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Abstract—The dominance of machine learning and the ending
of Moore’s law have renewed interests in Processor in Mem-
ory (PIM) architectures. This interest has produced several
recent proposals to modify an FPGA’s BRAM architecture
to form a next-generation PIM reconfigurable fabric [1], [2].
PIM architectures can also be realized within today’s FPGAs
as overlays without the need to modify the underlying FPGA
architecture. To date, there has been no study to understand the
comparative advantages of the two approaches. In this paper,
we present a study that explores the comparative advantages
between two proposed custom architectures and a PIM overlay
running on a commodity FPGA. We created PiCaSO, a Processor
in/near Memory Scalable and Fast Overlay architecture as a
representative PIM overlay. The results of this study show that
the PiCaSO overlay achieves up to 80% of the peak throughput
of the custom designs with 2.56× shorter latency and 25% – 43%
better BRAM memory utilization efficiency. We then show how
several key features of the PiCaSO overlay can be integrated into
the custom PIM designs to further improve their throughput by
18%, latency by 19.5%, and memory efficiency by 6.2%.

Index Terms—Processing-in-Memory, Bit-serial, Overlay,
FPGA, Machine Learning, SIMD

I. INTRODUCTION

Convolutional Neural Networks (CNNs), Multilayer Per-
ceptrons (MLPs), and Recurrent Neural Networks (RNNs)
have emerged as the dominant machine learning approaches
for today’s application domains. Each of the three networks
have different computation to communication requirements,
or operational intensities, that necessitate different types of
architectural support [3].

CNNs exhibit high operational intensities where end-to-
end inference latencies are dominated by arithmetic compute
times. Conversely, MLPs and RNNs exhibit much lower
operational intensities where the end-to-end inference latencies
are dominated by bus bandwidth and memory swapping times.
Processor in/near memory (PIM) architectures [4]–[7] are
making a resurgence to address these types of network require-
ments. PIM architectures break the sequential von Neumann
bottleneck by integrating bit-serial processors within memory.

PIM architectures can leverage the continued trend in ma-
chine learning arithmetic towards lower precision. Less than
full precision operands can result in better utilization of limited
memory, and the bit-serial processing elements (PEs) can
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provide better energy efficiency compared to full precision
PEs. PIM systems offer a theoretical peak performance limited
only by the memory bandwidth.

The trend towards PIM architectures is inspiring new re-
configurable fabrics that integrate bit-serial arithmetic units
into BRAM IP to form PIM tiles [1], [2], [8]–[15]. These
architectures may represent the future but are not currently
available. To fill the void PIM architectures can be created
as overlays in existing FPGAs. The fundamental question we
explore in our work is, how close in performance can an
overlay come to the performance being reported for next-
generation PIM reconfigurable compute fabrics?

To explore this question we created PiCaSO, a Processor
in/near Memory Scalable and Fast Overlay as an open-
source PIM overlay architecture [16]. We present perfor-
mance comparisons that show PiCaSO achieves 80% of the
peak throughput of these emerging proposed custom designs
while delivering 2.56× shorter latency and 25% – 43% better
BRAM memory utilization efficiency. This validates PiCaSO’s
ability to bring enhanced designer productivity to the design
of FPGAs without the traditional performance sacrifices of an
overlay.

Finally, we apply several PiCaSO design optimizations to
the custom PIM designs to further improve their throughput
by 18%, latency by 19.5%, and memory efficiency by 6.2%.
The specific contributions of this work are:

• A PIM overlay architecture that scales linearly with the
BRAM capacity of a device, without sacrificing the clock
frequency.

• A comparative study with a state-of-the-art PIM overlay
showing improvements of clock speed by 2×, resource
utilization by 2×, and accumulation latency by 17×.

• An improved version of an existing custom PIM design
incorporating the novel features of the proposed overlay
architecture.

• A comparative study between the proposed overlay and
custom PIM designs analyzing the trade-offs and use
cases of the overlay and custom designs.

PiCaSO is open-source and freely available at [16] for use,
modification, and distribution without restriction.
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Fig. 1. Proposed overlay architecture for processing in/near memory, PiCaSO

II. RELATED WORK

PIM architectures are a growing area of research [8]–
[15]. Building on earlier work such as Logic-In-Memory [6],
Terasys [5], Shamrock [4], and Computational RAM [7],
PIM architectures seek to break the classic von Neumann
bottleneck by moving the processing closer to the data residing
in memory in a Single Instruction Multiple Data (SIMD)
architectural organization [17]–[24].

Recently, the reconfigurable computing community has
been exploring modifying the internal circuity of the on-chip
BRAMs within a modern FPGA with bit-serial arithmetic and
logic operations to form a PIM tile [1], [2]. Examples include
RIMA (Reconfigurable In-Memory Accelerator) [2], which is
built upon Neural Cache [11]. Their compute capable BRAMs
(CCB) enhanced the peak MAC throughput by factors of 1.6×
and 2.3× for 8-bit integer and block floating point precision
at a cost of a 7.4% increase in BRAM tile area [2]. Reported
clock frequencies range from 250 MHz to 455 MHz on a Straix
10 device. CCB requires simultaneous activation of multiple
wordlines on a port and modifications to the voltage source
for robustness.

CoMeFa [1] builds upon CCB taking advantage of the dual-
port nature of BRAMs. Two versions of PIM blocks were
proposed. Optimized for the delay, CoMeFa-D showed 25.4%
tile area increase due to the inclusion of 160 PEs, 120 sense
amplifiers (SA), and write drivers. Optimized for the area,
CoMeFa-A showed an 8.1% increase in the BRAM tile area
mainly attributed to the addition of 40 PEs. The maximum
clock frequency (735 MHz) dropped 1.25× to 588 MHz for
CoMeFa-D. The clock frequency for CoMeFa-A dropped 2.5×
to 294 MHz, to perform 4 reads and 2 writes in a single cycle.

PiCaSO is very synergistic with these efforts. We show how
design optimizations developed for PiCaSO can be applied to
these BRAM tile designs and potentially reclaim the clock
frequency difference with the BRAM’s supported maximum.

III. PICASO ARCHITECTURE

Fig. 1 shows the processor in-memory architecture of Pi-
CaSO. PiCaSO builds on the SPAR-2 PIM processor array
reported in [25]–[27] but with the key modifications dis-
cussed below. Custom bit-serial PIM designs including those

TABLE I
FULL ADDER/SUBTRACTOR (FA/S) OP-CODES

Op-Code Output (SUM) Description
ADD X + Y Acts as a Full-Adder (FA)
SUB X - Y Acts as an FA with borrow logic
CPX X Copies operand X unmodified
CPY Y Copies operand Y unmodified

TABLE II
OP-ENCODER CONFIGURATIONS FOR BOOTH’S RADIX-2 MULTIPLIER

Conf YX ALU Op-Code Description
000 xx ADD Request ADD
001 xx CPX Select X operand
010 xx CPY Select Y operand
011 xx SUB Request SUB
1xx 00 CPX NOP
1xx 01 ADD +Y
1xx 10 SUB -Y
1xx 11 CPX NOP

reported in [1], [2], [26] stream operands between memory and
ALUs across dedicated bitlines. Such an organization does not
provide support for fast reduction operations (summation of
product terms) between the PEs and instead requires explicit
buffered transfer or copying of the product terms (for multiply-
accumulate) between BRAM columns. PiCaSO enables zero-
copy reduction operations with the operand-multiplexer (Op-
Mux) shown in Fig. 1. The operand-multiplexer allows pass-
through of bitlines from BRAMs to ALUs for multiplication
but then supports zero-copy reduction summation of the prod-
uct terms. The Network Node in Fig. 1 provides a streaming
interface between PIM blocks enabling the streaming of partial
products into the ALU of the destination PE for summation,
without intermediate copying. Section III-C presents how the
reduction operation can be optimized by inserting pipeline
stages that overlap data transfers with ALU operations, hiding
the transfer latency.

A. Parallel to Serial Corner Turning

PiCaSO is a bit-serial array processor designed to work with
standard processors. Parallel data read/written from DRAM
and external I/O devices is corner-turned into bit-serial data
and stored as a striped column within the BRAMs. This is
a standard storage scheme for bit serial ALUs similar to [1],
[2], [26]. PiCaSO configures a BRAM to be 16-bits wide to
concurrently feed bit-serial data to 16 ALUs [26]. In SPAR-
2 [26], the benchmark overlay, the 16 PEs form a logical
4×4 PE Block. PiCaSO structurally organizes the PE-Block
as a 1×16 linear array to optimize layout in the columnar
architecture of Virtex FPGAs. This reduces routing complexity
and wire delay, allowing a greater number of PEs to be
synthesized into the FPGA and improving system clock speed.

B. Bit-Serial ALUs

Fig. 1(b) shows the architecture of the bit-serial ALU
consisting of a Full-ADD/SUB module (FA/S) and an op-
code encoder. The FA/S implements the four operations in
Table I. CPX and CPY support min/max pooling and other
filter operations that require the selection of one of the two
input operands. Op-Encoder provides an abstract interface for
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TABLE III
CONFIGURATIONS OF OPERAND MULTIPLEXER

Config Code X Y Description
A-OP-B A B Used in standard operations

A-FOLD-1 A {0, A[H2]} A[H2]: second half of A
A-FOLD-2 A {0, A[Q2]} A[Q2]: second quarter of A
A-FOLD-3 A {0, A[HQ2]} A[HQ2]: second half-quarter of A
A-FOLD-4 A {0, A[HHQ2]} A[HHQ2]: second half of A[HQ1]1

A-OP-NET A NET Operates on network stream
0-OP-B 0 B Used in the first iteration of MULT

1 A[HQ1] : first half-quarter of A

the FA/S module. Table II shows the encoding for Booth’s
Radix-2 multiplication algorithm.

C. Supporting Reduction Operations

The operand-multiplexer (OpMux) provides a data path for
reduction operations between the PEs in a PE-Block without
having to copy the operands between bitlines. This is achieved
using a folding technique. Fig. 2 shows two types of folding
patterns for a PE row with 8 columns enabled by the OpMux
module. In pattern (a), after adding an operand with its fold-1
pattern, PE 0, 1, 2, and 3 contain the summation of 0 & 4, 1
& 5, 2 & 6, and 3 & 7 respectively. In pattern (b), after adding
an operand with its fold-1 pattern, PE 0, 2, 4, and 6 contain
the summation of 0 & 1, 2 & 3, 4 & 5, and 6 & 7. In both
cases, after applying fold-1, fold-2, and fold-3 in that order,
the accumulation result will be stored in PE-0. Fold-1 of the
pattern (b) can be especially useful in CNN models, where
each PE needs access to its adjacent PEs. A similar type of
folding scheme can be realized using multiplexers at the output
of SAs in custom PIM blocks. Results presented in Section V
show the potential reduction in accumulation latency for the
custom designs provided with this optimization.

Table III shows configurations currently supported by the
OpMux module. Configuration A-OP-B connects ports A to X
and B to Y and is used in element-wise operations. A-FOLD-x
implements folding patterns similar to Fig. 2(a). A-OP-NET
directly feeds the network stream into the ALU. 0-OP-B is
used as the initialization step in Booth’s multiplication.

D. Network Architecture

Fig. 3(c) expands the Network Node shown in Fig. 1.
Fig. 3(a) shows the PE-Blocks (PB) connected to the data
network through the network module (N). Fig. 3(b) illustrates
data reduction patterns between 8 nodes. Each node can be
configured as a transmitter (T), receiver (R), or pass-through
(P) based on a level (L) parameter and its position in the
array. Fig. 3(b), shows that level 0 logically connects even
nodes as receivers with their right neighbor as transmitters

Conf

N
E

T

Decoder

Capture

RX

From Regfile

N
E
W
S

...

Sh
i�

-I
n

Sh
i�

-O
u

t

N
E
W
S

TX

(b) Jump over PE-Blocks(a) Network Architecture

L=0

L=1

L=2

R T R T R T R T

0 1 2 3 4 5 6 7Col-ID  -

0 1 2 3 4 5 6 7Col-ID  -

R P T P R P T P

R P P P T P P P

PB PB

N N N

PBPBPB

PB PB

N N N

PBPBPB

PB PB

N N N

PBPBPB

(c) Network node (N) architecture for hopping

Fig. 3. Data network for fast accumulation and reduction operations

between columns. For level 1, the middle node of every 3 con-
secutive nodes acts as a pass-through, effectively connecting
its neighbors. Similarly, level 2 connects node-4 to node-0.
During accumulation, bits of the operand in the transmitter
hop through P-nodes to reach the receiver ALU where they
are added (serially) to the operand in the receiver. After levels
0, 1, and 2, PE 0 contains the accumulation result of an entire
row in the array.

E. Pipelining Options for PIM-Blocks

The dashed registers in Fig. 1(a) show three potential points
for pipelining the PIM Block: register file output, OpMux
output, and ALU output. The Single-Cycle configuration has
no pipeline stages and is equivalent to the custom BRAM
designs [1], [2] and the benchmark overlay [26]. PiCaSO can
be configured in different pipeline configurations based on
network requirements and choice of FPGA. RF-Pipe inserts
a pipeline stage at the register file output to hide the read
latencies of the BRAM. Op-Pipe inserts a pipeline stage at the
OpMux output to hide long wire delays through the network.
Full-Pipe, referred to as PiCaSO-F, enables all three pipeline
stages as shown in Fig. 1 (a).

IV. ANALYSIS

A. Performance and Utilization

Table IV compares the pipeline configurations outlined
in subsection III-E against SPAR-2, the benchmark overlay
from [26]. All designs were implemented and run on Virtex-
7 (xc7vx485) and Alveo U55 FPGAs. Utilization numbers
follow the tile definition in SPAR-2 consisting of 256 PEs
organized in a 4×4 array of PE blocks, with 16 PEs in
each block. The total utilization per tile and the average
utilization per block are shown. The Full-Pipe configuration
achieved a 2.25× and a 1.67× increase in clock frequency
compared to the benchmark design on Virtex-7 and U55
devices, respectively. In both devices, Full-Pipe provided a
2× improvement in resource utilization over SPAR-2.



TABLE IV
COMPARISON BETWEEN TILES OF 4× 4 PE-BLOCKS OF DIFFERENT OVERLAY CONFIGURATIONS

Benchmark [26] Full-Pipe Single-Cycle RF-Pipe Op-Pipe
Virtex-7 U55 Virtex-7 U55 Virtex-7 U55 Virtex-7 U55 Virtex-7 U55

Tile Block Tile Block Tile Block Tile Block Tile Block Tile Block Tile Block Tile Block Tile Block Tile Block
LUT 3023 189 2449 153 835 52 774 48 895 56 1068 67 1017 64 1064 67 836 52 774 48
FF 1024 64 768 48 1799 112 1799 112 1031 64 1031 64 1543 96 1527 95 1543 96 1543 96

Slice 1056 66 556 35 522 33 243 15 395 25 223 14 451 28 243 15 472 30 295 18
Max-Freq 240 MHz 445 MHz 540 MHz 737 MHz 245 MHz 487 MHz 360 MHz 600 MHz 370 MHz 620 MHz

TABLE V
CYCLE LATENCY OF DIFFERENT OPERATIONS

Operation Benchmark [26] PiCaSO-F
ADD/SUB 2N 2N

MULT1 2N2 + 2N 2N2 + 2N
Accumulation2 (q − 1 + 2 log2 q)N 15 + q

16
+ 4N + (N + 4)J

q = 128, N = 32 4512 259
1 Booth’s Radix-2 multiplication
2 q : Number of columns to be accumulated
N : Operand width
J : Number of network jumps needed = log2(q/16)

The Single-Cycle configuration achieved similar perfor-
mance on the Virtex-7 and better performance on the U55
compared to the benchmark system, with 2.6× and 2.5×
utilization improvements, respectively. It had a smaller flip-
flop count and slice utilization compared to the Full-Pipe due
to the absence of the pipeline registers. Both RF-Pipe and Op-
Pipe achieved better clock speeds but with an increase in slice
utilization compared to Single-Cycle, due to the addition of the
pipeline stages. As argued in Subsection III-E, Op-Pipe had
better performance compared with RF-Pipe by minimizing the
clock latency contributed by the network. All configurations
offered at least 2× better utilization and up to 2× better
performance compared to the benchmark design.

Table IV shows Full-Pipe achieved clock frequencies of
540 MHz on the Virtex-7 (xc7vx485-2), and 737 MHz on
the Alveo U55 (xcu55c, -2 speed grade). The data sheets for
these devices list 543.77 MHz and 737 MHz, respectively
as the maximum BRAM clock frequencies. Surprisingly, this
is an improvement over the custom designs reported in [1],
[2]. The technology node of U55 (16 nm) is comparable to
that of the designs proposed in CCB (Stratix 10, 14 nm)
and CoMeFa (Arria 10, 20 nm). Yet, PiCaSO runs 1.62×
and 1.25× faster than the fastest configurations of CCB and
CoMeFa, respectively. This is due to the pipelined architecture
of PiCaSO, where the slowest stage is the BRAM. Thus, it can
run as fast as the maximum frequency of the BRAM.

B. Reduction Network

Both PiCaSO and SPAR-2 [26] use Booth’s Radix-2 al-
gorithm for multiplication. Thus, the cycle latencies for the
ADD/SUB and MULT operations in Table V are identical.
SPAR-2 uses a standard NEWS network to copy operands
between PEs when summing the partial products during
multiply-accumulate (MAC) operations. The Accumulation
row compares the number of clock cycles for SPAR-2’s NEWS
network and PiCaSO’s reduction network. The last row in
Table V shows the PiCaSO-F reduction network provides
a 17× improvement in accumulation latency for the test
configuration reported in [25]. This improvement is due to

TABLE VI
COMPARISON OF LARGEST OVERLAY ARRAYS IN VIRTEX DEVICES

Virtex-7 Alveo U55
Benchmark [26] PiCaSO-F Benchmark [26] PiCaSO-F

Max-Size 24K 33K 63K 64K
LUT 74.6% 32.5% 41.6% 14.8%
FF 16.0% 38.0% 9.7% 17.3%

BRAM 73.8% 99.9% 98.4% 100.0%
Uniq. Ctrl. Set 32.1% 2.1% 19.5% 0.8%

Slice 86.0% 76.4% 63.4% 32.0%

the careful design of the binary-hopping network discussed in
Section III-D, which overlaps data transfer with computation
during accumulation.

C. Scalability

A primary design goal for PiCaSO was to make it scale
linearly with the BRAM capacity of any FPGA. To evaluate
scalability, the largest-sized array of PIM blocks that could
fit into the target devices was constructed. The results of this
study are shown in Table VI.

In the Virtex-7 FPGA, the largest array of SPAR-2 [26]
PIM blocks contained 24K PEs. This did not achieve the full
capacity of the Slices or BRAM resources available in that
device. The implementation tool failed at the placement step
for larger arrays due to a high utilization (32.1%) of Unique
Control Sets. Control sets are the collection of control signals
for slice flip-flops. Flip-flops must belong to the same control
set to be packed into the same slice. A large number of
unique control sets makes it difficult to find a valid placement,
even with enough available slices. In contrast, PiCaSO-F
fully utilized the BRAM resources to fit 33K PEs, a 37.5%
improvement over SPAR-2 in the same device. PiCaSO does
not suffer from the placement issues observed in SPAR-2 due
to a very low (2.1%) utilization of the unique control sets.

In the U55 FPGA, SPAR-2 almost achieved the full BRAM
capacity for an array size of 63K PEs. This is due to the U55
FPGA offering significantly more slices and routing resources
compared to the Virtex-7 FPGA. PiCaSO achieved 100%
utilization of BRAM with 2× better slice utilization over
SPAR-2.

Our results showed that the scalability of the benchmark
design, SPAR-2, is dependent on the Slice-to-BRAM ratio
and cannot guarantee the creation of a PIM array that scales
with the BRAM capacity. Conversely, our results showed
PiCaSO scaling with the BRAM capacity independent of
the Slice-to-BRAM ratio across multiple devices of Virtex-7
and Ultrascale+ FPGA families. Table VII lists representative
devices we evaluated based on the following two criteria:
BRAM capacity and LUT-to-BRAM ratio. Each device is
assigned an ID as a short name to be used in this paper.



TABLE VII
REPRESENTATIVE OF VIRTEX-7 AND ULTRASCALE+ DEVICES

Device Tech BRAM# Ratio1 Max PE#2 ID
xc7vx330tffg-2 V7 750 272 24K V7-a
xc7vx485tffg-2 V7 1030 295 32K V7-b
xc7v2000tfhg-2 V7 1292 946 41K V7-c
xc7vx1140tflg-2 V7 1880 379 60K V7-d
xcvu3p-ffvc-3 US+ 720 547 23K US-a

xcvu23p-vsva-3 US+ 2112 488 67K US-b
xcvu19p-fsvb-2 US+ 2160 1892 69K US-c
xcvu29p-figd-3 US+ 2688 643 86K US-d
1 LUT-to-BRAM ratio
2 Maximum number of PEs if all BRAMs are utilized
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Fig. 4. Scalability study on Virtex-7 and Ultrascale+ FPGA families

Fig. 4 shows that PiCaSO utilized the full BRAM capacity
in all devices, and achieved the maximum number of PEs the
device can fit based on BRAM density. Results showed for
the smallest device (V7-a) and lowest LUT-to-BRAM ratio,
the LUT and flip-flop utilization is around 40%. For one of
the largest devices with a high LUT-to-BRAM ratio (US-c),
these utilization numbers are negligible, around 5%. These
results strongly support that PiCaSO scales linearly with the
BRAM capacity of the device.

V. COMPARISON WITH CUSTOM DESIGNS

Fig. 5 shows the relative MAC latency of the custom designs
w.r.t PiCaSO. The latency is computed for 16 parallel MULTs
followed by the accumulation of the products. The clock
speeds of custom designs are adjusted based on the perfor-
mance degradations reported in [1], [2]. With the exception
of CoMeFa-D at 16-bit precision, PiCaSO has the shortest
latency due to faster clock speed and accumulation. CCB and
CoMeFa extend the clock period to allow a complete read-
modify-write per clock cycle. This allows a complete MULT
to finish in half the number of cycles compared to PiCaSO
and can reduce latencies at higher precisions. Still, PiCaSO
runs 1.72× – 2.56× faster than CoMeFa-A, which is reported
as the most practical design in [1].

Peak TeraMAC/sec throughputs on the U55 FPGA are
shown in Fig. 6. CCB and CoMeFa design the BRAM IP
to support one PE per bitline. With a column muxing factor
of 4 [1], a Virtex 36Kb BRAM would be redesigned as a
256×144 array with 144 PEs per BRAM. The use of standard
BRAM IP prevents PiCaSO (and all overlays) from making
this modification. Yet PiCaSO still achieves 75% – 80% of
CoMeFa-A’s peak throughput, the most practical of the two
CoMeFa designs. This results from PiCaSO not sacrificing the
same degradation of clock speed seen in all custom designs.

The memory utilization efficiency of BRAMs is not dis-
cussed in [1], [2] but we feel is an important metric for PIM
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architectures. Memory utilization efficiency can be defined as
the fraction of BRAM memory that can be used to store model
weights. Both CCB and CoMeFa follow the computation
techniques used in [11] which requires scratchpad memory.
For N-bit operands, CCB requires 8N reserved wordlines.
CoMeFa only needs 5N wordlines using the “One Operand
Outside RAM (OOOR)” technique. PiCaSO requires only 4N
wordlines, as it does not require copying operands to the
same bitline as in CoMeFa. In the widest mode of a Virtex
36Kb BRAM, each PE of CCB and CoMeFa would have
256 bits of storage in its register file (bitline). For PiCaSO,
each register file has 1024 bits. Fig. 7 shows the memory
utilization efficiency of these architectures. As observed, at
higher precisions the memory efficiency drops significantly for
CCB and CoMeFa. For 16-bit operands, CCB and CoMeFa
have only 50% and 68.8% efficiencies, respectively, while
PiCaSO has 93.8% efficiency.

Table VIII summarizes comparisons between PiCaSO and
the custom designs. The custom designs significantly degrade
the BRAMs maximum clock frequency, whereas PiCaSO runs
at the maximum clock speed of the BRAM. However, PiCaSO
has 1/4th the number of parallel MACs, as it cannot access
all the bitlines. Multiplication in PiCaSO is 2× slower, as it
requires 2 cycles to process a single bit. However, accumula-
tion is 2× faster in PiCaSO. PiCaSO supports Booth’s radix-2
multiplication. In Booth’s algorithm, half of the intermediate
steps are NOPs on average. Thus, PiCaSO can potentially
further reduce the multiplication latency by 50% on average.
CoMeFa can use Booth’s algorithm only in OOOR mode and
CCB does not support it at all.

As discussed earlier, the memory utilization efficiency of
CCB is significantly low, PiCaSO is high, and CoMeFa lies



TABLE VIII
COMPARISON WITH CUSTOMIZED BRAM PIM ARCHITECTURES

CCB CoMeFa-D CoMeFa-A PiCaSO-F A-Mod
Architecture Custom Custom Custom Overlay Custom
Clock Overhead 60% 25% 150% 0% 150%
Parallel MACs 144 144 144 36 144
Mult Latency1 (a) (a) (a) (b) (a)
N = 8 86 86 86 144 86
Accum. Latency2 (c) (c) (c) (d) (e)
q = 16, N = 8 80 80 80 48 40
Support Booth’s No Partial Partial Yes Yes
Mem. Efficiency Low Medium Medium High Medium
Complexity High Medium Medium No Medium
Practicality Low Medium High Very High High

1 (a) N2 + 3N − 2 ; (b) 2N2 + 2N
2 (c) (2N + log2 q) log2 q ; (d) (N + 4) log2 q ; (e) (N + 2) log2 q

in between. CCB has the highest design complexity mainly
due to its need for a modified voltage supply. CoMeFa has
medium complexity since it requires modifications to the
SAs, additional flip-flops, and SA cycling. Being an overlay,
PiCaSO does not have such design complexities. As reported
in [1], the practicality of CCB is low, CoMeFa-D is medium,
and CoMeFa-A is high. In that reference, the practicality of
PiCaSO is very high. It offers 80% of CoMeFa-A’s peak
throughput with 2.56× shorter latency, 25% better memory
efficiency, can be implemented using off-the-shelf FPGAs, and
is tested on real devices, while CCB and CoMeFa numbers are
mainly based on simulations.

A. Fusing PiCaSO Optimizations into Custom Designs

Fig. 8 shows how modifications highlighted in red can
accelerate CoMeFa-A [1]. We refer to this implementation as
A-Mod. PiCaSO’s OpMux module per bitline consists of a 2-
to-1 mux and a 4-to-1 mux. This can be implemented using a
few CMOS pass transistors. OpMux then saves both the cycles
and memory needed to copy operands during accumulation [2],
[11]. PiCaSO’s network module can overlap data movement
with computation between different PIM blocks. The network
module can be embedded within the PIM block or can be
implemented using logic slices from the FPGA. A single-bit
port connection to the network module is enough to support
row-wise accumulation.

Although [1] mentions that the PE does not add additional
delay to the extended clock, in a practical circuit, there will
always be an additional delay. This delay can be hidden using
one of the pipelining schemes of PiCaSO. A single stage of
registers could be enough to hide the PE delay. As BRAM
blocks already contain output registers, this should not add
any additional area overhead on top of what is reported in [1].
The PE circuit can be placed between two stages of registers
if the delay is too long. This is illustrated using the dashed
flip-flops in Fig. 8. Similar modifications can be performed on
CoMeFa-D referred to as implementation D-Mod.

These modifications can significantly improve the perfor-
mance of the custom designs. The extrapolated performance
numbers for A-Mod and D-Mod are presented in Fig. 5 and
Fig. 6. As observed in Fig. 5, the adoption of PiCaSO’s
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Fig. 8. Modified CoMeFa-A [1] with PiCaSO adoption (A-Mod)

OpMux and network modules can improve their MAC la-
tency by 13.4% – 19.5% due to faster accumulation. This
consequently improves their throughput by 5% - 18% over
different precisions. In Fig. 7, CoMeFa-Mod represents both
A-Mod and D-Mod implementations. Due to OpMux, A-
Mod and D-Mod no longer requires scratchpad storage to
copy operands for accumulation. This improves their memory
utilization efficiency by 6.2%. This means at 4-bit precision,
1.6 million more weights can be stored in a device with
100 Mb of BRAM. This would significantly reduce weight
stall cycles [3] and allow bigger models to be stored on chip.
In Table VIII, the A-Mod column shows the architectural
enhancements due to these modifications. A-Mod retains the
high parallelism and fast Mult latency of the original CoMeFa
design and offers 2× faster accumulation and full support for
Booth’s algorithm.

VI. CONCLUSIONS

This paper presented PiCaSO, an open-source scalable and
portable Processor in Memory (PIM) overlay architecture. As
an overlay, PiCaSO brings software levels of productivity
to the design of FPGA machine-learning accelerators across
AMD devices. The PIM architecture addresses the needs of
machine learning and big data analytic applications that are
memory intensive.

A scalability study was presented that established PiCaSO
scaled linearly with the BRAM capacity across a range of de-
vices with varying LUT-to-BRAM ratios. Analysis on Virtex-7
and Ultrascale+ devices showed PiCaSO runs as fast as the
BRAM maximum frequency. Comparisons against SPAR-2,
a state-of-the-art SIMD array processor overlay, showed im-
provements in slice utilization and achievable clock frequency
by 2× and accumulation latency reduction by 17×.

Comparative analysis against custom designs showed Pi-
CaSO achieves up to 80% of the peak throughput and up
to 2.56× shorter latency and 25% – 43% better memory
utilization.

We showed that the proposed architecture can be adopted
into custom PIM designs, and can improve the throughput by
18%, latency by 19.5%, and memory utilization by 6.2%.

Our future efforts are focused on automating and applying
application-specific and logic-family customizations to the
generation of both PiCaSO-based accelerator and compiler-
generated executables.
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