
Accelerating LSTM-based High-Rate Dynamic
System Models

Ehsan Kabir∗, Daniel Coble$, Joud N. Satme$, Austin R.J. Downey$, Jason D. Bakos†,
David Andrews∗, Miaoqing Huang∗

∗Department of Computer Science and Computer Engineering, University of Arkansas, USA
$Department of Mechanical Engineering, University of South Carolina, USA

†Department of Computer Science and Engineering, University of South Carolina, USA
{ekabir, dandrews, mqhuang}@uark.edu, {dncoble, jsatme}@email.sc.edu, austindowney@sc.edu, jbakos@cse.sc.edu

Abstract—In this paper, we evaluate the use of a trained
Long Short-Term Memory (LSTM) network as a surrogate
for a Euler–Bernoulli beam model, and then we describe and
characterize an FPGA-based deployment of the model for use in
real-time structural health monitoring applications. The focus
of our efforts is the DROPBEAR (Dynamic Reproduction of
Projectiles in Ballistic Environments for Advanced Research)
dataset, which was generated as a benchmark for the study
of real-time structural modeling applications. The purpose of
DROPBEAR is to evaluate models that take vibration data as
input and give the initial conditions of the cantilever beam on
which the measurements were taken as output. DROPBEAR
is meant to serve an exemplar for emerging high-rate “active
structures” that can be actively controlled with feedback latencies
of less than one microsecond. Although the Euler–Bernoulli
beam model is a well-known solution to this modeling problem,
its computational cost is prohibitive for the time scales of
interest. It has been previously shown that a properly structured
LSTM network can achieve comparable accuracy with less
workload, but achieving sub-microsecond model latency remains
a challenge. Our approach is to deploy the LSTM optimized
specifically for latency on FPGA. We designed the model
using both high-level synthesis (HLS) and hardware description
language (HDL). The lowest latency of 1.42 µS and the highest
throughput of 7.87 Gops/s were achieved on Alveo U55C platform
for HDL design.

Index Terms—FPGA, LSTM, High-rate dynamics, Flexible,
High-Level Synthesis, Hardware Description Language, RTL.

I. INTRODUCTION

Long Short-Term Memory (LSTM) neural networks are
capable of capturing dependencies for long sequential or
temporal data in applications such as speech recognition,
natural language processing, image captioning, scene analysis,
etc. [1], [2]. In earlier works, such networks have been
shown to be effective in utilizing time-series data to infer
the state of a structure in a high-rate dynamic environment
[3], [4]. The primary goal of this study is to develop a
hardware-based LSTM model to enable ultra-low latency state
estimation applications [5]. High-rate dynamic systems refer
to environments in which structures are subjected to impact
loading that results in accelerations greater than 100 g for
time periods of less than 100 ms [6]. Such systems are
civil structures exposed to blasts, space infrastructures prone
to debris strikes, and aerial vehicles capable of supersonic
flight [7], [8]. Systems exposed to such environments require

rapid response, from event detection to decision-making, in
the sub-millisecond or microsecond scale to ensure safe and
reliable operations [4], [9], [10].

DROPBEAR data [5], [11] was used to come up with a
suitable three-layer LSTM architecture that is trained off-line
in software using logs recorded from the physical DROPBEAR
apparatus. Our model showed an acceptable accuracy in terms
of signal-to-noise ratio and desired latency on a real-time
operating system (RTOS). However, the RTOS is unable to
exploit the available parallelism available within LSTMs. On
the other hand, FPGAs can accelerate inference with low
power consumption using pipelined and parallel processing
elements and are therefore suitable for LSTM implementation.
Thus, a custom accelerator of the trained LSTM model was
designed using both HLS and HDL in this paper. Furthermore,
an implementation on various FPGA platforms was carried out
for performance enhancement and comparison.
The contributions of this paper are:

• Design of an LSTM accelerator framework using
high-level synthesis (HLS) that meets the real-time
requirements set by high-rate applications. Results show
that outermost loop pipelining generates a more efficient
hardware design than outermost loop unrolling of the
algorithm.

• An alternative approach to the accelerator design
using hardware description language (HDL) to improve
performance. Results show that HDL provides the
flexibility to choose the level of parallelism based on the
available resources and timing requirements which not
possible with the HLS-based approach.

• An investigation into model deployment on several FPGA
platforms from Xilinx to determine the best-performing
configuration given the application. We targeted
datacenter platforms such as Xilinx Alveo U55c and
VC707, and an embedded platform, ZCU104. We found
that the additional resources available in the U55C
were unnecessary for the size of the deployed model.
Nonetheless, the U55C’s superior resources allowed
maximum level of parallelism. Both ZCU104 and U55C
boards achieve latency lower than VC707 because they
achieve better frequency. U55C achieved the highest

frequency of all, but its latency is lower than that of
ZCU104 within the same level of parallelism.

II. MODEL SELECTION

The LSTM model is chosen for a high-rate dynamic system
to predict the real-time response within microsecond latency.
The experimental data known as DROPBEAR was generated
by Joyce et al. [12]. The test setup and data are described in
[4], [13]. Various LSTM models were trained on Python with
Tensorflow and Keras to find a suitable model that meets the
RTOS requirement of 500 µs in a real-time device consisting
of a cRIO-9035 with a 1.33 GHz dual-core Intel Atom (E3825)
manufactured by NI. The number of units per LSTM layer was
varied from 8 to 40 units, each layer having the same number
of units for simplicity. The number of layers was swept from
1 to 3. Fig. 1 shows a large variance in the measurement
of signal-to-noise ratio (SNR) as we vary units per layer,
though the SNR improves with increased number of layers.
The 3-layer configuration with 15 units/layer is chosen in this
paper for FPGA implementation as it has the highest SNR.
The model has 16 input features sourced from the input signal
uniformly sampled across the previous timestep and produces
an output state prediction every 500 µs on RTOS.

Fig. 1. SNRdB values of models with different numbers of cells and units

III. RELATED WORK

LSTMs have been deployed in previous works using HLS
design. For example, work in [14] used HLS pragmas such
as loop unrolling and pipelining to build a real-life speech
recognition system using an LSTM model, whereas [15]
implemented a real-time aircraft anomaly detection system
using small scale LSTM on FPGA. A multilayer LSTM
accelerator template was developed using the HLS tool for
detecting gravitational waves which is a time-series data
produced from LIGO detectors [16]. Low-power LSTM
accelerators are built using pipeline and parallel algorithms
in HLS [17]. Some works dealt with real-time response
applications like electrical fault detection or heart rate
monitoring with LSTM on FPGA after offline construction
of a suitable LSTM architecture on python [18], [19]. Some
HDL-based LSTM accelerators such as a human activity
monitoring system described in [20], provide flexibility of
reconfiguration by adding parameterized features. The same

group also detected artifacts from EEG signals by an LSTM
model on FPGA at a low power and low frequency in
[21]. Another research for healthcare applications reports an
energy-efficient and high throughput real-time human action
detection system [22], where both HLS and HDL-based
RTL modules are combined for the whole system design.
Comparative studies between HLS and HDL-based designs
have been done in the past for applications other than neural
networks [23], [24]. Here, we compared the custom LSTM
designs in both HDL and HLS formats.

IV. HIGH LEVEL SYNTHESIS IMPLEMENTATION

This section describes the high-level synthesis design
technique. The core of the accelerator is designed in C++
language on Vitis HLS 2022.2.1 tool.

There are two main units in the accelerator architecture -
the matrix-vector operations (MVO) unit and the element-wise
operations (EVO) unit. HLS design did not have any function
defined for them. As a result, the exported RTL did not have
separate RTL instances for them. The LSTM gates within the
MVO unit are separately defined as functions with unique
arguments, allowing for the generation of independent parallel
RTL modules. Instead of any distinct functions, the EVO
unit’s operations are expressed as distinct for-loops. Fig. 2
gives a high-level overview of the HLS implementation of
the LSTM accelerator. Each gate can perform multiplication
and accumulation (MAC) operations either in parallel or
sequentially depending on the number of BRAMs. Since

Fig. 2. LSTM Operations for High Level Synthesis Design.

each of the LSTM network layers function in succession,
the gate modules are reused for operations in various
layers. Each gate module contains two for-loops. One loop
iterates over the hidden units. This loop contains two other
distinct for-loops, one for multiplication and the other for
accumulation operations. The other loop inside the function
executes the summing operation with the bias over each
hidden unit before executing the activation function. The main
arguments of the gate functions are the inputs, hidden states,
input weights, recurrent weights, and bias vectors. The array

partition pragma entirely partitions the vectors of the inputs,
hidden states, and biases to create registers and permit parallel
access because the size of these vectors is small. However,
the vectors for input and recurrent weights are represented as
BRAMs to store a large number of elements. Depending on
the size of the LSTM network and the compiling capacity of
the synthesis tool, they can be partially or entirely partitioned
to generate multiple BRAMs. Large array partitioning slows
down the compilation flow and synthesis process may even
stop. For an easier representation of the multiplication and
accumulation operations of LSTM on HLS, the inputs and
hidden state vectors, as well as the input and recurrent weight
vectors, are concatenated. For fully pipelined operations,
pipeline pragmas were applied on the outer loops of the
functions, which fully unrolled the internal loops, but the
operations were not fully parallel because of the BRAMs. The
number of DSPs used for multiplication appears to depend
on the size of the concatenated vector of inputs and hidden
states. However, they do not start computation at the same
clock cycle even being allocated simultaneously which is a
limitation of HLS. To increase the utilization of DSPs for
parallel multiplications, the outermost loop can be unrolled
by some factors depending on the available resources. The
EVO unit contains several for loops, but all loop operations
are pipelined, and no loop was unrolled.

V. REGISTER TRANSFER LEVEL IMPLEMENTATION

Since RTL provides added flexibility as compared to HLS,
we developed a Verilog implementation of the LSTM and
synthesized it with Vivado 2022.2.1 tool. Fig. 3 shows the
connections of modules in the RTL implementation.

Fig. 3. LSTM Operations for HDL Design

The gate modules and the MVO module are not defined
separately in the HDL design. It aided in reducing connections
between modules that consume extra LUTs. For parallel
execution, the hidden units within each gate are defined as
modules and instantiated multiple times. This module contains
some descriptions of logic operations as well as the instances
of other modules such as a multiplier, adder, and activation
functions. The number of this module to instantiate for each
LSTM gate at the top module is configurable. It indicates a
total number of parallel operations which is shown by unit
parallelism in Fig. 3. We were able to increase the parallel
operations with parallel DSPs in this manner, which was

not possible in HLS. HDL design required parallel DSPs for
the EVO unit. The weights are stored in separate BRAMs
in each hidden unit. As parallel DSPs require input data
simultaneously, the number of BRAM instances grows in
proportion to the number of hidden unit instances. The weights
stored in the BRAMs are first transferred to the registers (w1,
w2,...,w31 in Fig. 3) to facilitate parallel data access. As
the number of DSPs was increased, performance improved
dramatically over the HLS design. Because of the heavy
usage of DSPs, the design becomes crowded, preventing
high-frequency operation. LUT usage rises so that correct data
gets multiplexed to the DSPs. As the size of this LSTM is tiny,
the number of concatenated inputs and hidden states were kept
constant. Only flexibility over hidden units was demonstrated,
but the same flexibility may be extended to inputs as well.

VI. OVERALL SYSTEM

Fig. 4 shows the complete system design for running
the LSTM model on different FPGA platforms such as
VC707 (Virtex-7 XC7VX485TFFG1761-2), ZCU104 (Zynq
UltraScale+XCZU7EV-2FFVC1156 MPSoC) and U55C
(UltraScale+XCU55C-FSVH2892-2L-E) for our experiments.
The overall system was designed on Vivado 2022.1.2 design
suite. It contains a custom IP block for the LSTM accelerator
(LA), which can either be exported from HLS or be built
directly with HDL. The LA has internal BRAMs as shown
in Fig. 2. However, the system design has some external
block ram generator modules for storing inputs, weights, and
outputs. These inputs and weights are fetched from external
DDR3 DRAM or High Bandwidth Memory (HBM). The
outputs are returned to DRAM or HBM. Because of the
limited local memory, the software executing on the CPUs is
also saved on DRAM or HBM.

Fig. 4. Complete System Design

Both VC707 and ZCU104 boards have onboard DRAM
memory, while the Alveo U55C contains HBMs. The DRAM
of VC707 is connected to the programmable logic (PL)
side. It can communicate with the MicroBlaze (µB) softcore
processing system (PS) using a memory interface generator
(MIG) connected by AXI-lite interface. The µB is configured
for the maximum frequency operation [25]. On ZCU104,
we access the onboard DRAM through the ARM-based
Multiprocessor System-on-Chip (MPSoC) subsystem. We used
the same ARM processor to run our LSTM model and check

the performance only in PS. On U55c, the µB can access
the HBMs. All the boards are connected to the same HOST
PC with USB-JTAG interface. U55C was connected with a
PCIe 3.0×4 interface of another host which is a server with
Intel Xeon CPU E5-2603 v4 @1.70GHz, so that it receives
enough power to run and gets reset signal after power on.
This host can communicate with other IPs except the PS
using the DMA/Bridge Subsystem for PCI Express IP [26]
in the system. PS uses AXI-TIMER to measure the latency
which includes the time between the start and the stop signal
from the custom IP module. The host connected with JTAG
cable displays the results on the terminal using the UARTlite
interface.

VII. RESULTS AND EVALUATION

On three separate platforms with varying levels of
parallelism, results for 32-bit (FP-32), 16-bit (FP-16), and 8-bit
(FP-8) fixed point precision were obtained. Then they were
compared in terms of maximum frequency (Fmax), resource
utilization, latency, throughput, and normalized throughput
[27].

Fmax is reported for the system design in Fig. 4, which
includes all IPs, while resource usage is only reported for the
accelerator. This is because the accelerator is identical across
all platforms, but the overall system design differs among
them. For a fair comparison, the bit lengths of the inputs,
outputs, weights, and intermediate values are maintained the
same in both HLS and HDL designs. The findings for HLS
design reveal that for the same pragmas such as loop unroll,
loop pipeline, and array partition, the number of BRAM
and DSP is different in different platforms and bit precision.
HLS tends to optimize itself regardless of the pragmas in
different platforms. Hence, array partition was done with
different factors on different platforms so that the number of
DSPs remained the same. Despite the reduction in resource
usage and increase in frequency for FP-8, the model did not
automatically utilize the freed-up resources to decrease the
delay. The improvement in frequency resulted in a minor
reduction in latency. To further reduce latency for FP-8,
the design must be updated again. The results in Table-I
compares the effect of pipelining and unrolling the outermost
loop inside each gate. Unrolling the outermost loop entirely
or partially did not enhance performance significantly, even
though resource use, such as DSP, increased by 8×.

TABLE I
HLS LOOP OPTIMIZATION

HLS Designs Platform & Precision DSP
Maximum Latency

Frequency (MHz) (µS)

Loop Unroll Virtex 7 1852 166 6.12

Loop Pipeline Fixed-16 224 250 6.54

On the other hand, the number of DSP can be controlled
in HDL design. Parallelism is increased by increasing DSP
blocks, however doing so leads to congestion in the routing
system, which reduces overall frequency and occasionally

results in no routing at all. As a result, it is important
to carefully manage the amount of parallelism to avoid
drastically decreasing frequency or going over the resource
limit. Although the increment of DSP causes a reduction
of frequency, the performance gets better than that of HLS
designs. The number of DSP depends on the number of hidden
units in HDL. In order to prevent the frequency from declining
and resources from being overused, we reduced the number of
parallelism as the bit width increased up to 32. The results in
Table-III and Table-IV also indicate that after 32-bit precision,
HLS design starts performing better than the HDL design. It is
because DSPs are heavily utilized in HDL design resulting in
frequency decay. Furthermore, as precision rises, more DSPs
for MAC are utilized, causing a resource overflow. As a result,
HDL is unable to maximize parallelism for FP-32 without
sacrificing frequency. Full parallelism can be achieved for
our LSTM model up to 16-bit precision in all the FPGA
platforms except ZCU104 which exceeds available DSPs if
more than 2 unit parallelism is applied. With full parallelism
(15 units for our model), U55C achieves the lowest latency
of all as shown in Table-II. Thus, increasing the parallelism
improved performance more than the HLS design in spite of
the frequency drop.

TABLE II
EFFECTS OF PARALLELISM ON HDL DESIGN

Platform
Bit LUT DSP Highest Fmax Latency

Precision (%) (%) Level of (MHz) (µS)
Parallelism

Virtex 7
FP-32 28 69 4 Units 142 5.78

FP-16 39 72 15 Units 166 2.06

U55C
FP-32 11 38 8 Units 150 2.38

FP-16 9 22 15 Units 250 1.42

For HLS design of FP-8, DSPs were only employed for the
activation functions because DSPs is not used below 10-bit
precision. Although we compelled the use of DSPs for our
multipliers in HDL design by employing Verilog attributes,
their proper sharing could not be obtained which would have
reduced consumption. Only the LUT and FF consumption was
decreased by low bit precision. Thus, FP-8 will be useful
for bigger models. One important improvement with FP-8 is
achieving high frequency, and it helped reduce the latency to
some extent. The total number of operations was determined
for our LSTM model from which the throughput (Giga
operations/second [GOPS]) was computed [27]. For a fair
comparison between HLS and HDL-based design, normalized
throughput both with respect to the LUTs (GOPS/LUT) and
DSPs (GOPS/DSP) was calculated. Same parameters are also
used for a fair comparison with different LSTM models
in other works. HDL design has the flexibility to increase
the resources to maximize throughput. Thus, throughput is
higher than the HLS design in all the platforms. However,
the (GOPS/LUT) and (GOPS/DSP) are higher in HLS design
because it consumes fewer resources. As HLS automates the
majority of optimization procedures, there is little scope to
increase the resources to decrease latency. Table-III reports all

data related to the HLS design on different platforms. ZCU104
achieves the lowest latency, the highest GOPS, and the highest
GOPS/LUT and GOPS/DSP for all precision.

TABLE III
RESULTS FOR HIGH-LEVEL SYNTHESIS DESIGN

Platform Bit LUT FF BRAM 36k DSP Fmax Latency Throughput GOPS/ GOPS/
Precision (MHz) (µS) (GOPS) LUT DSP

Virtex 7
FP-32 70380 (23%) 86579 (14%) 41.5 (4%) 712 (25%) 210 8.75 1.28 18.19 1.80
FP-16 30532 (10%) 36186 (6%) 22 (2%) 224 (8%) 213 7.4 1.51 49.46 6.74
FP-8 26889 (9%) 20683 (3%) 0 (0%) 30 (1%) 235 6.36 1.76 65.45 58.67

ZCU104
FP-32 78850 (34%) 94936 (21%) 17.5 (16%) 712 (41%) 305 3.74 2.99 37.92 4.20
FP-16 36458 (16%) 39326 (9%) 10 (3%) 224 (13%) 350 2.92 3.83 105.05 17.10
FP-8 23575 (10%) 21590 (5%) 0 (0%) 15 (1%) 400 2.83 3.95 167.55 263.33

U55C
FP-32 64930 (5%) 80191 (3%) 29.5 (1%) 711 (8%) 362 6.86 1.63 25.10 2.29
FP-16 25346 (2%) 31136 (1%) 16 (1%) 224 (2%) 375 4.72 2.36 93.42 10.57
FP-8 23899 (2%) 17422 (1%) 0 (0%) 15 (0.2%) 380 4.65 2.4 100 160.00

Table-IV reports all data related to the HDL design on
different platforms for 2 unit parallelism. The utilization of
LA is the same regardless of the platforms. ZCU104 shows
the best performance among other platforms for HDL design
also. The utilization is higher than HLS design, so latency
was reduced by 1.34×. GOPS/LUT is close to HLS design,
but GOPS/DSP is much lower because HDL design mainly
reduces latency by parallel operations of DSPs. Table-V

TABLE IV
RESULTS FOR HARDWARE DESCRIPTION LANGUAGE SYNTHESIS DESIGN

Platform
Bit LUT FF BRAM DSP Fmax Latency Throughput GOPS/ GOPS/

Precision (%) (%) 36k (%) (%) (MHz) (µS) (GOPS) LUT DSP

Virtex 7
FP-32 17 16 1 43 150 11.48 0.97 19.34 0.81
FP-16 22 23 5 41 166 3.71 3.01 45.19 2.64
FP-8 13 12 5 35 200 3.10 3.61 95.06 3.64

ZCU104
FP-32 22 21 4 69 230 7.11 1.57 31.62 1.31
FP-16 30 29 15 66 250 2.14 5.21 76.69 4.56
FP-8 16 16 15 57 300 1.72 6.50 171.61 6.55

U55C
FP-32 4 4 1 13 250 6.826 1.64 6.83 1.37
FP-16 5 5 2 13 256 2.492 4.48 2.49 3.92
FP-8 3 3 2 11 300 2.108 5.30 2.11 5.34

compares our LA with other LAs on FPGA. Our HDL designs
here are for the highest level of parallelism achieved by the
platforms for FP-16. Since the models are not the same,
all the performance parameters such as frequency, latency,
throughput, and normalized throughput are measured for a
fair comparison. We achieved the lowest latency of 1.42
µS and the highest GOPS of 7.87 with the HDL design
on U55C board running at 250 MHz frequency. Among all
of our HDL designs, it exploits full parallelism and gives
the highest GOPS/LUT and GOPS/DSP. Work [28] achieved
latency closest to ours on VC707 at 140 MHz, but its GOPS is
1.73× lower. The LA in [29] got 1.5× more GOPS/LUT but
3.5× less GOPS than ours because it consumed fewer LUTs.
The HDL design in [30] has the highest GOPS/DSP meaning
it uses fewer DSPs. While its GOPS is comparable to ours,
our slowest HDL design on ZCU104 and our slowest HLS
design on VC707 are, respectively, 3.78× and 1.26× faster
than this. The HLS design performed better on ZCU104 with
the lowest latency and the highest GOPS of 2.92 µS and 3.83
respectively. Since the design consumes fewer resources, the
GOPS/LUT and GOPS/DSP are higher than that of the HDL
design. Both our HDL and HLS designs are respectively 280×

and 136× faster than the ARM Core CPU running at 1.2GHz
frequency.

TABLE V
COMPARISON WITH OTHER LSTM ACCELERATORS

Work Platform Method
Fmax Latency Throughput GOPS/ GOPS/

(MHz) (µS) (GOPS) (LUT*1000) (DSP*1000000)

[14] VC707 HLS 150 390 7.26 38.23 6.17

[15] VC707 HLS 150 4.3 13.45 47 7.77

[16] U250 HLS 300 0.867 17.2 – 1.9

[17] Zynq-7020 HLS 118 18760 0.00977 1.14 0.143

[20] Artix-7 HDL 160 800 0.631 – –

[21] Artix-7 HDL 53 1240 0.055 56 13.75

[29] XC7Z030 HDL 100 – 2.26 98.1 –

[28] VC707 HDL 140 2.05 4.535 31.2 5.06

[30] XC7Z020 HDL 164 9.3 7.51 – 192

[31] ZC7020 – 142 932 1.049 16.96 –

This

ARM Cortex Embedded
1200 398 0.028 – –

Work

A53 C

U55C

HDL

250 1.42 7.87 65.67 3.9

ZCU104 215 2.46 4.56 67 3.99

VC707 166 2.06 5.37 45.5 2.67

U55C

HLS

375 4.72 2.36 93.42 10.57

ZCU104 350 2.92 3.83 105 17

VC707 213 7.40 1.51 49.45 6.7

VIII. CONCLUSION

In this research, we demonstrated a custom LSTM
accelerator on FPGA created using both high-level synthesis
(HLS) and hardware description language (HDL). For a use
case involving high-rate time series data that were dynamically
generated by simulating a ballistic environment, we created a
new three-layer LSTM model. To address the demands for
real-time reaction, the hardware accelerator for this model
was subsequently constructed on an FPGA. Even with the
use of certain directives, the HLS design process produces
an unmanageable circuit despite being quick and simple to
modify. On the other hand, while the HDL design process is
lengthy, it can still result in the intended circuit, and we were
able to manage the degree of parallelism. We contrasted the
two designs’ performance, utility, and adaptability. Then, we
analyzed the differences between the performance, utilization,
and flexibility of the two design strategies. The ZCU104
platform uses the outermost loop pipelining pragma to provide
the lowest latency for HLS design. The outermost loop
unrolling pragma can use more resources (DSP) in HLS, but
it did not achieve latency that was lower than the outermost
loop pipelining pragma. High resource usage may be enabled
for the HDL design. As a result, we could set up the U55C so
that it can fully parallelize our LSTM model, which has the
highest DSP usage. It had the lowest latency at full parallelism
as a consequence. Yet, ZCU104 also outperformed U55C in
HDL design at the same amount of parallelism. Our HLS and
HDL designs are significantly faster than the CPU, according
to experimental findings. In terms of latency, throughput,
frequency, or normalized throughput, the findings further
demonstrate that our approach is better than the majority of
current LSTM accelerators on FPGA.

REFERENCES

[1] T. Mikolov, M. Karafiát, L. Burget, J. H. ernocký, and S. Khudanpur,
“Recurrent neural network based language model,” in Interspeech, 2010.

[2] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki, “Scene labeling with
lstm recurrent neural networks,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 3547–3555.

[3] M. Nelson, S. Laflamme, C. Hu, A. G. Moura, J. Hong, A. Downey,
P. Lander, Y. Wang, E. Blasch, and J. Dodson, “Generated datasets
from dynamic reproduction of projectiles in ballistic environments for
advanced research (DROPBEAR) testbed,” IOP SciNotes, vol. 3, no. 4,
p. 044401, nov 2022.

[4] Progress Towards Data-Driven High-Rate Structural State Estimation
on Edge Computing Devices, ser. International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, vol. Volume 10: 34th Conference on Mechanical Vibration
and Sound (VIB), 08 2022, v010T10A017. [Online]. Available:
https://doi.org/10.1115/DETC2022-90118

[5] A. Downey, J. Hong, J. Dodson, M. Carroll, and J. Scheppegrell,
“Millisecond model updating for structures experiencing unmodeled
high-rate dynamic events,” Mechanical Systems and Signal
Processing, vol. 138, p. 106551, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0888327019307721

[6] J. Hong, S. Laflamme, J. Dodson, and B. Joyce, “Introduction to state
estimation of high-rate system dynamics,” Sensors, vol. 18, no. 2, p.
217, jan 2018.

[7] J. Hong, S. Laflamme, and J. Dodson, “Study of input space for
state estimation of high-rate dynamics,” Structural Control and Health
Monitoring, vol. 25, no. 6, p. e2159, 2018.

[8] M. Nelson, V. Barzegar, S. Laflamme, C. Hu, A. R. Downey, J. D. Bakos,
A. Thelen, and J. Dodson, “Multi-step ahead state estimation with
hybrid algorithm for high-rate dynamic systems,” Mechanical Systems
and Signal Processing, vol. 182, p. 109536, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0888327022006379

[9] Microsecond State Monitoring of Nonlinear Time-Varying Dynamic
Systems, ser. Smart Materials, Adaptive Structures and Intelligent
Systems, vol. Volume 2: Modeling, Simulation and Control of Adaptive
Systems; Integrated System Design and Implementation; Structural
Health Monitoring, 09 2017, v002T05A013. [Online]. Available:
https://doi.org/10.1115/SMASIS2017-3999

[10] J. Dodson, A. Downey, S. Laflamme, M. D. Todd, A. G. Moura,
Y. Wang, Z. Mao, P. Avitabile, and E. Blasch, “High-rate structural
health monitoring and prognostics: An overview,” in Data Science in
Engineering, Volume 9, R. Madarshahian and F. Hemez, Eds. Cham:
Springer International Publishing, 2022, pp. 213–217.

[11] High-Rate-SHM-Working-Group, “Acceleration-vs-roller-displacement
dataset for dropbear.” [Online]. Available: https://github.com/High-
Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-
Roller-Displacement

[12] B. Joyce, J. Dodson, S. Laflamme, and J. Hong, “An experimental
test bed for developing high-rate structural health monitoring methods,”
Shock and Vibration, vol. 2018, 2018.

[13] A. Panahi, E. Kabir, A. Downey, D. Andrews, M. Huang, and
J. D. Bakos, “High-rate machine learning for forecasting time-series
signals,” in 2022 IEEE 30th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2022, pp.
1–9.

[14] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelerator for
long short-term memory recurrent neural networks,” in 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2017, pp. 629–634.

[15] Z. Sun, Y. Zhu, Y. Zheng, H. Wu, Z. Cao, P. Xiong, J. Hou, T. Huang,
and Z. Que, “Fpga acceleration of lstm based on data for test flight,”
in 2018 IEEE International Conference on Smart Cloud (SmartCloud),
2018, pp. 1–6.

[16] Z. Que, E. Wang, U. Marikar, E. Moreno, J. Ngadiuba, H. Javed,
B. Borzyszkowski, T. Aarrestad, V. Loncar, S. Summers, M. Pierini,
P. Y. Cheung, and W. Luk, “Accelerating recurrent neural networks

for gravitational wave experiments,” in 2021 IEEE 32nd International
Conference on Application-specific Systems, Architectures and
Processors (ASAP), 2021, pp. 117–124.

[17] U. Yoshimura, T. Inoue, A. Tsuchiya, and K. Kishine, “Implementation
of Low-Energy LSTM with Parallel and Pipelined Algorithm in
Small-Scale FPGA,” in 2021 International Conference on Electronics,
Information, and Communication (ICEIC). Jeju, Korea (South): IEEE,
Jan. 2021, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/
document/9369806/

[18] Q. Liu, T. Liang, Z. Huang, and V. Dinavahi, “Real-time fpga-based
hardware neural network for fault detection and isolation in more electric
aircraft,” IEEE Access, vol. 7, pp. 159 831–159 841, 2019.

[19] L. G. Rocha, M. Liu, D. Biswas, B.-E. Verhoef, S. Bampi, C. H. Kim,
C. Van Hoof, M. Konijnenburg, M. Verhelst, and N. V. Helleputte,
“Real-time hr estimation from wrist ppg using binary lstms,” in 2019
IEEE Biomedical Circuits and Systems Conference (BioCAS), 2019, pp.
1–4.

[20] A. N. Mazumder, H.-A. Rashid, and T. Mohsenin, “An Energy-Efficient
Low Power LSTM Processor for Human Activity Monitoring,” in 2020
IEEE 33rd International System-on-Chip Conference (SOCC). Las
Vegas, NV, USA: IEEE, Sep. 2020, pp. 54–59. [Online]. Available:
https://ieeexplore.ieee.org/document/9524796/

[21] N. K. Manjunath, H. Paneliya, M. Hosseini, D. Hairston, and
T. Mohsenin, “A Low-Power LSTM Processor for Multi-Channel Brain
EEG Artifact Detection.”

[22] J. Yin, J. Han, R. Xie, C. Wang, X. Duan, Y. Rong, X. Zeng, and
J. Tao, “MC-LSTM: Real-Time 3D Human Action Detection System for
Intelligent Healthcare Applications,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 15, no. 2, pp. 259–269, Apr. 2021. [Online].
Available: https://ieeexplore.ieee.org/document/9373938/

[23] R. Millón, E. Frati, and E. Rucci, “A comparative study between hls
and hdl on soc for image processing applications,” arXiv preprint
arXiv:2012.08320, 2020.

[24] H. S. Lee and J. W. Jeon, “Comparison between hls and hdl image
processing in fpgas,” in 2020 IEEE International Conference on
Consumer Electronics - Asia (ICCE-Asia), 2020, pp. 1–2.

[25] “MicroBlaze Processor Reference Guide,” 2022. [Online]. Available:
https://docs.xilinx.com/v/u/en-US/ug984-vivado-microblaze-ref

[26] “Introduction • DMA/Bridge Subsystem for PCI Express Product
Guide (PG195) • Reader • Documentation Portal.” [Online]. Available:
https://docs.xilinx.com/r/en-US/pg195-pcie-dma

[27] E. Kabir, A. Poudel, Z. Aklah, M. Huang, and D. Andrews, “A runtime
programmable accelerator for convolutional and multilayer perceptron
neural networks on fpga,” in Applied Reconfigurable Computing.
Architectures, Tools, and Applications: 18th International Symposium,
ARC 2022, Virtual Event, September 19–20, 2022, Proceedings. Berlin,
Heidelberg: Springer-Verlag, 2022, p. 32–46.

[28] J. C. Ferreira and J. Fonseca, “An FPGA implementation of a
long short-term memory neural network,” in 2016 International
Conference on ReConFigurable Computing and FPGAs (ReConFig).
Cancun, Mexico: IEEE, Nov. 2016, pp. 1–8. [Online]. Available:
http://ieeexplore.ieee.org/document/7857151/

[29] E. Azari and S. Vrudhula, “An Energy-Efficient Reconfigurable
LSTM Accelerator for Natural Language Processing,” in 2019 IEEE
International Conference on Big Data (Big Data), Dec. 2019, pp.
4450–4459.

[30] E. Bank-Tavakoli, S. A. Ghasemzadeh, M. Kamal, A. Afzali-Kusha, and
M. Pedram, “POLAR: A Pipelined/Overlapped FPGA-Based LSTM
Accelerator,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 28, no. 3, pp. 838–842, Mar. 2020. [Online].
Available: https://ieeexplore.ieee.org/document/8889770/

[31] A. X. M. Chang and E. Culurciello, “Hardware accelerators for
recurrent neural networks on FPGA,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS). Baltimore, MD, USA:
IEEE, May 2017, pp. 1–4. [Online]. Available: http://ieeexplore.ieee.
org/document/8050816/

