

Fig. 1. Serially-delivered accumulator.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

HPRCTA'09, November 15, 2009, Portland, Oregon

Copyright © 2009 ACM 978-1-60558-721-9/09/11... $10.00

An Integrated Reduction Technique for a
Double Precision Accumulator

Krishna K. Nagar
Dept. of Computer Sci.and Engr.

University of South Carolina
Columbia, SC 29208 USA

nagar@cse.sc.edu

Yan Zhang
Dept. of Computer Sci. and Engr.

University of South Carolina
Columbia, SC 29208 USA
zhangy@cse.sc.edu

Jason D. Bakos
Dept. of Computer Sci.and Engr.

University of South Carolina
Columbia, SC 29208 USA

jbakos@cse.sc.edu

ABSTRACT
The accumulation operation, An+1 = An + X, is perhaps one of the
most fundamental and widely-used operations in numerical
mathematics and digital signal processing. However, designing
double-precision floating-point accumulators presents a unique set
of challenges: double-precision addition is usually deeply
pipelined and without special micro-architectural or data
scheduling techniques, the data hazard that exists between An+1
and An requires that each new value of X delivered to the
accumulator wait for the latency of the adder. There have been
several techniques proposed for alleviating this problem, but each
carries significant overheads and/or restrictions on input
characteristics. In this paper we present a design for a double
precision accumulator that requires no timing overhead relative to
the underlying add operation. We achieve this by integrating a
coalescing reduction circuit within the low-level design of a base-
converting floating-point adder. To demonstrate our accumulator
design, we use it in a sparse matrix vector multiplication
architecture, achieving a throughput of up to 3.7 GFLOPS.

Keywords
Categories and Subject Descriptors: C.1.3 [Processor
Architectures]: Other Architecture Styles--Heterogeneous
(hybrid) systems, C.5.4 [Computer System Implementation]:
VLSI Systems, B.2.1 [Arithmetic and Logic Structures]: Design
Styles—Pipeline

General Terms: Reconfigurable computing, high-performance
computing, scientific computing, reduction, accumulator, double
precision, IEEE 754

1. INTRODUCTION
The accumulation operation, depicted in Fig. 1, is required by any
special-purpose architecture that performs a summation operation.
When used as a component of a micro-architecture that supplies a
new value to the accumulator every clock cycle, the designer

cannot use a simple feedback-based accumulator circuit if the
floating-point adder has a latency greater than one cycle, as this
would prevent the adder from providing the current sum before
the next value arrives. Also, in many applications the sequence of
input values may belong to different accumulation sets and there
may be no separation between values belonging to different sets.

Over the years, FPGA kernel designers have dealt with this
problem using a number of different methods. Older designs used
a static approach, where inputs were delivered to the accumulator
in an ordering where the values belonging to different
accumulation sets were interleaved according to the latency of the
adder [1]. The disadvantage to this approach is that input data
must be pre-processed and, depending on the characteristics of the
input data, often led to low adder utilization.

Table 1. Comparison with State of the Art for Double
Precision Accumulation

Accumulator Speed Resources Notes
Prasanna
DSA [3]

142 MHz
(Virtex 2
Pro)

2215 slices
+ 2 d.p.
adders + 3
BRAMS

Based on 892-
slice, 14-stage
170 MHz
adders

Out-of-order
outputs

Prasanna
SSA [3]

165 MHz
(Virtex 2
Pro)

1804 slices
+ 1 d.p.
adder + 6
BRAMS

Gerards [5] 200 MHz
(Virtex-4
LX 160)

3556 slices
that includes
1 d.p. adder
+ 9 BRAMS
+ 3 DSP48

Based on
1220-LUT, 3-
DSP48, 12-
stage 324
MHz adder

In-order
outputs

This
implementation

370 MHz
(Virtex-5
LX sg-2)

998 slices +
3 DSP48

In-order
outputs

11

Fig. 2. IEEE 754 Double Precision Floating Point
Format

2. PREVIOUS WORK
The current state-of-the-art is a series of dynamic approaches that
are summarized in Table 1. Prasanna’s group at the University of
Southern California has written several seminal papers in this area
[2,3,4]. Their first design was essentially a collapsed a binary
adder tree organized as a linear series of adders. In this case the
required number of adders is the log of the maximum number of
expected input values to be accumulated. Each adder in the
system has an exponentially lower utilization than the adder
before it. This design also had a very long latency, had to be
flushed between input sets, and the maximum input set size was
fixed at design time.

Their next design was based on the notion of using a
“coalescing” adder, which uses a feedback loop but has an output
buffer and special control logic that sends the last two partial
sums from the adder output back to the adder input and allows the
adder to go through several passes to compute a final sum. Since
this requires several cycles, they added a second adder such that
while one adder coalesces the other adder begins reading the next
set. This design required only two adders and an input FIFO of

size  1lg  where  is the adder latency. However, the

controller complexity required by this technique reduced its
maximum speed by nearly 20% relative to the maximum speed of
the floating-point adders that it was built around.

Their final design overcame this limitation and required only
one adder but also required two memories of size 2 and a control
overhead speed reduction of about 3%.

An improved single-adder reduction architecture was later
developed at the University of Twente [4]. This architecture

reduced the memory requirement to   2lg3   but its
timing overheads imposed a 38.3% reduction in speed relative to
the adder upon which it was based.

A team from UT-Knoxville and Oak Ridge National
Laboratory recently developed another accumulator where inputs
are striped across a bank of  adders [5]. The main disadvantage
of this design was the number of adders that are required.

Each of these previous designs is based on instancing pre-made
floating-point adders (usually generated with Xilinx Core
Generator) into a top-level reduction architecture. In an
alternative approach that is currently limited to single-precision,
the adder itself is changed such that the de-normalization and
significand addition step are designed to have a single cycle
latency, making it possible to use a simple feedback-based
accumulation technique. The other aspects of the adder,
specifically those that deal with IEEE 754 housekeeping, need not
be included in the feedback. In order to make this approach

practical, the designer must minimize the latency across both the
de-normalize (composed of a comparison and subtraction of the
exponents and a shift of one of the significands) and the
significand addition (an integer addition). Both Intel and a group
from Princeton accomplished this by increasing the adder width
while decreasing the width of the exponent comparison for the de-
normalize step by converting the significand from base-2 to base-
32 [6,7].

Our goal was to design a double precision accumulator that
requires minimal memory and control logic such that its speed is
limited only by the speed of the significand addition. Because
double precision requires a wider exponent compare and
significand addition, we pipeline this portion of the architecture
instead performing it in a single stage. To solve the resultant data
hazard, we apply a simplified reduction technique integrated
within the adder design.

3. ACCUMULATOR ARCHITECTURE
The IEEE 754 double precision format is shown in Fig. 2. The
exponent field is 11 bits (encoded as an unsigned value with a
“bias” of 1023) and the significand field is 52 bits (which
represents the bits to the right of the decimal point if the mantissa
with an implicit value of one to the left of the decimal point).

Our top-level accumulator architecture is shown in Fig. 3. As a
research architecture, our current design does not recognize
special IEEE 754 values such as infinity and not-a-number, does
not perform rounding (i.e. it always rounds down), and does not
support de-normalized values. We assume that the addition of
these features will not significantly affect our results or
conclusions.

As shown in the figure, the first two stages are used to
condition the incoming value. The base conversion step (box 1)
converts the incoming value from base 2 to an arbitrary base,
which is set as a “generic” parameter in our VHDL. For base b,
this step performs the following:

1. adds a 1-bit to the left-hand side of the 52-bit significand
value (the implied leading digit to the left of the decimal
point),

Fig. 3. Top-level design of accumulator architecture. Alpha represents the pipeline latency of addition datapath.

12

Fig. 4. Pipelined, cascaded DSP48 blocks forming a wide
adder.

2. shifts the significand value to the left by the value stored in
the low order lg b bits in the exponent field (note that this
effectively adds b - 1 bits to the width of the significand),

3. strips the lower lg b bits from the exponent, and
4. adds a zero sign bit and zero carry-out bit (“00”) to the left

side of the resultant (53 + b - 1)-bit base-b significand value,
resulting in (54 + b) total bits.

The next stage performs an arithmetic negation of this value if
the original sign bit was set to one (box 2).

The third stage is where the de-normalize and significand
addition begins. This is comprised of the following steps:

1. compare the high-order 11-(lg b) bits of both exponents,
exp1 and exp2 (corresponding to base-b significands sig1 and
sig2),

2. if exp1 > exp2, shift sig2 to the right by b*(exp1-exp2) bits,
else shift sig1 to the right by b*(exp2-exp1) bits,

3. add the resultant sig1 and sig2, and
4. if the addition caused the carry out bit to be set to one, add

one to max(exp1,exp2) and shift the sum b bits to the right.
This series of steps involves sequential operations on both the

high order bits of the original exponent and the base-converted
significands. Larger values of b will result in lower latency
exponent operations but a wider and thus higher latency integer
addition, while lower values of b will result in wider and thus
higher latency exponent operations and lower latency integer
addition.

The first three columns of Table 2 show how the exponent
comparison (and exponent subtraction) width versus adder width
scale as the base is increased.

The single-precision accumulator designs from the literature
perform these operations in one cycle. Further, they chose 32 as
the base but do not provide analysis to justify why this value was
chosen. Since our accumulator is double precision, we performed
a synthesis-based analysis in order to choose this base value. We
describe this analysis in the next section.

The remaining stages are used to re-condition the base-
converted sum into IEEE 754 format. Box 6 computes the
absolute value of the sum. In the next stage, box 7 counts the
number of leading zeros. In the next stage, box 8 uses this
information to shift the significand and adjust the exponent in
order to convert the significant back to base 2 and then to re-

normalize. The last stage repackages the value into IEEE 754
format.

4. COMPARATOR AND ADDER
ANALYSIS
As demonstrated in Fig. 4, modern FPGAs contain hard DSP
blocks that can be cascaded to create integer adders of arbitrary
width. When pipeline registers are inserted between each adder in
the carry chain, the entire adder array can operate at the same
operating frequency as a single adder at the cost of one cycle of
latency per adder that is added to the array.

In our accumulator design, the clock speed of the adder is an

Table 2: Synthesis results for the de-normalize and
corresponding add operation for various base values. In each
case, the adder is implemented using cascaded DSP48 blocks

and is organized such that a single 48-bit add is performed each
cycle to pipeline the carry chain as shown in Fig. 4. As a result,

an n-bit add operation requires n/48 cycles. For a Virtex-5 LX
part with a -2 speed grade, this architecture allows an arbitrary-
width adder to have a fixed operating frequency of 365.7 MHz.

Base

Add
Width/

Exp.
Width

DSP48s/

Add
Latency
(cycles)

Denorm
Latency
(cycles)

Denorm
Freq.

(MHz)

Total
Latency
(cycles)

16 70 / 7 2 / 1

1 119.2 2

2 196.6 3

3 218.3 4

4 201.3 5

32 86 / 6 2 / 1

1 246.1 2

2 310.8 3

3 341.9 4

4 348.4 5

64 118 / 5 3 /2

1 368.4 3

2 308.6 4

3 402.3 5

4 365.1 6

5 365.1 7

128 182 / 4 4 / 3

1 372.6 4

2 407.4 5

3 518.2 6

4 518.2 7

5 518.2 8

256 310 /3 7 / 6

1 494.9 7

2 518.2 8

3 518.2 9

4 518.2 10

5 518.2 11

13

Fig. 5. Configuration states for the reduction circuit.

upper bound on the overall accumulator speed. In the case of a
Virtex-5 LX with a speed grade of -2, this speed is 365.7 MHz.
The challenge is to prevent any other aspect of the design from
replacing the adder as the critical path and imposing a lower clock
speed.

Since the number of adders can be varied, our strategy is to
adjust the base value to reduce the logic latency of the de-
normalize operation to reach equilibrium with the adder speed.
To determine this, we performed a series of synthesis runs, where
we synthesized the de-normalize operation corresponding with
various bases, with the de-normalize operation itself pipelined
over a range of cycles. For this analysis we used Synopsys
Synplify Pro 2009.06.

As shown in Table 2. this analysis showed that a base-64 de-
normalize over one cycle, which involves a 5 bit exponent
comparison, reached a clock speed that matched that of the adder.
Note that the synthesis results for base-64, unlike the other bases,
show an inconsistent trend as pipeline depth is increased. This is
a side-effect of the method by which the synthesis tool pipelines
this operation. Also notice how the de-normalize clock speed
reaches its maximum at 518.2 MHz.

From these results, we have selected a total de-normalize/add
pipeline depth of 3 and a base values of 64 for carrying the
accumulator design forward into the later steps of the design flow.

5. REDUCTION CIRCUIT
The reduction circuit must reconcile the data hazard created by
the three cycle latency of de-normalize/add step, since each input
to this step depends on the most recent output. Note that any of
the previously designed reduction circuits from the literature
would fulfil this requirement. However, these previous reduction
circuits were designed for much longer pipelines (i.e. an entire
floating-point adder pipeline as opposed to only the de-
normalize/add pipeline). In this case, we only need a reduction
circuit to operate over a three-stage pipeline, which gives us the
opportunity to design a reduction circuit that has significantly less
resource and control overhead than previous designs.

5.1 Design Goals
The design goal for our reduction circuit design is to make its
implementation simple in order to not impose timing overhead on
the overall adder pipeline. In other words, the addition of the
logic required to transform an adder into an accumulator should
not shift the critical path away from the adder itself (i.e. the
accumulator should operate at the same speed as the adder on
which it is based).

In previous work in reduction circuit design, the control and
memory overheads required scale with the pipeline depth. Our
goal is for the memory requirement to remain constant and only
the control logic to scale with the pipeline depth.

5.2 Operating Principle
After a sufficient number of clock cycles have passed reducing a
single input set, the reduction circuit operates in steady-state
mode, where it routes the current input value and the output of the
pipeline back into the input of the pipeline. In this operating state,
the pipeline contains  partial sums, where  is the pipeline depth.
When there is a change in input set, the pipeline must take a series
of actions to coalesce these partial sums while still accepting
values from the next input set.

As shown in Fig. 5, our reduction circuit design requires a
single input buffer and a single output buffer. The inputs to the
pipeline can be routed according to the following four different
configurations:
 Configuration A: buffer the incoming value, route the

buffered output value and the output currently being
produced by the pipeline back into the pipeline. For a
pipeline depth of , this must occur once for every
internal node of a binary tree having  leaves, equalling
- 1 occurrences. To ensure that the buffer depth may be
limited to one, the value in the input buffer must be
consumed (using configuration C) once between each
instance of configuration A.

 Configuration B: add the incoming value with the value
currently being produced by the pipeline. This is the
“steady-state” configuration, and is used when
accumulating the current input set into  partial sums.

 Configuration C: add the buffered input value with the
incoming input value. This occurs during cycles when the
output of the pipeline need not re-enter the pipeline. This
includes the cycles where the pipeline output is buffered
(which must occur once before the architecture enters
configuration A) and the cycles where an input set is
reduced to a final sum (which occurs once per input set).

 Configuration D: add the incoming value with zero.
This only occurs one time per input set, prior to the first
time an input is buffered.

As shown in Table 3 for a pipeline depth of  = 3, starting with
the first cycle where the incoming value belongs to a new input
set, the controller will instruct the reduction circuit to cycle
through a deterministic series of configuration changes for the
following eight cycles. This sequence of configurations will
reduce the previous input set to a single sum while continuing to
accept values from the new input set. Note that 1, 2, and 3
represent the three partial sums from the previous input set.

The required controller can be implemented as a single 9-state
FSM, where all state transitions are unconditional except for the
condition when the next input set differs from the current input set.
This is detected by comparing the input set from stage 3 and stage
2 in the top-level accumulator pipeline.

14

Table 3. Example of the Reduction Circuit Operating Over a Pipeline of Depth 3.

Clock
cycle

Accum.
input

Input
buffer

Adder pipeline
Output
buffer

Note

0
Configuration B
(Steady-state)

1 B1 3 2 1
Configuration D
Set A complete, adder
pipeline full

2 B2 B1+0 3 2 1 Configuration A
3 B3 B2 1+2 B1+0 3 Configuration C
4 B4 B2+B3 1+2 B1+0 3 Configuration B
5 B5 B1+B4 B2+B3 1+2 3 Configuration A
6 B6 B5 1+2+3 B1+B4 B2+B3 Configuration B
7 B7 B5 B2+B3+B6 1+2+3 B1+B4 Configuration B

8 B8 B5 B1+B4+B7 B2+B3+B6 1+2+3

Configuration C
Set A accumulation
complete, use this cycle to
clear input buffer

9 B9/C1 B5+B8 B1+B4+B7 B2+B3+B6
Configuration B/D
Earliest valid cycle for input
set C to begin

Routing is performed with a 2-input mux before the first input
and a 3-input mux before the second input to the de-
normalize/add pipeline. Note that each input value consists of a
(54 + b)-bit significand and a (11-lg b)-bit upper exponent value.
The controller also raises the data_valid flag to indicate the output
sum is valid for each input set.

5.3 Minimum Set Size
The reduction algorithm described above has a latency that
inherently requires a minimum set size in order to allow for the
coalesce process for the previous input set to finish before the
current set ends.

For a pipeline depth of , the minimum set size is

  11lg  cycles, since after each -cycle pass, there are

half the number of partial sums in the pipeline. As shown in the
example above, the minimum set size for =3 is 8, while for =4
is 11.

Note that for deeper pipelines, the minimum set size imposed
by this reduction algorithm is prohibitive. This is the trade-off for
the ability to use simple reduction logic. However, since the
reduction used in our accumulator only spans the de-normalize
and integer add portion of the floating-point adder, we are able to
limit the reduction to a shallow pipeline.

Including the 3 stage de-normalize/add pipeline, the top-level
accumulator pipeline is 10 stages. However, when determining
the overall latency of the accumulator, the latency of the
reduction operation must also be included. Since the reduction
operation requires 8 cycles to compute the final sum after the last
input value of each set, the total latency of the accumulator is 7
cycles for the base conversion and IEEE 754 overhead plus 8
cycles for the reduction, totalling 15 cycles.

6. CASE STUDY: SPARSE MATRIX-
VECTOR MULTIPLY
Sparse matrix-vector multiplication (SpMV) is a common
operation in numerical linear algebra and is the computational
kernel of many scientific applications. These include those that
contain an iterative linear system solver, which itself is a kernel
for solving many scientific problems such as approximating
systems of partial differential equations. SpMV is one of the
original and perhaps most studied targets for FPGA acceleration.

SpMV describes solving y = Ax, where y and x are vectors and
A is a large matrix that is mostly composed of zero entries.
Double-precision SpMV is a popular target for FPGA
implementation because it is a notoriously difficult computation
to effectively accelerate. There are two reasons for this. First, the
performance of any implementation is inherently dependent on
the memory bandwidth for reading the matrix.

Second, each element of the result vector must ultimately be
computed by an accumulation of serially-delivered values, and
the accumulation must be performed using a potentially deeply-
pipelined double-precision floating-point adder. This creates a
data hazard between each value to be accumulated and the
previous value of the running sum.

In this section we describe our own SpMV architecture that is
based on our accumulator design. In this case, the most
substantial challenge is to determine how to overcome the
minimum set size limitation of the accumulator.

6.1 Matrix Format
Our SpMV implementations described in this paper uses the
Compressed Sparse Row (CSR) format. The CSR format stores a
matrix in three arrays, val, col, and ptr. val and col contain the
value and corresponding column number for each non-zero value,
arranged in an order starting with the upper-left of the matrix and
continuing column-wise left-to-right and then row-wise from the
top to bottom. The ptr array stores the indices within val and col

15

Fig. 6. SpMV Architecture. The FPGA can read five
matrix values and their corresponding column values per
cycle. The FPGA associates a copy of the input vector, a

multiplier, and an accumulator with each.

where each row begins, terminated with a value that contains the
size of val and col (i.e. ptr[0]=0, ptr[4] = the index within val/col
where row 4 begins, ptr[nr]=nz, where nr = the number of rows
and nz = the number of non-zero values).

6.2 Microarchitecture
Our SpMV architecture is shown in Fig. 6. Our FPGA card has a
432-bit interface to its on board SRAM (six banks of 36-bit wide
DDR2 SRAM). Using 16-bit column values requires 80 bits per
value/column pair, and we can thus read five value/column pairs
per cycle (using 400 bits). For each of these, we associate an on-
chip copy of the input vector in block RAM, a multiplier, and an
accumulator.

In this configuration, each accumulator will perform a dot
product between the input vector and each row of the input matrix.
For this to work, all values from each matrix row must be mapped
to the same accumulator. In this case, each accumulator functions
independently, which allows the architecture to easily be scaled
up for FPGA boards that provide more memory bandwidth than
ours, as long as there are sufficient resources on the FPGA.
However, in order to guarantee this data mapping, the matrix data
must be scheduled.

6.3 Matrix Data Scheduling
The matrix data must be pre-processed and scheduled before
being sent to the FPGA card’s on-board memory. In the hardware
design, each of the five multipliers keep track of which matrix
row is currently being processed, and they are initialized with
rows 0, 1, 2, 3, and 4. Non-zero values from each matrix row are
scheduled to be sent to a single multiplier until all the non-zero
values from the row are exhausted. At this point, there is a zero
termination where the value is set to 0.0 and the column value is
used to specify which row will scheduled to appear next for that
multiplier.

Since our accumulator requires a minimum set size of eight
non-zero values, any rows that have less than this number must be
zero-padded. Zero padding must also be used when there are less
than five rows that still contain non-zero values in the matrix data.
Pad values have a value of 0.0 and a column value of 0.

Fig. 7 shows an example of a matrix data file. As shown, the
matrix data is constructed as a sequence of 400-bit packets,
corresponding to the FPGA’s memory interface width. Each
packet contains five slots, one for each accumulator. In the figure,
the first subscripted value represents to the row number. The
second subscripted value counts each non-zero value in the row.

6.4 Performance Results
Table 4 lists a set of matrices that we use in our analysis. Each of
the matrices were obtained from Matrix Market [8] and the
University of Florida Sparse Matrix Collection [9].

The table shows the overheads required by both the zero
padding and zero termination. The utilization column expresses
this overhead as a ratio between the actual number of non-zero
values and the number of entries used after zero padding and zero
termination.

Since the design runs at 370 MHz, the architecture will
perform five double precision multiplications and five double
precision additions per cycle, giving a peak throughput of 3700
MFLOPS. However, since no useful work is performed for zero

Fig. 7. Matrix data scheduling technique. In this case, 400-bit
“packets,” that are read each cycle, are composed of five

“slots”—one for each accumulator.

16

Table 4. Test Matrices and Performance Results

Matrix
Order/

dimensions

Ave.
non-

zeroes
per
row

Number
of non-

zero
entries

Entries
after zero-
padding

Entries after
zero

termination

Number
of 400-bit
packets

Data
Utilization

MFLOPS
at

370MHz
TSOPF_RS_b162_c3 15374 40 610299 633231 648625 129725 0.941 3482

E40r1000 17281 32 553562 553562 570855 114171 0.970 3589
Simon/olafu 16146 32 1015156 1015156 1031330 206266 0.984 3641

Garon/garon2 13535 29 373235 373243 386800 77360 0.965 3571
Mallya/lhr11c 10964 21 233741 256014 267020 53404 0.875 3236

Hollinger/
mark3jac020sc

9129 6 52883 72608 81835 16367 0.646 2390

Bai/dw8192 8192 5 41746 57360 65575 13115 0.637 2357
YCheng/psse1 14318x11028 4 57376 100960 115295 23059 0.498 1843
GHS_indef/

ncvxqp1
12111 3 73963 99412 111535 22307 0.663 2453

entires (due to zero termination and zero padding), the effective
throughput is determined by the data utilization.

Due to the accumulator’s limitation of minium input set size,
data utilization is affected by the third column, “Average nonzero
value per row”. For matrices with an average number of nonzero
values per row higher than the minium required by the
accumulator (8 in this case), the data utilization is relatively close
to 1 (0.87-0.98). For matrices with an average number of nonzero
values per row less than the minium input set size, data utilization
is much less due to zero padding.

7. CONCLUSION
In this paper we describe a new design technique for high
performance, low resource double precision accumulators. Our
approach combines elements from two previous techniques. The
first technique is to use base-converted adders to reduce the
comparison complexity of the de-normalize operation through the
use of a wider addition operation. This allowed the accumulator
feedback to be constructed over only a portion of the double
precision adder. Thus the reduction circuit can be built around a
shallower pipeline, which in turn allowed the reduction circuit
itself to require less overhead than previous designs.

We demonstrated our accumulator in a sparse matrix-vector
multiplier architecture. When used with a data scheduling
technique, our architecture achieved between 50% and 98% of its
peak performance, depending on the density of the input matrix.

In our future work, we will enhance the accumulator to
overcome the minimum set size limitation, perform a more
thorough performance analysis, and expand the features of the
accumulator to implement a full IEEE 754 implementation.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant Nos. CCF-0844951 and CCF-
0915608.

9. REFERENCES
[1] M. deLorimier, A. DeHon, “Floating-point sparse matrix-

vector multiply for FPGAs,” Proc. 13th ACM/SIGDA
Symposium on Field-Programmable Gate Arrays (FPGA
2005).

[2] L. Zhou, V. K. Prasanna, “Sparse Matrix-Vector
Multiplication on FPGAs,” Proc. 133h ACM/SIGDA
Symposium on Field-Programmable Gate Arrays (FPGA
2005).

[3] L.Zhuo, V. K. Prasanna, “High-Performance Reduction
Circuits Using Deeply Pipelined Operators on FPGAs,”
IEEE Trans. Parallel and Dist. Sys., Vol. 18, No. 10, October
2007.

[4] Jason D. Bakos, Krishna K. Nagar, "Exploiting Matrix
Symmetry to Improve FPGA-Accelerated Conjugate
Gradient," 17th Annual IEEE International Symposium on
Field Programmable Custom Computing Machines, April 5-
8, 2009.

[5] M. Gerards, “Streaming Reduction Circuit for Sparse Matrix
Vector Multiplication in FPGAs”. Master Thesis, University
of Twente, The Netherlands, August 15, 2008.

[6] J. Sun, G. Peterson, O. Storaasli, “Sparse Matrix-Vector
Multiplication Design for FPGAs,” Proc. 15th IEEE
International Symposium on Field Programmable Computing
Machines (FCCM 2007).

[7] S. R. Vangal, Y. V. Hoskote, N. Y. Borkar, A. Alvandpour,
“A 6.2-GFlops Floating-Point Multiply-Accumulator With
Conditional Normalization,” IEEE Journal of Solid-State
Circuits, Vol. 41, No. 10, Oct. 2006.

17

[8] Z. Luo, M. Martonosi, "Accelerating Pipelined Integer and
Floating Point Accumulations in Configurable Hardware
with Delayed Addition Techniques," IEEE Transactions on
Computers, Vol. 49 No. 3 March 2000.

[9] Matrix Market, http://math.nist.gov/MatrixMarket.

[10] The University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices.

18

