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Abstract
Memristive crossbar-based analog processor-in-memory (PIM) ar-
chitectures have the potential to deliver substantially higher energy
efficiency for machine learning workloads than traditional architec-
tures. The availability of a fast and accurate circuit-level simulation
framework could enhance research and development efforts in this
field. This paper introduces XbarSim, a domain-specific circuit-
level solver designed to generate and solve the nodal equations of
memristive crossbars including the effects of bitline and wordline
resistance, and deploy the solver onto an FPGA emulator. XbarSim
also supports partitioning larger arrays horizontally and vertically
in order to subdivide the solver workload to manage memory local-
ity and limit the resource requirement when deployed on an FPGA.
The solver uses LU decomposition to pre-process the conductance
matrix for each partition and solves for a batch of inputs to achieve
high solver throughput. We demonstrate that XbarSim can achieve
orders of magnitude speedup compared to Hspice across various
sizes of memristive crossbars, and the XbarSim FPGA emulator can
further achieve a 2.10X to 5.59X speedup over our software version
built on Matlab.
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1 Introduction
Memristive crossbar arrays serve as vital components in analog
processing-in-memory (PIM) and in-memory computing (IMC)
architectures [3, 5–7, 12]. They offer significant acceleration for
matrix-vector multiplication operations in machine learning (ML)
models by leveraging massive parallelism, analog computation, and
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minimizing data transfer overheads betweenmemory and processor.
As interest in IMC architectures grow, there remains a lack of fast
and accurate circuit-level solvers able to support hardware design-
ers in implementing and validating their designs. Moreover, within
the crossbar setting of IMC architectures, there is a wide array of
design choices and hyperparameters that can be adjusted to fulfill
particular design objectives. Hence, developing a crossbar solver tai-
lored to assist in the early-stage design decisions for crossbar-based
circuits and architectures can prove highly advantageous.

Memristive crossbar circuits have different non-ideal factors
such as parasitics, noise, process variation, sneak paths, and stuck-
at faults, which need to be taken into account while predicting
their performance across various applications. To address these
challenges, a wide range of crossbar solvers has been proposed in
the literature. These can be broadly classified into two categories:
analytical simulators [4, 10, 13] and circuit-level simulators [2, 9, 14].
MNSim [13] is an analytical simulator employing analytical models
to assess the performance of various elements within the crossbar.
However, its validation reveals over 5% error in power, energy, and
latency calculations compared to full SPICE-level simulations for a
3-layer fully connected neural network (NN).

NeuroSim [4] also offers analytical models for evaluating the
power, area, and latency of crossbars. Unlike MNSim, NeuroSim
integrates with NN simulators to obtain learning and classifica-
tion accuracies, but it still lacks an accurate circuit-level prediction
model for the analog behavior of crossbar arrays. RxNN [10] pro-
vides a faster model for crossbar simulation with non-idealities, but
still relies on some abstractions of non-ideal behavior, lacking a
full-circuit simulation.

On the other hand, circuit-level approaches, such as those based
on SPICE or customized nodal analysis, provide high fidelity by
capturing detailed device and interconnect behavior, but suffer
from scalability issues when dealing with large arrays. Badcrossbar
[11] is a Python-based crossbar simulation framework, which plots
voltages and currents for crossbar circuits, but it lacks accurate
modeling of non-idealities due to parasitics, noise or process vari-
ation. Moreover, it directly solves the full nodal equations using
linear algebra e.g., via NumPy and SciPy, and simulation becomes
computationally expensive for large arrays. DPE [9], a MATLAB-
based simulator, focuses on finding an optimized mapping scheme
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Figure 1: The crossbar architecture.

for memristive crossbars considering non-ideal effects, but lacks
accuracy in interconnect resistance calculation. The CCCS [14],
another MATLAB-based solver, incorporates techniques for simpli-
fying the evaluation of parasitic effects on the crossbars to speed
up the simulation. However, it suffers from high error due to inac-
curate estimation of voltage drops caused by parasitic resistance.
IMAC-Sim [2] can automatically handle the SPICE simulations of
crossbar circuits along with an accurate calculation of parasitics,
yet the simulation time is high because it requires a full-circuit
SPICE simulation. CrossSim [8] is another circuit-level crossbar
simulator capable of handling various non-ideal factors including
parasitics and noise, but it can become slow for very large networks
if the parasitic-aware mode is enabled across all layers of the DNN
model.

In this work, we propose XbarSim, a novel crossbar solver frame-
work including an FPGA emulator, that leverages the lower-upper
(LU) decomposition technique to solve the nodal equations in a
crossbar. XbarSim includes the effects of parasitic resistances within
crossbars and supports batch processing of the inputs. XbarSim can
be executed in software using Matlab but also generates an FPGA-
based solver through the Vitis HLS design flow, which provides a
3X speedup over Matlab. The FPGA emulator performs the solve
in double precision floating-point, stores the matrix data for each
partition in on-chip RAM, and uses a single 64-bit memory port for
reading input current and outputting output voltages.

2 Methodology
In this work, we consider the crossbar model shown in Fig. 1, com-
prised of horizontal word lines (WL) and vertical bit lines (BL), with
a memristive device at the intersection between each WL and BL
and a resistor between each pair of adjacent memristive devices
to model the resistance of the word lines and bit lines. Each WL
is driven with a current source to model the input vector, and the
voltage at the termination of each BL corresponds to the output
vector.

2.1 Circuit Model
Consider a crossbar of 𝑚 wordlines (WLs) and 𝑛 bitlines (BLs).
When including both memristors and a wire loss resistor between
each pair of elements on the WLs and BLs, the circuit contains

3 ×𝑚 × 𝑛 resistors and 2 ×𝑚 × 𝑛 voltage nodes. The conductances
of the resistors may be stored in a symmetric 2×𝑚 ×𝑛 by 2×𝑚 ×𝑛

matrix 𝑮 with (4(𝑛 − 2) + 6) × (4(𝑚 − 2) + 6) nonzero entries (i.e.
the matrix is sparse).

The currents flowing into each node can be stored in a 2×𝑚 ×𝑛

vector 𝐼 (all but 𝑛 of which are zero, except when using partitioning
to solve, explained below). The vector of 2×𝑛 ×𝑚 node voltages,𝑉
can be computed by solving the equation 𝑮𝑉 = 𝐼 . For constructing
the matrix, assume the following notation:

(1) 𝑉𝑖 : the voltage source at WL 𝑖 ,
(2) 𝐷 (𝑖, 𝑗 ) : the memristor that is connected between WL 𝑖 and

BL 𝑗 ,
(3) 𝐺𝑖, 𝑗 : its conductance of 𝐷 (𝑖, 𝑗 ) ,
(4) 𝐺𝐵𝐿 : conductance of bit line (wire resistance),
(5) 𝐺𝑊𝐿 : conductance of word line (wire resistance),
(6) 𝑉𝑊𝐿 (𝑖, 𝑗 ) : the voltage node of the WL-side of the memeristor,
(7) 𝑉𝐵𝐿 (𝑖, 𝑗 ) : voltage node of the BL-side of the memristor,
(8) 𝐼𝐷 (𝑖, 𝑗 ) : current from 𝑉𝐵𝐿 (𝑖, 𝑗 ) to 𝑉𝑊𝐿 (𝑖, 𝑗 ) ,
(9) 𝐼𝑊𝐿 (𝑖, 𝑗 ) : current from 𝑉𝑊𝐿 (𝑖, 𝑗 ) to 𝑉𝑊𝐿 (𝑖, 𝑗−1) , and
(10) 𝐼𝐵𝐿 (𝑖, 𝑗 ) : current from 𝐵𝐿𝑖+1, 𝑗 to 𝑉𝐵𝐿 (𝑖, 𝑗 ) .
These notations are depicted in Fig. 2, which shows three sections

of the crossbar array, the upper left, upper right, and lower right,
showing how the nodal equations are computed differently for the
first row, first column, last row, and last column.

Kirchhoff’s current law gives the following equations [11]:

𝐼𝑊𝐿 (𝑖, 𝑗 ) − 𝐼𝑊𝐿 (𝑖, 𝑗+1) − 𝐼𝐷 (𝑖, 𝑗 ) = 0 𝑓 𝑜𝑟 𝑗 < 𝑛 (1)

𝐼𝑊𝐿 (𝑖, 𝑗 ) − 𝐼𝐷 (𝑖, 𝑗 ) = 0 𝑓 𝑜𝑟 𝑗 = 𝑛 (2)

𝐼𝐷 (𝑖, 𝑗 ) − 𝐼𝐵𝐿 (𝑖, 𝑗 ) = 0 𝑓 𝑜𝑟 𝑖 = 1 (3)

𝐼𝐷 (𝑖, 𝑗 ) + 𝐼𝐵𝐿 (𝑖−1, 𝑗 ) − 𝐼𝐵𝐿 (𝑖, 𝑗 ) = 0 𝑓 𝑜𝑟 𝑖 > 1 (4)
When 𝑗 = 1 voltages at WLs are just input voltages:𝑉𝑊𝐿 (𝑖, 𝑗 ) =

𝑉𝑊𝐿 (𝑖,1) = 𝑉𝑖 which is also shown in Eq.5.

(𝑉𝑊𝐿 (𝑖, 𝑗 ) −𝑉𝑖 ) ×𝐺𝑊𝐿 = (𝑉𝐵𝐿 (𝑖, 𝑗 ) −𝑉𝑊𝐿 (𝑖, 𝑗 ) ) ×𝐺 (𝑖, 𝑗 )+
+ (𝑉𝑊𝐿 (𝑖, 𝑗+1) −𝑉𝑊𝐿 (𝑖, 𝑗 ) ) ×𝐺𝑊𝐿 ;⇒

𝑉𝑊𝐿 (𝑖, 𝑗 ) × (2 ×𝐺𝑊𝐿 +𝐺 (𝑖, 𝑗 ) ) +𝑉𝑊𝐿 (𝑖, 𝑗+1) × (−𝐺𝑊𝐿)+
+𝑉𝐵𝐿 (𝑖, 𝑗 ) × (−𝐺 (𝑖, 𝑗 ) ) = 𝑉𝑖 ×𝐺𝑊𝐿 ;

𝑓 𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 1 (5)

Nodes corresponding to internal columns (1 < 𝑗 < 𝑛) and inter-
nal rows (1 < 𝑖 < 𝑚) can be computed as in Eqs. 6 and 7. Other
equations for node voltages can be derived similarly.

(𝑉𝑊𝐿 (𝑖, 𝑗 ) −𝑉𝑊𝐿 (𝑖, 𝑗−1) ) ×𝐺𝑊𝐿 = (𝑉𝐵𝐿 (𝑖, 𝑗 ) −𝑉𝑊𝐿 (𝑖, 𝑗 ) )×
×𝐺 (𝑖, 𝑗 ) + (𝑉𝑊𝐿 (𝑖, 𝑗+1) −𝑉𝑊𝐿 (𝑖, 𝑗 ) ) ×𝐺𝑊𝐿 ;⇒

𝑉𝑊𝐿 (𝑖, 𝑗 ) × (2 ×𝐺𝑊𝐿 +𝐺 (𝑖, 𝑗 ) ) +𝑉𝑊𝐿 (𝑖, 𝑗−1) × (−𝐺𝑊𝐿)+
+𝑉𝑊𝐿 (𝑖, 𝑗+1) × (−𝐺𝑊𝐿) +𝑉𝐵𝐿 (𝑖, 𝑗 ) × 𝑠 (−𝐺𝐷 (𝑖, 𝑗 ) ) = 0;

𝑓 𝑜𝑟 1 < 𝑖 < 𝑚, 1 < 𝑗 < 𝑛 (6)
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Figure 2: Notion used in crossbar matrix.

(𝑉𝐵𝐿 (𝑖, 𝑗 ) −𝑉𝑊𝐿 (𝑖, 𝑗 ) ) ×𝐺 (𝑖, 𝑗 ) + (𝑉𝐵𝐿 (𝑖, 𝑗 ) −𝑉𝐵𝐿 (𝑖−1, 𝑗 ) ) ×𝐺𝐵𝐿 =

= (𝑉𝐵𝐿 (𝑖+1, 𝑗 ) −𝑉𝐵𝐿 (𝑖, 𝑗 ) ) ×𝐺𝐵𝐿 ;⇒
𝑉𝐵𝐿 (𝑖, 𝑗 ) × (2 ×𝐺𝐵𝐿 +𝐺 (𝑖, 𝑗 ) ) +𝑉𝐵𝐿 (𝑖+1, 𝑗 ) × (−𝐺𝐵𝐿)+

+𝑉𝐵𝐿 (𝑖−1, 𝑗 ) × (−𝐺𝐵𝐿) +𝑉𝑊𝐿 (𝑖, 𝑗 ) × (−𝐺 (𝑖, 𝑗 ) );
𝑓 𝑜𝑟 1 < 𝑖 < 𝑚, 1 < 𝑗 < 𝑚 (7)

2.2 Matrix Formulation
The resulting equations form a sparse system of linear equations.
This system is equivalent for row and column permutations, since
row exchanges correspond to a change in the order of equations,
while column exchanges correspond to a change in the order of
summands in each equation, assuming that corresponding permuta-
tions are performed on the vector of unknowns and the right-hand
side vector of known values.

One can use a permutation of columns {𝑉𝑊𝐿 (1,1) ,𝑉𝐵𝐿 (1,1) ,
𝑉𝑊𝐿 (1,2) ,𝑉𝐵𝐿 (1,2) , ...,𝑉𝑊𝐿 (𝑚,𝑛−1) ,𝑉𝐵𝐿 (𝑚,𝑛−1) ,𝑉𝑊𝐿 (𝑚,𝑛) ,𝑉𝐵𝐿 (𝑚,𝑛) }
that corresponds to the vector of unknown nodal voltages. To make
the resulting matrix banded diagonal, one can use such a permu-
tation of rows that the matrix value𝑀𝑖, 𝑗 at the diagonal would be
the corresponding unknown coefficient on the right-hand side of
the system of linear equations. Hence, for selected column permu-
tation, corresponding row permutation would be nodal equations
corresponding to equations {1 (𝑖 = 1, 𝑗 = 1), 3 (𝑖 = 1, 𝑗 = 1), 1
(𝑖 = 1, 𝑗 = 2), 4 (𝑖 = 1, 𝑗 = 2),..., 1 (𝑖 =𝑚, 𝑗 = 𝑛−1), 4 (𝑖 =𝑚, 𝑗 = 𝑛−1),
2 (𝑖 = 𝑚, 𝑗 = 𝑛), 4}. An example of a matrix formed this way for
𝑚 = 4, 𝑛 = 3, can be seen in Fig. 3. Note that 𝐺𝑤𝑙 and 𝐺𝑏𝑙 repre-
sent the wordline and bitline parasitics resistance values, while𝐺𝑖 𝑗
represent the conductance of crossbar memristor 𝑖, 𝑗 .

There are numerous potential methods for solving the resul-
tant system, such as iterative and decomposition methods. Iterative
methods are sensitive to the initial guess, which makes it less prac-
tical for this application. On the other hand, decomposition meth-
ods can also diverge in cases where several rows (or, equivalently,
columns) are close to linearly dependent. However, since we are
modeling a real physical system, the resulting matrix should have
a solution and is expected to have linearly independent rows (or,
equivalently, linearly independent columns).

For this reason, we use an LU decomposition-based solver, in
which 𝑮𝑉 = 𝐼 is transformed into 𝑳𝑼𝑉 = 𝐼 , where 𝑳 is a lower

Figure 3: Example of a matrix formed from nodal equations
for a 4 × 3 crossbar.

triangular matrix with ones on its diagonal and 𝑼 is an upper
triangular matrix. Substituting 𝑦 = 𝑼𝑉 into the equation gives
𝑳𝑦 = 𝐼 . The solution for the vector 𝑦 can be calculated with no
more than 𝐿𝑛𝑛𝑧 multiplies and 2𝑛𝑚 subtracts, where 𝑛𝑛𝑧 is the
number of non-zero entries. The solution for the vector 𝑉 can be
calculated by substituting 𝑦 into 𝑼𝑉 = 𝑦 and solving for 𝑉 , which
requires no more than 𝑈𝑛𝑛𝑧 multiplies, 2𝑚𝑛 subtracts, and 2𝑚𝑛

divides.

2.3 Solving via LU Decomposition
In order to quickly evaluate batches of inputs against a simulated
crossbar, we use LU decomposition. The solver is designed to solve
the 𝑮𝑉 = 𝐼 system of equations for a known set of input currents
𝐼 and an unknown set of output voltages 𝑉 and assuming the 𝑮
matrix has already been pre-decomposed. This gives the system
𝑳𝑼𝑉 = 𝐼 and is solved in two steps: (1) setting 𝑦 = 𝑼𝑉 and solving
for 𝑦 in 𝑳𝑦 = 𝐼 (forward substitution) and (2) using the resulting 𝑦
to solve 𝑼𝑉 = 𝑦 (backward substitution).

2.4 HSPICE Baseline
In order to validate the correctness of our proposed solver and
to compare its performance against an industry standard circuit
simulator, our software generates an HSPICE circuit corresponding
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Figure 4: Simulation time for 256 × 256 crossbar partitioned
with different crossbar sizes.

to a crossbar of a given size. In the generated file, the memristor
conductances and the input voltages are randomly generated, and
the wordline and bitline parasitic resistors are set at 5 Ohms each [1].
We perform a DC steady-state analysis of the circuit using HSPICE
2019.06-2 with the option “.option post=2 POST_VERSION=2001”
to store the output nodal voltages in an ASCII output file. Batch
runs are carried out by associating “.DATA” values with the input
voltage sources, allowing HSPICE to perform a DC analysis for
each of these input voltage values.

2.5 Partitioning
A crossbar can be simulated by sequential simulation of its smaller
partitions. This divide-and-conquer strategy can lead to increased
memory locality and–in the case of a hardware-based solver–fewer
resources. The crossbar may be partitioned horizontally, vertically,
or both. When partitioning, the crossbar is solved in row-wise
order from upper-left to lower-right to allow for the incorporation
of previously-solved word line and bit line currents into the 𝐼 vector
[1]. Additionally, the conductance matrix for each partition must
incorporate the equivalent word line and bit line conductance of
any partitions to the right and/or below.

Fig. 4 shows the simulation time for a 256 × 256 crossbar parti-
tioned into various smaller crossbar sizes. The results show that
there is an optimal partition size where the simulation time is min-
imized. In this case we obtain the minimum simulation time of 870
ms when we partition it into 32×32 crossbars, while the simulation
time is 13.19 s for an equivalent unpartitioned simulation.

2.6 Batch Processing
Decomposing a matrix requires substantially longer time than solv-
ing the decomposed matrix, and the most common use case for
simulating a crossbar is for a training of a validation set when per-
forming neural architecture search. As such, simulating batches of
inputs allows for the decomposition time to be amortized across a
batch of solves. Hence, we decompose the matrix once and run the
solver for multiple input samples.

Fig. 5 shows the results of batching multiple input data. For a
128×128 crossbar, the simulation time is 1 s without batching. With
a batch size of 1000, the simulation time is 21.71 s, resulting in a
per-solve speedup of 1000

21.71 = 46𝑋 . Fig. 6 shows the simulation time
per input sample for various crossbar sizes. The simulation time
per sample improves with increasing batch size. For example, with

Figure 5: Batched simulation time for various crossbars.

Figure 6: Simulation time per input sample for various cross-
bars with different batch sizes.

the 128 × 128 crossbar, the per-solve time reduces to 500 ms for a
batch size of 2 and further decreases to 22 ms for a batch size of
1000.

3 FPGA Emulation
For FPGA deployment, the solver combines the forward substi-
tution and the backward substitution required when solving an
LU-decomposed matrix. The resulting sequence of operations is se-
quential, since the solution to each element of vector 𝑦, 𝑦𝑖 , depends
on the solution to𝑦𝑖−1 for all 𝑖 > 1, and the solution to each element
of the 𝑉 vector, 𝑉𝑗 , depends on 𝑉𝑗+1 for all 𝑗 < 2 ×𝑚 × 𝑛, and the
solution to 𝑉2×𝑚×𝑛 depends on the solution to 𝑦2×𝑚×𝑛 . In essence,
the elements of both vectors to be solved form a dependency chain.
As such, there is little exploitable parallelism within an individual
solve.

Fig. 7 shows the dataflow graph for solving a dense 4x4 system
of equations given by a matrix that has already been decomposed
into an 𝑳 and 𝑼 matrix. In the figure, the elements of the input
𝐼 vector are read from off-chip memory, and the elements of the
output 𝑉 vector are written to off-chip memory. The elements of
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Figure 7: The dataflow graph for solving a dense 4 × 4 system of equations that is represented as a decomposed product of an 𝑳
and a 𝑼 matrix. The nodes containing the 𝐼 vector are shown in pink and the node containing the 𝑉 vector are shown in green.
The nodes comprising the critical path are shown with a double border.

the 𝑳 and 𝑼 matrices are stored in banked on-chip RAM. In this
case, most of the operations are part of the critical path, indicating
that there are few opportunities for exploiting parallelism when
solving a single system.

Despite the lack of parallelism inherent within a single cross
solve, there is potential to exploit parallelism for a batch of solves.
This is possible by constructing a solver pipeline that performs a
complete solve in each pipeline traversal, where each solve corre-
sponds to the crossbar input state.

Since the sparsity structure of the 𝑳 and 𝑼 matrices is fixed for
a crossbar of a given size, we generate unrolled, straight-line code
to implement the solver pipeline and allow the matrix structure
to be hard-coded to avoid the overhead of accessing a generalized
sparse matrix. Instead, the solver accesses the matrix values from
predefined locations in the on-chip matrix RAM. Since both the
𝑳 and 𝑼 matrices are sparse, this also allows the code to omit
any multiplies against a value of zero. The resulting loop body is
synthesized to a pipeline.

When the matrix data is stored in a highly-parallel on-chip RAM,
each pipeline traversal requires reading the 𝐼 vector and writing the
𝑉 vector, thus the minimum pipeline throughput is the inverse of
the number of cycles required to read and write these vectors. Our
design assumes a single 64-bit bidirectional memory port, giving a
throughput of 1

2×𝑚×𝑛 , or–stated another way–a pipeline initiation
interval (II) of 2 ×𝑚 × 𝑛. The latency of the pipeline–or iteration
latency (IL)–depends on the critical path of the solver’s data flow
graph. For a double precision pipeline, the IL can grow to thousands
of cycles. For a solver batch size of 𝐵, the total execution time is
𝐵 × 𝐼 𝐼 + 𝐼𝐿, and the time for a single solve is 𝐼 𝐼 + 𝐼𝐿

𝐵
.

Table 3 shows the pipeline II, IL, and the number of double pre-
cision operations performed in each pipeline traversal for crossbar
solver sizes of 2×2, 4×4, and 8×8. Additionally, the table lists the
execution time for batch sizes of 1,000 and 10,000 for each solver
and the resultant operations per cycle.

In practice, the Vitis HLS compiler is limited in the depth of the
pipeline it can generate, and can only generate a pipeline having a
maximum 𝐼 vector size of 128, corresponding to a crossbar size of
8x8. For this reason, the solver must solve larger crossbars using
partitioning as described below, storing one copy of the non-zero
entries of the 𝑳 and 𝑼 matrices in an on-chip RAM. Additionally,
since the number of partitions required for solving a given crossbar
scales down at the same rate at which the execution time of solving a
larger partition scales up, there is no benefit to deploying a partition
solver of size greater than 2×2, corresponding to an 8×8 matrix.

Table 1: Vitis HLS compile time for LU decomposition across
matrix sizes.

Xbar Size Matrix
Size

L Matrix
nnz

U Matrix
nnz

HLS
Compile
Time (sec)

2×2 8×8 21 21 16.87
4×4 32×32 147 147 141.76
8×8 128×128 1095 1095 19507.3

Table 2: Resource utilization and Fmax for different crossbar
sizes.

Xbar Size LUTs FFs DSPs Fmax (MHz)
2×2 9997 18234 40 356
4×4 24790 62218 80 356
8×8 98222 243221 160 356

Table 1 shows the crossbar size, matrix sizes, number of non-zero
entries in the corresponding 𝑳 and 𝑼 matrices, and HLS compile
time for crossbar solvers of 2×2, 4×4, and 8×8. Table 2 shows the
FPGA resource requirements for each solver, in LUTs, flip-flops
(FFs), andDSPs, as well as themaximum clock frequency as reported
by the HLS compiler.

4 Results
In this section we compare our LU-based crossbar solver running
in Matlab to our FPGA-based LU solver. In both cases, we evaluate
the performance impact of partitioning the crossbar solve.

Table 4 compares the performance of our proposed solver run-
ning on Matlab 2024a on an Intel Xeon Gold 5220R CPU against
our proposed FPGA-based solver. Both were evaluated for crossbar
sizes 4×4 to 128×128 and for batch sizes of 1,000 and 10,000. All
reported execution times are normalized to a single solve (i.e., the
total execution time is divided by the batch size). The CPU results
reported are an average of 10 runs.

For the Matlab solver we chose the partition size that gave the
best performance for each crossbar size and for each batch size. For
the FPGA solver we used the 2×2 partition size. Since each partition
requires a different 𝑳 and 𝑼 matrix, we also list thememory required
to store all the matrices for a given crossbar size. The largest is
172,032 double precision values, or approximately 1344 KiB. Note
that the embedded-class AMD Zynq Ultrascale+ FPGAs contain 0.8
to 10 MiB of on-chip memory depending on the device, with the
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Table 3: Detailed HLS performance metrics across batch sizes and operations

Xbar Size II IL DP mults DP subs/
adds DP divides Batch size 1000 Batch size 10000

cycles time(us) ops/cycle cycles time(us) ops/cycle
2×2 8 1041 26 29 8 9041 25.40 6.97 81041 227.64 7.77
4×4 32 5502 296 235 32 37502 105.34 15.01 325502 914.33 17.30
8×8 128 32889 1934 1943 128 160889 451.94 24.89 1312889 3687.89 30.51

Table 4: Comparison of Matlab- and FPGA-based Solver

Xbar
size

Matlab FPGA 2×2 partition

Batch size 1000 Batch size 10000 Batch size
1000

Batch size
10000 Number

of
partitions

BRAM
requirement

(fp64
values)

Best
partition

size

Solve
time

Best
partition

size

Solve
time

Solve
time

FPGA vs Matlab
speedup

Solve
time

FPGA vs Matlab
speedup

4×4 4×4 545 ns 4×4 331 ns 102 ns 5.34 91.1 ns 3.64 4 168
8×8 8×8 2.27 µs 8×8 782 ns 406 ns 5.59 364 ns 2.15 16 672
16×16 16×16 4.56 µs 16×16 3.06 µs 1.63 µs 2.80 1.46 µs 2.10 64 2688
32×32 32×32 14.1 µs 32×32 12.4 µs 6.50 µs 2.17 5.83 µs 2.13 256 10752
64×64 64×4 55.7 µs 64×4 49.7 µs 26.0 µs 2.14 23.3 µs 2.13 1024 43008
128×128 64×4 223 µs 32×4 198 µs 104 µs 2.14 93.2 µs 2.13 4096 172032

device on the most common development board, the ZCU104 board,
containing 5.5 MiB of on-chip RAM. As shown, the FPGA-based
solver with a 2×2 partition size delivers a 2.5X to 11.6X speedup
over Matlab with its best partition size.

5 Conclusion
In this paper, we introduced XbarSim, a specialized simulation
framework tailored for solving matrices associated with memristive
crossbar nodal equations. To solve the matrices, we employ LU
decomposition and crossbar partitioning. Our Matlab-based solver
achieves significant performance improvements as compared to
Hspice, and our FPGA-based solver achieved further improvement.

The speedups achieved by XbarSim provide several opportunities
for future work, including extending XbarSim to support complete
neural network simulations and integrating it with multi-objective
optimization algorithms for optimizing ML workload mapping on
crossbar-based IMC architectures.
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