
Resource Scheduling for Real-Time Machine Learning
Suyash Vardhan Singh
University of South Carolina

Columbia, South Carolina, USA
ss121@email.sc.edu

Iftakhar Ahmad
University of South Carolina

Columbia, South Carolina, USA

David Andrews
University of Arkansas

Fayetteville, Arkansas, USA
dandrews@uark.edu

Miaoqing Huang
University of Arkansas

Fayetteville, Arkansas, USA
mqhuang@uark.edu
iahmad@email.sc.edu

Austin R. J. Downey
University of South Carolina

Columbia, South Carolina, USA
austindowney@sc.edu

Jason D. Bakos
University of South Carolina

Columbia, South Carolina, USA
jbakos@cse.sc.edu

Abstract
Data-driven physics models offer the potential for substantially
increasing the sample rate for applications in high-rate cyberphys-
ical systems, such as model predictive control, structural health
monitoring, and online smart sensing. Making this practical re-
quires new model deployment tools that search for networks with
maximum accuracy while meeting both real-time performance and
resource constraints. Tools that generate customized architectures
for machine learning models, such as HLS4ML and FINN, require
manual control over latency and cost trade-offs for each layer. This
poster describes a proposed end-to-end framework that combines
Bayesian optimization for neural architecture search with Integer
Linear Optimization of layer cost-latency trade-off using HLS4ML
“reuse factors”.

The proposed framework is shown in Fig. 1 and consists of a
performance model training phase and two model deployment
stages. The performance model training phase generates training
data and trains a model to predict the resource cost and latency of
an HLS4ML deployment of a given layer and associated reuse factor
on a given FPGA. The first model deployment stage takes training,
test, and validation data for a physical system–in this case, the
Dynamic Reproduction of Projectiles in Ballistic Environments for
Advanced Research (DROPBEAR) dataset–and searches the hyper-
parameter space for Pareto optimal models with respect to latency
and workload, as measured by the number of multiplies required
for one forward pass. For each of the models generated, a second
stage uses the performance model to optimize the reuse factor of
each layer to guarantee that the whole model meets the resource
constraint while minimizing end-to-end latency.

Table 1 shows the benefit of the reuse factor optimizer that
comprises the second stage of the model deployment phase, The
results compare the performance of a baseline stochastic search to
that of our proposed optimizer for an example model consisting
of four convolutional layers, three LSTM layers, and one dense
layer. The results show sample stochastic search runs having 1K,

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s).
FPGA '25, February 27-March 1, 2025, Monterey, CA, USA
© 2025 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-1396-5/25/02.
https://doi.org/10.1145/3706628.3708848

Network
Enumerations

Keras

HLS4ML

Extract synthesis
details for each layer

SciKit-Learn
RandomForest Regressor

LUT, FF,
BRAM, DSP,

latency

layer_type,
input tensor size,

layer size,
reuse_factor

Layer Performance Models

Bayesian
Optimization

(Optuna)

Keras

DROPBEAR
Datasets

JSON

HLS .rpt files

Pareto
optimal
models

Database

ILP Solver
(Gurobi)

Trained and
Deployed

DROPBEAR
Models

Train Performance Models Search for DROPBEAR
Regression Models

Figure 1: Overview of the tool flow used

Stochastic Search Proposed ILP Search ILP vs Stochastic

Trials Search
Time (s)

Design
Latency
(𝜇 𝑠)

Search
Time (s)

Design
Latency
(𝜇 𝑠)

Search
Speedup

Latency
Speedup

1K 5.03 343.06

4.8 189.84

1.05 1.81
10K 47.67 233.82 9.93 1.23
100K 490.68 227.95 102.23 1.20
1M 4965.65 204.768 1034.51 1.08

Table 1: HLS4ML Deployment Optimizer Versus Stochastic
Search

10K, 100K, and 1M trials over a total search space of 209 million
reuse factor permutations. The stochastic search reaches a point
of diminishing returns with latency 205 𝜇𝑠 while the optimizer
achieves a latency of 190 𝜇𝑠 and requires roughly 1000X less search
time.
ACM Reference Format:
Suyash Vardhan Singh, Iftakhar Ahmad, David Andrews, Miaoqing Huang,
Austin R. J. Downey, and Jason D. Bakos. 2025. Resource Scheduling for Real-
Time Machine Learning. In Proceedings of the 2025 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’25), February 27-
March 1, 2025, Monterey, CA, USA. ACM, New York, NY, USA, 1 page. https:
//doi.org/10.1145/3706628.3708848

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant No. 1956071.

50

https://doi.org/10.1145/3706628.3708848
https://doi.org/10.1145/3706628.3708848
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706628.3708848&domain=pdf&date_stamp=2025-02-27

	Abstract



