand addition.  Because 
double precision requires a wider exponent compare and 
significand addition, we pipeline this portion of the architecture 
instead performing it in a single stage.  To solve the resultant data 
hazard, we apply a simplified reduction technique integrated 
within the adder design. 

3. ACCUMULATOR ARCHITECTURE 
The IEEE 754 double precision format is shown in Fig. 2.  The 
exponent field is 11 bits (encoded as an unsigned value with a 
“bias” of 1023) and the significand field is 52 bits (which 
represents the bits to the right of the decimal point if the mantissa 
with an implicit value of one to the left of the decimal point). 

Our top-level accumulator architecture is shown in Fig. 3. As a 
research architecture, our current design does not recognize 
special IEEE 754 values such as infinity and not-a-number, does 
not perform rounding (i.e. it always rounds down), and does not 
support de-normalized values.  We assume that the addition of 
these features will not significantly affect our results or 
conclusions. 

As shown in the figure, the first two stages are used to 
condition the incoming value.  The base conversion step (box 1) 
converts the incoming value from base 2 to an arbitrary base, 
which is set as a “generic” parameter in our VHDL.  For base b, 
this step performs the following: 

1. adds a 1-bit to the left-hand side of the 52-bit significand 
value (the implied leading digit to the left of the decimal 
point), 

 

Fig. 3.  Top-level design of accumulator architecture.  Alpha represents the pipeline latency of addition datapath. 
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Fig. 4.  Pipelined, cascaded DSP48 blocks forming a wide 
adder. 

2. shifts the significand value to the left by the value stored in 
the low order lg b bits in the exponent field (note that this 
effectively adds b - 1 bits to the width of the significand), 

3. strips the lower lg b bits from the exponent, and 
4. adds a zero sign bit and zero carry-out bit (“00”) to the left 

side of the resultant (53 + b - 1)-bit base-b significand value, 
resulting in (54 + b) total bits. 

The next stage performs an arithmetic negation of this value if 
the original sign bit was set to one (box 2). 

The third stage is where the de-normalize and significand 
addition begins.  This is comprised of the following steps: 

1. compare the high-order 11-(lg b) bits of both exponents, 
exp1 and exp2 (corresponding to base-b significands sig1 and 
sig2), 

2. if exp1 > exp2, shift sig2 to the right by b*(exp1-exp2) bits, 
else shift sig1 to the right by b*(exp2-exp1) bits, 

3. add the resultant sig1 and sig2, and 
4. if the addition caused the carry out bit to be set to one, add 

one to max(exp1,exp2) and shift the sum b bits to the right. 
This series of steps involves sequential operations on both the 

high order bits of the original exponent and the base-converted 
significands.  Larger values of b will result in lower latency 
exponent operations but a wider and thus higher latency integer 
addition, while lower values of b will result in wider and thus 
higher latency exponent operations and lower latency integer 
addition. 

The first three columns of Table 2 show how the exponent 
comparison (and exponent subtraction) width versus adder width 
scale as the base is increased. 

The single-precision accumulator designs from the literature 
perform these operations in one cycle.  Further, they chose 32 as 
the base but do not provide analysis to justify why this value was 
chosen.  Since our accumulator is double precision, we performed 
a synthesis-based analysis in order to choose this base value.  We 
describe this analysis in the next section. 

The remaining stages are used to re-condition the base-
converted sum into IEEE 754 format.  Box 6 computes the 
absolute value of the sum.  In the next stage, box 7 counts the 
number of leading zeros.  In the next stage, box 8 uses this 
information to shift the significand and adjust the exponent in 
order to convert the significant back to base 2 and then to re-

normalize.  The last stage repackages the value into IEEE 754 
format. 

4. COMPARATOR AND ADDER 
ANALYSIS 
As demonstrated in Fig. 4, modern FPGAs contain hard DSP 
blocks that can be cascaded to create integer adders of arbitrary 
width.  When pipeline registers are inserted between each adder in 
the carry chain, the entire adder array can operate at the same 
operating frequency as a single adder at the cost of one cycle of 
latency per adder that is added to the array. 

In our accumulator design, the clock speed of the adder is an 

 

Table 2:  Synthesis results for the de-normalize and 
corresponding add operation for various base values.  In each 
case, the adder is implemented using cascaded DSP48 blocks 

and is organized such that a single 48-bit add is performed each 
cycle to pipeline the carry chain as shown in Fig. 4.  As a result, 

an n-bit add operation requires n/48 cycles.  For a Virtex-5 LX 
part with a -2 speed grade, this architecture allows an arbitrary-
width adder to have a fixed operating frequency of 365.7 MHz. 

Base 

Add 
Width/ 

Exp. 
Width 

# 
DSP48s/ 

Add 
Latency 
(cycles) 

Denorm 
Latency 
(cycles) 

Denorm
Freq. 

(MHz) 

Total 
Latency 
(cycles) 

16 70 / 7 2 / 1 

1 119.2 2 

2 196.6 3 

3 218.3 4 

4 201.3 5 

32 86 / 6 2 / 1 

1 246.1 2 

2 310.8 3 

3 341.9 4 

4 348.4 5 

64 118 / 5 3 /2 

1 368.4 3 

2 308.6 4 

3 402.3 5 

4 365.1 6 

5 365.1 7 

128 182 / 4 4 / 3 

1 372.6 4 

2 407.4 5 

3 518.2 6 

4 518.2 7 

5 518.2 8 

256 310 /3 7 / 6 

1 494.9 7 

2 518.2 8 

3 518.2 9 

4 518.2 10 

5 518.2 11 
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Fig. 5.  Configuration states for the reduction circuit. 

upper bound on the overall accumulator speed.  In the case of a 
Virtex-5 LX with a speed grade of -2, this speed is 365.7 MHz.  
The challenge is to prevent any other aspect of the design from 
replacing the adder as the critical path and imposing a lower clock 
speed. 

Since the number of adders can be varied, our strategy is to 
adjust the base value to reduce the logic latency of the de-
normalize operation to reach equilibrium with the adder speed.  
To determine this, we performed a series of synthesis runs, where 
we synthesized the de-normalize operation corresponding with 
various bases, with the de-normalize operation itself pipelined 
over a range of cycles.  For this analysis we used Synopsys 
Synplify Pro 2009.06. 

As shown in Table 2. this analysis showed that a base-64 de-
normalize over one cycle, which involves a 5 bit exponent 
comparison, reached a clock speed that matched that of the adder.  
Note that the synthesis results for base-64, unlike the other bases, 
show an inconsistent trend as pipeline depth is increased.  This is 
a side-effect of the method by which the synthesis tool pipelines 
this operation.  Also notice how the de-normalize clock speed 
reaches its maximum at 518.2 MHz. 

From these results, we have selected a total de-normalize/add 
pipeline depth of 3 and a base values of 64 for carrying the 
accumulator design forward into the later steps of the design flow. 

5. REDUCTION CIRCUIT 
The reduction circuit must reconcile the data hazard created by 
the three cycle latency of de-normalize/add step, since each input 
to this step depends on the most recent output.  Note that any of 
the previously designed reduction circuits from the literature 
would fulfil this requirement.  However, these previous reduction 
circuits were designed for much longer pipelines (i.e. an entire 
floating-point adder pipeline as opposed to only the de-
normalize/add pipeline).  In this case, we only need a reduction 
circuit to operate over a three-stage pipeline, which gives us the 
opportunity to design a reduction circuit that has significantly less 
resource and control overhead than previous designs. 

5.1 Design Goals 
The design goal for our reduction circuit design is to make its 
implementation simple in order to not impose timing overhead on 
the overall adder pipeline.  In other words, the addition of the 
logic required to transform an adder into an accumulator should 
not shift the critical path away from the adder itself (i.e. the 
accumulator should operate at the same speed as the adder on 
which it is based). 

In previous work in reduction circuit design, the control and 
memory overheads required scale with the pipeline depth.  Our 
goal is for the memory requirement to remain constant and only 
the control logic to scale with the pipeline depth.  

5.2 Operating Principle 
After a sufficient number of clock cycles have passed reducing a 
single input set, the reduction circuit operates in steady-state 
mode, where it routes the current input value and the output of the 
pipeline back into the input of the pipeline.  In this operating state, 
the pipeline contains  partial sums, where  is the pipeline depth.  
When there is a change in input set, the pipeline must take a series 
of actions to coalesce these partial sums while still accepting 
values from the next input set. 

As shown in Fig. 5, our reduction circuit design requires a 
single input buffer and a single output buffer.  The inputs to the 
pipeline can be routed according to the following four different 
configurations: 
 Configuration A:  buffer the incoming value, route the 

buffered output value and the output currently being 
produced by the pipeline back into the pipeline.  For a 
pipeline depth of , this must occur once for every 
internal node of a binary tree having  leaves, equalling 
- 1 occurrences.  To ensure that the buffer depth may be 
limited to one, the value in the input buffer must be 
consumed (using configuration C) once between each 
instance of configuration A. 

 Configuration B:  add the incoming value with the value 
currently being produced by the pipeline.  This is the 
“steady-state” configuration, and is used when 
accumulating the current input set into  partial sums.   

 Configuration C:  add the buffered input value with the 
incoming input value.  This occurs during cycles when the 
output of the pipeline need not re-enter the pipeline.  This 
includes the cycles where the pipeline output is buffered 
(which must occur once before the architecture enters 
configuration A) and the cycles where an input set is 
reduced to a final sum (which occurs once per input set). 

 Configuration D:  add the incoming value with zero.  
This only occurs one time per input set, prior to the first 
time an input is buffered.  

As shown in Table 3 for a pipeline depth of  = 3, starting with 
the first cycle where the incoming value belongs to a new input 
set, the controller will instruct the reduction circuit to cycle 
through a deterministic series of configuration changes for the 
following eight cycles.  This sequence of configurations will 
reduce the previous input set to a single sum while continuing to 
accept values from the new input set.  Note that 1, 2, and 3 
represent the three partial sums from the previous input set. 

The required controller can be implemented as a single 9-state 
FSM, where all state transitions are unconditional except for the 
condition when the next input set differs from the current input set.  
This is detected by comparing the input set from stage 3 and stage 
2 in the top-level accumulator pipeline. 
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Table 3.  Example of the Reduction Circuit Operating Over a Pipeline of Depth 3.  

Clock 
cycle 

Accum. 
input 

Input  
buffer 

Adder pipeline 
Output 
buffer 

Note 

0       
Configuration B 
(Steady-state) 

1 B1  3 2 1  
Configuration D 
Set A complete, adder 
pipeline full 

2 B2  B1+0 3 2 1 Configuration A 
3 B3 B2 1+2 B1+0 3  Configuration C 
4 B4  B2+B3 1+2 B1+0 3 Configuration B 
5 B5  B1+B4 B2+B3 1+2 3 Configuration A 
6 B6 B5 1+2+3 B1+B4 B2+B3  Configuration B 
7 B7 B5 B2+B3+B6 1+2+3 B1+B4  Configuration B 

8 B8 B5 B1+B4+B7 B2+B3+B6 1+2+3  

Configuration C 
Set A accumulation 
complete, use this cycle to 
clear input buffer 

9 B9/C1  B5+B8 B1+B4+B7 B2+B3+B6  
Configuration B/D 
Earliest valid cycle for input 
set C to begin 

 

Routing is performed with a 2-input mux before the first input 
and a 3-input mux before the second input to the de-
normalize/add pipeline.  Note that each input value consists of a 
(54 + b)-bit significand and a (11-lg b)-bit upper exponent value.  
The controller also raises the data_valid flag to indicate the output 
sum is valid for each input set. 

5.3 Minimum Set Size 
The reduction algorithm described above has a latency that 
inherently requires a minimum set size in order to allow for the 
coalesce process for the previous input set to finish before the 
current set ends. 

For a pipeline depth of , the minimum set size is 

  11lg  cycles, since after each -cycle pass, there are 

half the number of partial sums in the pipeline.  As shown in the 
example above, the minimum set size for =3 is 8, while for =4 
is 11. 

Note that for deeper pipelines, the minimum set size imposed 
by this reduction algorithm is prohibitive.  This is the trade-off for 
the ability to use simple reduction logic.  However, since the 
reduction used in our accumulator only spans the de-normalize 
and integer add portion of the floating-point adder, we are able to 
limit the reduction to a shallow pipeline. 

Including the 3 stage de-normalize/add pipeline, the top-level 
accumulator pipeline is 10 stages.  However, when determining 
the overall latency of the accumulator, the latency of the 
reduction operation must also be included.  Since the reduction 
operation requires 8 cycles to compute the final sum after the last 
input value of each set, the total latency of the accumulator is 7 
cycles for the base conversion and IEEE 754 overhead plus 8 
cycles for the reduction, totalling 15 cycles. 

6. CASE STUDY:  SPARSE MATRIX-
VECTOR MULTIPLY 
Sparse matrix-vector multiplication (SpMV) is a common 
operation in numerical linear algebra and is the computational 
kernel of many scientific applications.  These include those that 
contain an iterative linear system solver, which itself is a kernel 
for solving many scientific problems such as approximating 
systems of partial differential equations.  SpMV is one of the 
original and perhaps most studied targets for FPGA acceleration. 

SpMV describes solving y = Ax, where y and x are vectors and 
A is a large matrix that is mostly composed of zero entries.  
Double-precision SpMV is a popular target for FPGA 
implementation because it is a notoriously difficult computation 
to effectively accelerate.  There are two reasons for this.  First, the 
performance of any implementation is inherently dependent on 
the memory bandwidth for reading the matrix. 

Second, each element of the result vector must ultimately be 
computed by an accumulation of serially-delivered values, and 
the accumulation must be performed using a potentially deeply-
pipelined double-precision floating-point adder.  This creates a 
data hazard between each value to be accumulated and the 
previous value of the running sum. 

In this section we describe our own SpMV architecture that is 
based on our accumulator design.  In this case, the most 
substantial challenge is to determine how to overcome the 
minimum set size limitation of the accumulator. 

6.1 Matrix Format 
Our SpMV implementations described in this paper uses the 
Compressed Sparse Row (CSR) format.  The CSR format stores a 
matrix in three arrays, val, col, and ptr.  val and col contain the 
value and corresponding column number for each non-zero value, 
arranged in an order starting with the upper-left of the matrix and 
continuing column-wise left-to-right and then row-wise from the 
top to bottom.  The ptr array stores the indices within val and col 
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Fig. 6.  SpMV Architecture.  The FPGA can read five 
matrix values and their corresponding column values per 
cycle.  The FPGA associates a copy of the input vector, a 

multiplier, and an accumulator with each.  

where each row begins, terminated with a value that contains the 
size of val and col (i.e. ptr[0]=0, ptr[4] = the index within val/col 
where row 4 begins, ptr[nr]=nz, where nr = the number of rows 
and nz = the number of non-zero values). 

6.2 Microarchitecture 
Our SpMV architecture is shown in Fig. 6.  Our FPGA card has a 
432-bit interface to its on board SRAM (six banks of 36-bit wide 
DDR2 SRAM).  Using 16-bit column values requires 80 bits per 
value/column pair, and we can thus read five value/column pairs 
per cycle (using 400 bits).  For each of these, we associate an on-
chip copy of the input vector in block RAM, a multiplier, and an 
accumulator. 

In this configuration, each accumulator will perform a dot 
product between the input vector and each row of the input matrix.  
For this to work, all values from each matrix row must be mapped 
to the same accumulator.  In this case, each accumulator functions 
independently, which allows the architecture to easily be scaled 
up for FPGA boards that provide more memory bandwidth than 
ours, as long as there are sufficient resources on the FPGA.  
However, in order to guarantee this data mapping, the matrix data 
must be scheduled. 

6.3 Matrix Data Scheduling 
The matrix data must be pre-processed and scheduled before 
being sent to the FPGA card’s on-board memory.  In the hardware 
design, each of the five multipliers keep track of which matrix 
row is currently being processed, and they are initialized with 
rows 0, 1, 2, 3, and 4.  Non-zero values from each matrix row are 
scheduled to be sent to a single multiplier until all the non-zero 
values from the row are exhausted.  At this point, there is a zero 
termination where the value is set to 0.0 and the column value is 
used to specify which row will scheduled to appear next for that 
multiplier. 

Since our accumulator requires a minimum set size of eight 
non-zero values, any rows that have less than this number must be 
zero-padded.  Zero padding must also be used when there are less 
than five rows that still contain non-zero values in the matrix data.  
Pad values have a value of 0.0 and a column value of 0. 

Fig. 7 shows an example of a matrix data file.  As shown, the 
matrix data is constructed as a sequence of 400-bit packets, 
corresponding to the FPGA’s memory interface width.  Each 
packet contains five slots, one for each accumulator.  In the figure, 
the first subscripted value represents to the row number.  The 
second subscripted value counts each non-zero value in the row. 

6.4 Performance Results 
Table 4 lists a set of matrices that we use in our analysis.  Each of 
the matrices were obtained from Matrix Market [ 8 ] and the 
University of Florida Sparse Matrix Collection [9]. 

The table shows the overheads required by both the zero 
padding and zero termination.  The utilization column expresses 
this overhead as a ratio between the actual number of non-zero 
values and the number of entries used after zero padding and zero 
termination. 

Since the design runs at 370 MHz, the architecture will 
perform five double precision multiplications and five double 
precision additions per cycle, giving a peak throughput of 3700 
MFLOPS.  However, since no useful work is performed for zero 

Fig. 7.  Matrix data scheduling technique.  In this case, 400-bit 
“packets,” that are read each cycle, are composed of five 

“slots”—one for each accumulator. 

16



Table 4.  Test Matrices and Performance Results 

Matrix 
Order/ 

dimensions 

Ave. 
non-

zeroes 
per 
row 

Number 
of non-

zero 
entries 

Entries 
after zero-
padding 

Entries after 
zero 

termination 

Number 
of 400-bit 
packets 

Data 
Utilization 

MFLOPS 
at 

370MHz 
TSOPF_RS_b162_c3 15374 40 610299 633231 648625 129725 0.941 3482 

E40r1000 17281 32 553562 553562 570855 114171 0.970 3589 
Simon/olafu 16146 32 1015156 1015156 1031330 206266 0.984 3641 

Garon/garon2 13535 29 373235 373243 386800 77360 0.965 3571 
Mallya/lhr11c 10964 21 233741 256014 267020 53404 0.875 3236 

Hollinger/ 
mark3jac020sc 

9129 6 52883 72608 81835 16367 0.646 2390 

Bai/dw8192 8192 5 41746 57360 65575 13115 0.637 2357 
YCheng/psse1 14318x11028 4 57376 100960 115295 23059 0.498 1843 
GHS_indef/ 

ncvxqp1 
12111 3 73963 99412 111535 22307 0.663 2453 

 

entires (due to zero termination and zero padding), the effective 
throughput is determined by the data utilization. 

Due to the accumulator’s limitation of minium input set size,  
data utilization is affected by the third column, “Average nonzero 
value per row”.  For matrices with an average number of nonzero 
values per row higher than the minium required by the 
accumulator (8 in this case), the data utilization is relatively close 
to 1 (0.87-0.98).  For matrices with an average number of nonzero 
values per row less than the minium input set size, data utilization 
is much less due to zero padding. 
 

7. CONCLUSION 
In this paper we describe a new design technique for high 
performance, low resource double precision accumulators.  Our 
approach combines elements from two previous techniques.  The 
first technique is to use base-converted adders to reduce the 
comparison complexity of the de-normalize operation through the 
use of a wider addition operation.  This allowed the accumulator 
feedback to be constructed over only a portion of the double 
precision adder.  Thus the reduction circuit can be built around a 
shallower pipeline, which in turn allowed the reduction circuit 
itself to require less overhead than previous designs. 

We demonstrated our accumulator in a sparse matrix-vector 
multiplier architecture.  When used with a data scheduling 
technique, our architecture achieved between 50% and 98% of its 
peak performance, depending on the density of the input matrix. 

In our future work, we will enhance the accumulator to 
overcome the minimum set size limitation, perform a more 
thorough performance analysis, and expand the features of the 
accumulator to implement a full IEEE 754 implementation. 
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