
N-TORC: Native Tensor Optimizer for
Real-time Constraints

Suyash Vardhan Singh1, Iftakhar Ahmad1, David Andrews2,
Miaoqing Huang2, Austin R.J. Downey1, Jason D. Bakos1

1University of South Carolina, Columbia, South Carolina, USA
2University of Arkansas, Fayetteville, Arkansas, USA

{ss121@email.sc.edu, iahmad@email.sc.edu, dandrews@uark.edu,
mqhuang@uark.edu, austindowney@sc.edu, jbakos@cse.sc.edu}

Abstract—Compared to overlay-based tensor architectures like
VTA or Gemmini, compilers that directly translate machine
learning models into a dataflow architecture as HLS code, such
as HLS4ML and FINN, generally can achieve lower latency
by generating customized matrix-vector multipliers and memory
structures tailored to the specific fundamental tensor operations
required by each layer. However, this approach has significant
drawbacks: the compilation process is highly time-consuming and
the resulting deployments have unpredictable area and latency,
making it impractical to constrain the latency while simultane-
ously minimizing area. Currently, no existing methods address
this type of optimization. In this paper, we present N-TORC
(Native Tensor Optimizer for Real-Time Constraints), a novel
approach that utilizes data-driven performance and resource
models to optimize individual layers of a dataflow architecture.
When combined with model hyperparameter optimization, N-
TORC can quickly generate architectures that satisfy latency
constraints while simultaneously optimizing for both accuracy
and resource cost (i.e. offering a set of optimal trade-offs between
cost and accuracy). To demonstrate its effectiveness, we applied
this framework to a cyber-physical application, DROPBEAR
(Dynamic Reproduction of Projectiles in Ballistic Environments
for Advanced Research). N-TORC’s HLS4ML performance and
resource models achieve higher accuracy than prior efforts,
and its Mixed Integer Program (MIP)-based solver generates
equivalent solutions to a stochastic search in 1000X less time.

I. INTRODUCTION

Interest is growing in developing high-rate cyber-physical
systems that must make control decisions within one mil-
lisecond. These systems often rely on predictive models of
physical phenomena. However, the tight time constraints make
physics-based models impractical. Lightweight machine learn-
ing models offer a promising alternative, surrogate model,
providing sufficient accuracy while ensuring deterministic,
sub-millisecond latency [1, 2, 3, 4, 5].

An early and well-known attempt for this approach was
the JetDNN jet substructure classifier designed for the Large
Hadron Collider [6, 7, 8]. JetDNN is a small network model,
consisting of only 4,256 parameters arranged in dense layers
only, but its performance has been extensively tuned using
quantization and compression techniques [6] and conversion
to a LogicNet [9]. However, larger, more complex physics-
based models that contain a mixture of convolutional layers
and LSTM layers create substantially longer design space and

compilation times, making these techniques less practical [10,
11, 12].

Neural network-to-High-Level Synthesis (HLS) compilation
flows, such as HLS4ML, generate matrix multipliers with
physical dimensions that evenly divide the tensor operations
required by each layer. This approach achieves optimal latency
and supports the use of different hardware precisions for each
layer. However, it results in low hardware utilization, because
only the matrix multiplier associated with one layer can be
active at a time. Despite this limitation, the physical size of
the matrix multipliers for each layer can be independently
adjusted, enabling fine-grained control over trade-offs between
time and resource usage. Exploiting this flexibility remains an
open challenge, as accurately predicting how layer configura-
tions affect resource requirements is difficult.

In this paper, we describe a framework for simultaneous
neural architecture search and deployment optimization. Our
neural architecture search optimizes against both model accu-
racy and workload, the latter of which serves as an approx-
imation of the cost and performance of the deployed model.
This produces a Pareto optimal set, and for each member of
this set we optimize its deployment using a Mixed Integer
Program (MIP)-based solver to assign the native size of the
matrix multiplier assigned to each network layer on the FPGA.
The solver uses performance and cost models trained from
HLS4ML for a specific target FPGA to predict the cost and
latency of each layer.

Our accuracy results are evaluated using the DROPBEAR
(Dynamic Reproduction of Projectiles in Ballistic Environ-
ments for Advanced Research) dataset, described below [5].
The source code for our performance models, datasets, deploy-
ment optimizer, and network optimizer is publicly available
via a Github repo [13]. This paper describes three main
contributions:

1) a multi-objective Bayesian hyperparameter search,
2) an MIP-based optimizer that optimizes the dimensions

of each physical functional unit to constrain the latency
while minimizing resource cost, and

3) a set of linear performance and cost models for three
types of HLS4ML layers (convolution, LSTM, and
dense), which is integrated into the MIP solver.

152

2025 IEEE 33rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/25/$31.00 ©2025 IEEE
DOI 10.1109/FCCM62733.2025.00061

20
25

 IE
EE

 3
3r

d
An

nu
al

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Fi

el
d-

Pr
og

ra
m

m
ab

le
 C

us
to

m
 C

om
pu

tin
g

M
ac

hi
ne

s (
FC

CM
) |

 9
79

-8
-3

31
5-

02
81

-2
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
FC

CM
62

73
3.

20
25

.0
00

61

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The DROPEAR experimental setup which consists of
a cantilever beam with a movable roller and an accelerometer
mounted on the bottom of the beam.

0 5 10 15 20 25 30 35 40
Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

A
cc

el
er

at
io

n

Fig. 2: DROPEAR acceleration data, which results from the
roller movements but is treated as an input into a model that
predicts the roller location given the acceleration signal.

II. BACKGROUND

The Dynamic Reproduction of Projectiles in Ballistic En-
vironments for Advanced Research (DROPBEAR) [14] was
used to generate the experimental data used in this work.
DROPBEAR is meant to serve as an exemplar for real-
time, high-rate machine learning applications [15, 16]. The
DROPBEAR testbed is presented in Fig. 1. It is a cantilever
beam with a controllable roller support that moves to alter the
boundary condition of the beam, which is designed to produce
a repeatable change in the structural state of the system that
can ideally be inferred in real time from its vibration measured
from an accelerometer.

As shown in Fig. 3, the roller followed a movement pattern
ranging from 58 mm to 141 mm. The beam is self-excited
by the movements of the roller, and therefore, no external
input is required. The maximum roller speed was limited by
the experimental setup to 250 mm/s. An example time series
acceleration response of the beam is presented in Fig. 2 and
the corresponding roller location is shown in Fig. 3. The data
used in this work are available through a public repository [5].

A. Targeted Layer Types

The objective of the Working Group on High-rate Structural
Monitoring, Damage Detection, Prognostics, and Reactions
[17] is to develop models that predict the state of a structure
given its vibration data and to do so at high rate (< 1 ms). Such
models would enable new approaches for monitoring structural

Fig. 3: DROPEAR roller position, which moves to simulate
a moving boundary condition for the cantilever beam. Essen-
tially it sets the root of the cantilever beam.

health (e.g. detecting damage on the wing of a hypersonic
vehicle or controlling a smart airbag system that reacts to
the dynamics of a collision) and designing smart structures
(e.g. the design of morphing wings without traditional control
surfaces). The goal of DROPBEAR is to develop a model that
takes as input a time series vibration signal and produces the
corresponding roller location with its inference time bounded
to 200 µs, due to the dataset’s 5 KHz sample rate. Models
may leverage Takens Embedding Theorem [18], which states
that the state of a chaotic dynamical system can be estimated
from a sequence of observations taken at fixed time delays,
i.e. samples from time t, t− τ, t− 2τ, t− 3τ, ... where t is the
current time and τ is the time delay.

The challenge presented by DROPBEAR is an inverse
physics problem, in which the vibration signal, caused by
the roller movement, is used to predict the roller position.
In other words, in the physical system, the roller movement
is the cause and the vibration is the effect, while in the
modeling problem, the vibration signal is the input and the
roller position is the output. Prior efforts to design models for
DROPBEAR consisted of physics-based models [19, 20, 21]
and data-driven models. The data-driven models were regres-
sion neural networks consisting only of LSTM layers with
a single dense output layer [1, 2]. In this paper, we consider
more sophisticated models by adding front-end 1D convolution
layers and additional backend dense layers with LSTM layers
in between.

Our network accepts a vector consisting of n samples,
which are sent into a sequential network consisting of a 1D
convolution stage comprised of convolution + ReLU + max
pooling blocks, followed by an LSTM layer stage, followed by
a dense stage. We generate and train a sequence of networks in
this pattern, independently setting the number of inputs n, the
size of each layer, and the number of each type of layer. For
each network generated and trained, we compute its accuracy
as root mean square error (RMSE) and its total workload in
total number of multiplies required for the forward pass. 1D
convolution layers perform s× k × f1 × f2 multiplies, where
s = the sequence length, k = the filter kernel size, f1 = the

153

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

input feature length and f2 = the output feature length. LSTM
layers perform (s × f + u) × (4 × u) multiplies, where s =
the input sequence length, f = the input feature length, and
u = the number of LSTM units. Dense layers perform f × n
multiplies, where f = the number of input features (which may
need to be flattened from a multidimensional input tensor) and
n = the number of neurons.

B. HLS4ML

HLS4ML [22] was originally developed in 2018 by a team
connected with researchers at FermiLab and CERN with the
objective of developing a sub-microsecond latency FPGA-
based neural network to serve as the first stage of a filter for
data sampled in the Large Hadron Collider. HLS4ML com-
prises a library of handwritten parameterized neural network
layers that are automatically instantiated and interconnected
based on a network model described in Keras.

Coincident with the original development of HLS4ML,
two neural networks were trained to classify jet substructures
detected within the Large Hadron Collider. These networks
were small, consisting of four dense layers and requiring
a total of 4, 256 multiplies, but were purposely kept small
to allow full parallelization on an FPGA. In this scenario,
“full parallelization” implies that one hardware multiplier is
instantiated in hardware and assigned to every weight in the
neural network.

1) HLS4ML Reuse Factor: Unlike JetDNN, not all net-
works deployed with HLS4ML need to be fully parallelized,
as the resource cost and compilation time for fully parallelized
networks can be prohibitive for larger networks. HLS4ML
parallelization is focused on the innermost two loops that form
the core of each layer type. Of these, the outer loop iterates
n in times and the inner loop iterates n out times, as named in
the HLS4ML source code. In other words, each layer performs
a matrix-vector multiply of size n in × n out, regardless
of the physical size of the multiplier generated. For a dense
layer, n in = number of input features, n out = number of
neurons. For a Conv1D layer, n in = number of input channels
multiplied by the filter kernel size, n out = number of output
channels. For an LSTM layer, n in = number of input features,
n out = number of LSTM units multiplied by 4.

In HLS4ML, the desired level of parallelization for each
layer is expressed through a parameter called “reuse factor.”
Reuse factor is a deployment parameter assigned to layer and
determines the number of times a hardware multiplier is used
when executing the innermost two loops for a layer’s forward
pass. A reuse factor of R means that each hardware multiplier
is used to perform R of the multiplies required in the innermost
two loops, meaning that the number of instantiated hardware
multipliers is only 1/R that of a fully parallelized (R = 1)
realization of the same layer. The reuse factor must evenly
divide n in × n out. The number of physical multipliers
instantiated is known as the “block factor”, shown in Eq. 1.

block factor =
⌈

n in · n out
R

⌉
(1)

1 2 3 4 5 6 7 8 9 10
log2(block factor)

104

105

LU
Ts

conv1d layer cost

n_out=48
n_out=96

0 1 2 3 4 5 6 7 8 9
log2(reuse factor)

102

104

la
te

n
cy

 (
cy

cl
es

)

conv1d layer latency
sequence length=32
sequence length=64
sequence length=128
sequence length=256
sequence length=512

0 1 2 3 4 5 6 7 8 9
log2(block factor)

104

105

106

LU
Ts

LSTM layer cost

n_out=32
n_out=64
n_out=128

0 1 2 3 4 5 6 7 8 9
log2(reuse factor)

102

103

104

105

la
te

n
cy

 (
cy

cl
es

)

LSTM layer latency

sequence length=8
sequence length=16
sequence length=32
sequence length=64
sequence length=128
sequence length=256

0 2 4 6 8 10 12
log2(block factor)

103

104

105

106

LU
Ts

dense layer cost

n_in=16
n_in=32
n_in=64
n_in=128
n_in=256
n_in=512
n_in=1024
n_in=2048

1 2 3 4 5 6 7 8 9
log2(reuse factor)

101

102

103

la
te

n
cy

 (
cy

cl
es

)

dense layer latencyn_in=16
n_in=32
n_in=64
n_in=128
n_in=256
n_in=512
n_in=1024
n_in=2048

Fig. 4: LUT cost and latency when scaling size of hardware
GEMV unit (as block factor = number of scalar multipliers)
for three types of HLS4ML layers. Note that each data point
represents a set of observations, as many layer configurations
map to the same independent variables shown in the plots
(e.g. various combinations of hyperparameters that imply the
same values of n in and n out); error bars indicate standard
deviation.

We have observed that a layer’s resource cost in LUTs,
FFs, and DSPs is a function of its block factor and either the
number of iterations of the inner loop, n out, or the number
of iterations of its outer loop, n in, depending on the layer
type. On the other hand, a layer’s latency is a function of
the layer’s reuse factor and its sequence length. The sequence
length comprises the number of trips through a sequential
loop that encloses both the n in and n out loops, and whose
trip count is set to the number of outputs per channel from
convolution layers and is carried through downstream LSTM
layers. Dense layers do not accept a sequence length, so the
embedding dimension and sequence length are flattened when
fed into a dense layer, becoming the number of outer loop
iterations, n in.

LUT cost and latency for conv1d, LSTM, and dense layers
are shown in Fig. 4. Note that each data point is computed
as the mean of observed resource/latency values for a set
of synthetically-generated layers that fall into the category
defined by the corresponding block factor and n out/n in
(for resource) or the reuse factor and the sequence length (for
latency). Error bars are shown for each data point. As shown in
the figure, latency is reasonably predictable, whereas resource
cost is less predictable.

2) Scale of Deployed Networks: The networks targeted in
this paper accept up to 512 inputs and contain zero to five
groups of 1D convolution + activation + pooling layers having
up to 256 feature maps each (with each layer requiring no
greater than 100,663,296 multiplies), followed by zero to three
Long Short Term Memory (LSTM) layers having up to 425

154

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

units each (with each requiring no greater than 223,544,900
multiplies), followed by one to five dense layers having up
to 512 neurons each (with each layer requiring no greater
than 111,411,200 multiplies). Our largest possible network
would comprise 435,619,396 multiplies, although in practice,
the hyperparameter optimization used in this work generally
yields networks that are less than 700,000 multiplies and the
Pareto optimal set of networks generally requires 10,000 to
40,000 multiplies, indicating that networks larger than this do
not deliver sufficiently higher accuracy to justify their cost.

III. HYPERPARAMETER OPTIMIZATION

Our proposed framework consists of a two-phase neural
architecture search. First, the framework selects an optimal
set of hyperparameters to maximize the accuracy of the model
while minimizing the workload of the model. Second, each of
the optimal models found is deployed by optimizing the reuse
factor for each layer in order to constrain end-to-end latency
and minimize total model resource cost.

Our model hyperparameter search is performed using the
Optuna framework [23] V 4.0.0. We used the Bayesian
Optimization multi-objective sampling strategy in PyTorch
(BoTorch) [24] from the “optuna-integration module”, which
uses a Quasi-Monte Carlo acquisition function. Our objective
function is to minimize root-mean-square-error (RMSE) of
the validation set and implied network workload (number of
multiplies).

Each network is trained using Dataset 8 from the High-
rate Structural Monitoring, Damage Detection, Prognostics,
and Reactions Working Group [5]. This dataset consists of
150 separate experimental runs, each composed of a vibration
signal and the corresponding roller position signal.

A. Dataset

These datasets are grouped into three experimental types,
each defined by the pattern used to stimulate roller movement.
Each dataset samples both acceleration and roller position at
5 KHz (200 µs per sample).

1) Standard Index Set (20 datasets): This roller move-
ment pattern resembles that shown in Fig. 3 in which
the roller performs a series of square waves of increas-
ing magnitude, followed by the function abs(sin(x))
of increasing magnitude, followed by the function
min(sin(x), 0) of increasing magnitude.

2) Random Dwell (100 datasets): This roller movement
pattern moves to the roller to random locations at fixed
intervals.

3) Slow Positional Displacement (30 datasets): This
roller movement pattern advances the roller in incre-
ments until it reaches its maximum value and then
retracts the roller in increments until it reaches its
starting point. After each change in roller location, the
roller pauses for a fixed amount of time.

We randomly selected 15 datasets (12 for training and 3 for
testing) from each category. In total, we use 36 datasets for
training and 9 for testing, which we refer to as “Test Dataset

Accuracy (RMSE)

10K

20K

30K

40K

50K

60K

70K

80K

Kabir (2023) et al

Non-Pareto Optimal

Pareto Optimal

Satme (2022) model 1

Satme (2022) model 2

Fig. 5: Pareto optimal model configurations for accuracy and
cost. Included are the positions of Satme et al. network 1 and
2 (purple and green dots) [1] and Kabir et al. (cyan square)
[2].

1”. This data is also shuffled, and the training data is split into
a 70-30% training-validation split. We refer to the validation
portion of the training as “Test Dataset 2”.

B. Network Hyperparameter Search

Fig. 5 is a Pareto optimal plot showing the results from
a hyperparameter search. The Pareto optimal networks are
shown as red dots and non-optimal networks are shown as
black dots. Also shown are points from networks designed for
DROPBEAR in previous work; networks designed by Satme
et el. [1] are shown as purple and green dots, and the networks
designed by Kabir et al. [2] are shown as a cyan square. All
three of these models were re-trained with the same training
data and evaluated with the same test data as our networks.
Only one network designed by Satme (network 1) is situated
near the Pareto front. We used Test Dataset 2 described in Sec.
III-A to calculate the RMSE shown in Fig. 5.

IV. AUTOMATED MODEL DEPLOYMENT

HLS4ML requires a “reuse factor” for each layer. The reuse
factor determines the latency and the number of required
LUTs, FFs, DSPs, and BRAMs for the layer. These values
can only be determined by compiling the model, which for
most networks can require several CPU-days to perform.
For this reason, it is necessary to develop models that can
predict the resource cost and latency of a layer given the
associated parameters, which include the layer type, its tensor
dimensions, its size, and its reuse factor.

To estimate latency and resource cost for each of the target
layer types, we trained a random forest regression model
from Scikit-Learn [25], The total latency and cost for a given
network can be obtained by evaluating these models for each
layer comprising the network and summing up the outputs.

In order to train our performance and cost models, we
synthesized a series of networks corresponding to nearly
every permutation of the following set of parameters, which
determine the depth of the network and size of each layer:

155

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

• Feature inputs: 128, 256, 512
• Number of 1D convolutional layers: 1, 2, 4
• Output channels/convolutional layer: 16 and 32
• Number of LSTM layers: 0, 1, 2
• LSTM units/LSTM layer: 8, 16, 32
• Number of dense layers: 1, 2, 4
• Number of neurons/dense layer: 16, 32, 64
• Raw reuse factors (corrected as needed for each layer):

1, 2, 4, 16, 32, 64, 128, 512
Each network is synthesized using Vivado HLS 2019.1 to

obtain resource and latency estimates for each layer, obtained
by extracting the relevant data from the report files generated
by the HLS compiler. Each layer is identified as its layer type
and the following features:

• input size as a 2D tensor (e.g. number of fea-
tures/embedding dimension and sequence length),

• layer size (e.g. number of output feature maps, LSTM
units, dense neurons), and

• reuse factor.
For each synthesis run, we extracted the resultant cost of

each layer in LUTs, BRAMs, DSPs, and flip-flops, and the
reported latency in cycles for the target FPGA, which in this
case is the Zynq Ultrascale+ ZU7EV. In total, we synthesized
11,851 networks. The target clock for the synthesized designs
was 250 MHz and the precision used was 16 total bits and
8 fractional bits. Since the input size of each hidden layer
is determined by its predecessor layer, many generated layers
have the same features. All samples having the same features
are averaged into a single observation. The total number of
unique layers obtained was: 5,962 dense layers, 496 LSTM
layers, and 4,195 1D convolutional layers.

A. Model Accuracy

Table I reports the testing accuracy of these models reported
when using 80% of our compiled results as training data and
20% as testing data. The evaluation reports R2 score, Mean
Absolute Error (MAE) percentage, and Root Mean Square
Error (RMSE) percentage.

The R2 scores indicate strong model performance, but some
MAE and RMSE percentages exhibit variability, particularly
for the LSTM layers. For example, the BRAM metric for
LSTM has a MAE of 11.98% and a RMSE of 23.37%,
suggesting the presence of hidden variables or stochastic
behavior in the compiler. In contrast, the MAE and RMSE
percentages for convolutional and dense layers are relatively
lower, demonstrating a higher prediction accuracy.

In order to illustrate the challenge of estimating resource and
latency associated with synthesized HLS code, we compare
our proposed estimation method against that of Wu et al. [26],
which makes its predictions using a Graph Neural Network-
based model that accepts HLS intermediate code as its input.
The comparison shown in Table II compares the best, median,
and worst mean average percentage error (MAPE%) across a
set of benchmark kernels tested by Wu et al. versus results
from the three HLS4ML layer types that we tested using our

Layer Metric R2 Score MAPE RMSE % Value Range

Convolutional

BRAM 0.9976 0.44 6.76 0 - 342
LUT 0.9988 2.35 3.95 2121.82 - 231963
FF 0.9995 0.60 1.84 1042 - 75576
DSP 0.9979 1.21 6.86 1 - 768
Latency 0.9999 0.09 0.71 45 - 101910

LSTM

BRAM 0.9371 11.98 23.37 16 - 489
LUT 0.9800 1.36 11.16 18580.714 - 286843
FF 0.9826 1.23 10.06 7680.33 - 87131
DSP 0.9780 1.65 15.54 26 - 1072
Latency 0.9988 2.59 6.00 209 - 140545

Dense

BRAM 0.9954 0.13 11.48 0 - 910
LUT 0.9921 0.14 15.17 1203 - 1079840
FF 0.9989 0.09 4.89 1269 - 206076
DSP 0.9956 0.12 13.54 1 - 2048
Latency 0.9931 4.20 10.18 7 - 793

TABLE I: Validation metrics for convolutional, LSTM, and
dense layers across different resource and latency metrics,
using MAE and RMSE percentages for accuracy over the
range.

Network
Enumerations

Keras

HLS4ML

Extract synthesis
details for each layer

SciKit-Learn
RandomForest Regressor

LUT, FF,
BRAM, DSP,

latency

layer_type,
input tensor size,

layer size,
reuse_factor

Layer Performance Models

Bayesian
Optimization

(Optuna)

Keras

DROPBEAR
Datasets

JSON

HLS .rpt files

Pareto
optimal
models

Database

ILP Solver
(Gurobi)

Trained and
Deployed

DROPBEAR
Models

Train Performance Models Search for DROPBEAR
Prediction Models

Fig. 6: Overview of N-TORC Framework.

proposed method against our test set. Our models achieve
lower MAPE percentages for both best and median cases,
indicating higher accuracy, potentially owed to the fact that
our proposed model is trained and used only for HLS4ML
layers as opposed to being applicable to any HLS code.

B. Reuse Factor Optimizer

To determine the optimal reuse factors for a deployed
model, we use the Gurobi Mixed Integer Programming (MIP)
solver [27] to solve the following problem:

Minimize:
∑

i∈layers

(̂LUTSi + F̂Fi + ̂BRAMi + D̂SPi

)
Subject to:

∑
i∈layers

̂latencyi ≤ 50000

where ̂LUTSi, F̂Fi, ̂BRAMi, D̂SPi, and ̂latencyi, are the es-
timations of the LUTs, FFs, BRAMs, and DSPs for layer i,
as given by the cost and performance models.

For a given layer type (e.g. conv1d, LSTM, dense) and
a set of associated layer parameters (e.g. input tensor size,
layer size), Gurobi automatically converts the random forest
model into a linear model. Note that although the random
forest model is trained with multiple inputs, when deployed

156

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

Metric Best MAPE
([26])

Best MAPE
(This work)

Median MAPE
([26])

Median MAPE
(This work)

Worst MAPE
([26])

Worst MAPE
(This work)

DSP 8.95 1.21 10.98 0.12 15.03 2.59
LUT 4.02 0.14 10.27 1.36 26.33 2.35
FF 5.78 0.09 11.22 0.60 25.52 1.23
Latency 4.91 0.09 5.81 2.59 8.72 4.20
BRAM N/A 0.13 N/A 1.58 N/A 11.98

TABLE II: Comparison of MAPE values between Wu et al.’s approach [26] and our approach for different resource and latency
metrics, considering best, median, and worst values.

Fig. 7: A zoomed-in portion of DROPBEAR, showing vibra-
tion signal input (gray), ground truth roller position (blue), and
the results of two trained models with RMSE = 0.07 (cyan)
and RMSE = 0.119 (red).

in our optimizer we set all inputs to constants except for the
reuse factor. This allows the model to collapse into a linear
expression, allowing it to be used for the mixed integer solver.

V. N-TORC FRAMEWORK

Fig. 6 summarizes the complete N-TORC toolflow [28]. The
left side depicts the process by which networks are generated
and compiled in order to create a database of ground truth data
with which to train the performance and resource models.

Each generated network is converted into Keras format
and run through the HLS4ML flow. The resulting latency
and resource requirements for each layer are extracted from
the report files. Using this data, we train six random forest
regression models for each layer type against resources and
latency (conv1d, LSTM, and dense) using an 80-20 train/test
mix.

The right side of the figure shows the hyperparameter
optimization, which searches for network configurations that
achieve Pareto optimal accuracy and cost as described in Sec.
VI-A. For each of these, N-TORC generates a Gurobi MIP
program that includes the features (input tensor and size) for
each layer, combined with the trained HLS4ML performance
and accuracy models for each layer type on the target FPGA.
Executing this program sets the reuse factor of each layer
to meet the real-time latency constraint while minimizing
resource cost.

VI. EXPERIMENTAL RESULTS

A. Pareto Optimal Model Search
Using Optuna, [23] we obtain a set of Pareto optimal net-

works for the DROPBEAR dataset, using the dual objectives
of accuracy and workload, as expressed by the number of
multiplies required by one network inference. Table III shows
the Pareto optimal set of one such run.

We ran each of these networks through our MIP-based
optimizer to set the reuse factor for each layer to ensure the
whole network meets the latency constraint of 200 µs while
minimizing its cost in LUTs, DSPs, registers, and BRAMs.
For each network, the reuse factors for each layer are shown
in the rightmost column. We expect the number of multiplies
to correlate with resource cost, since given the fixed execution
time, the number of multiplies relates directly to throughput.
As shown in the table, this is generally true except for
the networks in rows 8 and 9, whose LUT usage exceeds
that of networks in rows 10 and 11 despite those networks
having more multiplies. This is caused by imperfections in
our resource cost model.

The networks in row 4 (model 1) and row 16 (model 2)
are used to generate the results shown in Fig. 7 as “model 2”
(shown in cyan) and “model 1” (shown in red), respectively.
This plot shows a portion of one of the “standard index sets”
of our Test Dataset 1 between 34.0 and 37.5 seconds, in which
the roller traverses its full dynamic range two times.

B. Cost and Latency Model Accuracy
Fig. 8 presents a series of 3D bar plots illustrating (1) the

correlation between latency and cost in relation to the reuse
factor for various layer sizes with a fixed input tensor size,
and (2) the corresponding prediction from our performance
and cost models. The empirical values are derived from the
HLS compiler (Vivado HLS 2019.1).

In these plots, the x-axis corresponds to the reuse factor
while the y-axis corresponds to the size of each layer, which
includes the number of filters for the 1D convolution layer,
the number of units for the LSTM layer, and the number of
neurons for the dense layer. The z-axis corresponds to the
predicted latency or cost. The blue bar represents the ground
truth values and the yellow bar represents the values predicted
by our model. The input combinations shown in each figure
are excluded from the training set used to generate the model
being evaluated.

Table III shows the results from 16 DROPBEAR models.
For these results, we consider two target networks optimized

157

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

Accuracy
(RMS error)

Workload
(Multiplies) # LUTS # DSPs Latency (µs) Optimized RF for Each Layer

0.169 11.9K 18999 10 168.83 48, 768, 384, 768, 384, 64
0.1433 12.2K 24808 17 169.14 48, 384, 384, 384, 768, 64, 16, 16, 16, 4
0.1339 12.3K 24807 17 169.14 48, 768, 768, 384, 768, 64, 25, 25, 25, 5
0.119 12.6K 24807 17 169.14 48, 384, 768, 384, 768, 512, 32, 32, 32, 4
0.1161 13.7K 26375 16 171.82 48, 768, 768, 768, 768, 384, 162, 162, 18
0.1134 15.7K 26375 16 171.82 48, 768, 768, 768, 768, 384, 162, 162, 18
0.1095 16.8K 27125 14 171.82 60, 600, 1200, 300, 1200, 1360, 289, 289, 17
0.1065 21.7K 63052 40 193.92 78, 2028, 1014, 2028, 2028, 1768, 289, 289, 17
0.1029 25.0K 63052 40 193.92 90, 2700, 2700, 2700, 2700, 2040, 289, 289, 17
0.0982 25.6K 30836 24 170.59 24, 192, 384, 768, 384, 1824, 1444, 38
0.0958 33.0K 44702 30 176.81 24, 192, 384, 384, 768, 4512, 2209, 2209, 2209, 2209, 47
0.0939 34.4K 63052 40 194.94 123, 5043, 5043, 5043, 5043, 3116, 361, 361, 19
0.0851 36.6K 80227 58 174.88 24, 192, 768, 768, 384, 5600, 2500, 2500, 2500, 50
0.0828 41.4K 91708 66 176.96 24, 192, 768, 768, 768, 336, 2916, 2916, 2916, 2916, 54
0.0813 70.5K 91702 66 176.96 24, 192, 768, 768, 768, 13200, 5625, 5625, 5625, 5625, 75
0.0792 74.9K 94960 78 193.26 24, 192, 192, 192, 768, 14592, 5776, 5776, 5776, 5776, 76

TABLE III: Training and deployment results for Pareto optimal networks with 200 µs latency constraint, with corresponding
estimated resource cost, estimated latency, and corresponding optimized reuse factor (RF) for each layer.

Fig. 8: Performance and cost model results. conv1d results are for a layer having an input tensor size of (64,16), meaning a
sequence length of 64 and embedding dimension of 16, LSTM results are for a layer having an input tensor size of (32,16),
and dense results are for a layer having an input size of (1,512).

using the N-TORC framework with a real-time latency con-
straint of 200 µs. The models are sorted in ascending order of
accuracy, with the corresponding model workload and high-
level synthesis results given from the reuse factor optimization
of the network. As shown, each deployed network requires
an end-to-end latency of slightly less than the constraint of
200 µs and the required number of LUTs and DSPs correlates
with the workload. The effective throughput of the deployed
models ranges from 11 Mops/s to 39 Mops/s and from 3.7% to
18.8% of the available LUTS and 0.58% and 4.5% of available

DSPs on the XCZU7EV Zynq UltraScale+ FPGA. The last
column shows the layer reuse factors assigned to achieve the
corresponding results.

C. Model Deployment Optimizer vs Stochastic Search

To evaluate the execution time of N-TORC we compare it
against a naive stochastic method and a simulated annealing
method. For these results, we consider two target DROPBEAR
models. Model 1 has 11 layers: 5 conv1d layers and 6 dense

158

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

Network Trials Stochastic Search Simulated Annealing (SA) N-TORC
LUTs # DSP Latency (µs) Search Time (s) # LUTs # DSP Latency (µs) Search Time (s) # LUTs # DSP Latency (µs) Search Time (s)

Model 1

1.3e11 RF
permuations

1K 137034 209 124 5 120481 159 111 4 94960 78 193 5
10K 106522 134 189 47 104306 101 162 38
100K 100054 107 140 413 98289 101 156 382
1M 95537 79 192 4573 93046 136 193 3995

Model 2

3.4e11 RF
permuations

1K 445328 746 190 6 434219 720 162 6 374009 459 199 6
10K 415243 646 198 53 398131 576 196 56
100K 391543 508 191 565 396019 514 187 567
1M 383849 474 190 5406 376416 466 196 4694

TABLE IV: N-TORC Comparison with Stochastic Search and Simulated Annealing.

layers, and model 2 has 11 layers: 4 conv1d layers, 2 LSTM
layers, and 5 dense layers.

The naive stochastic search method randomly assigns reuse
factors to each layer and estimates the resultant resource
cost and latency. After a given number of trials, it returns
the assignment giving the minimum resource cost without
exceeding the latency constraint.

The simulated annealing approach begins with a random
reuse factor assignment for each layer and changes one each
iteration. It accepts any assignment that gives the lowest-
found resource cost while meeting the latency constraint, or
any network that meets the latency constraint with probability
e

rbest−rproposed
t , with t starting at 100 and cooling at a rate of

1% per iteration and where rbest is the resource cost of the
best assignment found and rproposed is the resource cost of
the most recent assignment.

Table IV compares the execution time and optimization
quality of the stochastic search, simulated annealing (SA)
search, and N-TORC MIP approach. The results show stochas-
tic and SA search runs having 1K, 10K, 100K, and 1M random
trials. The stochastic and SA search time scales linearly.

To achieve comparable results, the stochastic and SA search
require 1M trials, requiring 1000X the execution time of
the MIP optimization. When compared to the result found
with stochastic search and SA at 1M trials, N-TORC finds a
configuration that requires significantly fewer DSPs for Model
1 and slightly fewer LUTS for Model 2.

VII. RELATED WORK

There are several recent efforts to estimate the energy,
throughput, and resources required for HLS implementation
of machine learning models. Xu et al. developed an analytical
model that predicts the energy, latency, and resource utilization
given the total workload associated with the DNN and the
unrolling factor used (equivalent to the inverse of the HLS4ML
reuse factor), and performs a cycle-accurate simulation of the
design to gather more accurate estimates [29]. It is based on a
reusable systolic array-based GEMM architecture. Because the
systolic array is shared among all the layers, the framework
cannot achieve fine-grain control of end-to-end latency, since
changing the size of the systolic array has varying effects on
the latency of different layers.

Shahshahani et al. propose an analytical model that pre-
dicts latency, memory overhead, and energy consumption for
generated HLS code that performs 2D convolution, given
the required workload and available memory throughput. The
model considers the effects of loop pipelining and unrolling

[30]. Their approach includes an exhaustive design space
exploration that optimizes an objective function that assigns
priorities to latency and area, as opposed to performing a
constrained optimization.

Makrani et al. developed a data-driven model called Pyra-
mid that re-calibrates the timing and resource results given
by the HLS compiler to produce a more accurate estimate
of the post-low-level synthesis results, but still requires high-
level synthesis when performing design space exploration of
high-level designs [31].

VIII. CONCLUSION AND FUTURE WORK

In this paper we describe N-TORC, a tool flow for gener-
ating a candidate set of neural network models for a target
dataset that achieves the highest possible accuracy for a given
resource cost while meeting a latency constraint. We evaluate
this approach using a benchmark structural state estimation
dataset, DROPBEAR, but in principle, the approach can be
used for any dataset that can be trained with a model whose
parameters and output tensors can fit in on-chip memory of
an embedded-class FPGA. The proposed method consists of
two stages. The first stage searches the space of network
configurations and hyperparameters to find a Pareto optimal
set of trained models with respect to latency and workload,
while the second stage searches for the optimal assignment
of reuse factors to the model’s layers to meet the end-to-end
latency constraint while minimizing resource cost. The second
stage is built on performance and cost models that predict
resource cost and latency for CNN, LSTM, and dense layers,
which we show have a prediction error of approximately 2%
over our test set. These performance models take advantage of
being trainined specifically for the HLS4ML code structures,
as opposed to being applicable to general-purpose HLS code
[26] or analytical models that assume the use of a generic
systolic array circuit with a folding factor [29, 30].

A limitation of this work is that it does not consider network
quantization, an increasingly common technique [6, 32] that, if
integrated into N-TORC, may further reduce the resource cost
of deployed models. Since HLS4ML supports quantization
in both weights and activations (in the current work we set
both as 16-bit fixed point), we will incorporate quantization
optimization into our future work.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1956071.

159

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Satme, D. Coble, B. Priddy, A. R. Downey, J. D.
Bakos, and G. Comert, “Progress towards data-driven
high-rate structural state estimation on edge computing
devices,” in International Design Engineering Technical
Conferences and Computers and Information in Engi-
neering Conference, vol. 86311. American Society of
Mechanical Engineers, 2022, p. V010T10A017.

[2] E. Kabir, D. Coble, J. N. Satme, A. R. Downey, J. D.
Bakos, D. Andrews, and M. Huang, “Accelerating lstm-
based high-rate dynamic system models,” in 2023 33rd
International Conference on Field-Programmable Logic
and Applications (FPL). IEEE, 2023, pp. 327–332.

[3] A. B. Vereen, E. A. Ogunniyi, A. R. Downey, E. Blasch,
J. D. Bakos, and J. Dodson, “Optimal sampling method-
ologies for high-rate structural twinning,” in 2023 26th
International Conference on Information Fusion (FU-
SION). IEEE, 2023, pp. 1–8.

[4] E. A. Ogunniyi, C. Drnek, S. H. Hong, A. R. Downey,
Y. Wang, J. D. Bakos, P. Avitabile, and J. Dodson,
“Real-time structural model updating using local eigen-
value modification procedure for applications in high-
rate dynamic events,” Mechanical Systems and Signal
Processing, vol. 195, p. 110318, 2023.

[5] A. Vereen, A. Downey, J. Dodson, and A. G.
Moura, “Dataset-8-dropbear-acceleration-vs-roller-
displacement,” https://github.com/High-Rate-SHM-
Working-Group/Dataset-8-DROPBEAR-Acceleration-
vs-Roller-Displacement, Aug. 2023.

[6] Z. Que, S. Liu, M. Rognlien, C. Guo, J. G. Coutinho, and
W. Luk, “Metaml: Automating customizable cross-stage
design-flow for deep learning acceleration,” in 2023 33rd
International Conference on Field-Programmable Logic
and Applications (FPL). IEEE, 2023, pp. 248–252.

[7] M. Wielgosz, A. Skoczeń, and M. Mertik, “Using lstm
recurrent neural networks for monitoring the lhc super-
conducting magnets,” Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, vol. 867, pp.
40–50, 2017.

[8] S. Egan, W. Fedorko, A. Lister, J. Pearkes, and C. Gay,
“Long short-term memory (lstm) networks with jet con-
stituents for boosted top tagging at the lhc,” arXiv
preprint arXiv:1711.09059, 2017.

[9] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott,
“Logicnets: Co-designed neural networks and circuits
for extreme-throughput applications,” in 2020 30th Inter-
national Conference on Field-Programmable Logic and
Applications (FPL), 2020, pp. 291–297.

[10] J. Yan, S. Laflamme, J. Hong, and J. Dodson, “Online
parameter estimation under non-persistent excitations for
high-rate dynamic systems,” Mechanical Systems and
Signal Processing, vol. 161, p. 107960, 2021.

[11] J. Yan, S. Laflamme, P. Singh, A. Sadhu, and J. Dodson,
“A comparison of time-frequency methods for real-time

application to high-rate dynamic systems,” Vibration,
vol. 3, no. 3, pp. 204–216, 2020. [Online]. Available:
https://www.mdpi.com/2571-631X/3/3/16

[12] A. Razmarashooli, D. A. S. Martinez, Y. K. Chua,
S. Laflamme, and C. Hu, “Real-time state estimation
using recurrent neural network and topological data
analysis,” in Nondestructive Characterization and
Monitoring of Advanced Materials, Aerospace, Civil
Infrastructure, and Transportation XVIII, A. L.
Gyekenyesi, P. J. Shull, H. F. Wu, and T. Yu,
Eds., vol. 12950, International Society for Optics
and Photonics. SPIE, 2024, p. 129500C. [Online].
Available: https://doi.org/10.1117/12.3010900

[13] S. V. Singh, I. Ahmad, D. Andrews, M. Huang,
A. R. J. Downey, and J. D. Bakos, “N-torc:
Native tensor optimizer for real-time constraints,”
https://github.com/HeRCLab/N-TORC, Aug. 2024.

[14] M. Nelson, S. Laflamme, C. Hu, A. G. Moura, J. Hong,
A. Downey, P. Lander, Y. Wang, E. Blasch, and J. Dod-
son, “Generated datasets from dynamic reproduction of
projectiles in ballistic environments for advanced re-
search (DROPBEAR) testbed,” IOP SciNotes, vol. 3,
no. 4, p. 044401, nov 2022.

[15] J. Dodson, A. Downey, S. Laflamme, M. D. Todd, A. G.
Moura, Y. Wang, Z. Mao, P. Avitabile, and E. Blasch,
“High-rate structural health monitoring and prognostics:
An overview,” in Data Science in Engineering, Volume 9.
Springer International Publishing, oct 2021, pp. 213–217.

[16] A. Panahi, E. Kabir, A. Downey, D. Andrews, M. Huang,
and J. D. Bakos, “High-rate machine learning for fore-
casting time-series signals,” in 2022 IEEE 30th Annual
International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM). IEEE, 2022, pp.
1–9.

[17] A. Downey and J. Dodson, “High-rate structural
monitoring, damage detection, prognostics, and re-
actions working group,” https://github.com/High-Rate-
SHM-Working-Group, Aug. 2023.

[18] F. Takens, “Detecting strange attractors in turbulence,”
in Dynamical Systems and Turbulence, Warwick 1980,
D. Rand and L.-S. Young, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1981, pp. 366–381.

[19] E. A. Ogunniyi, A. R. J. D. Jr., and J. D. Bakos,
“Development of a real-time solver for the local
eigenvalue modification procedure,” in Sensors and
Smart Structures Technologies for Civil, Mechanical,
and Aerospace Systems 2022, D. Zonta, B. Glisic, and
Z. Su, Eds., vol. 12046, International Society for Optics
and Photonics. SPIE, 2022, p. 120460U. [Online].
Available: https://doi.org/10.1117/12.2613208

[20] E. A. Ogunniyi, C. Drnek, S. H. Hong, A. R.
Downey, Y. Wang, J. D. Bakos, P. Avitabile, and
J. Dodson, “Real-time structural model updating using
local eigenvalue modification procedure for applications
in high-rate dynamic events,” Mechanical Systems and
Signal Processing, vol. 195, p. 110318, 2023. [Online].

160

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

Available: https://www.sciencedirect.com/science/article/
pii/S088832702300225X

[21] A. B. Vereen, E. A. Ogunniyi, A. R. Downey, E. Blasch,
J. D. Bakos, and J. Dodson, “Optimal sampling method-
ologies for high-rate structural twinning,” in 2023 26th
International Conference on Information Fusion (FU-
SION), 2023, pp. 1–8.

[22] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar,
B. Kreis, J. Ngadiuba, M. Pierini, R. Rivera, N. Tran
et al., “Fast inference of deep neural networks in fpgas
for particle physics,” Journal of instrumentation, vol. 13,
no. 07, p. P07027, 2018.

[23] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,
“Optuna: A next-generation hyperparameter optimization
framework,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

[24] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton,
B. Letham, A. G. Wilson, and E. Bakshy, “BoTorch:
A Framework for Efficient Monte-Carlo Bayesian
Optimization,” in Advances in Neural Information
Processing Systems 33, 2020. [Online]. Available:
http://arxiv.org/abs/1910.06403

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[26] N. Wu, H. Yang, Y. Xie, P. Li, and C. Hao, “High-level
synthesis performance prediction using gnns: Bench-
marking, modeling, and advancing,” in Proceedings of
the 59th ACM/IEEE Design Automation Conference,
2022, pp. 49–54.

[27] Gurobi Optimization, LLC, “Gurobi Optimizer Refer-
ence Manual,” https://www.gurobi.com, 2024.

[28] S. V. Singh, I. Ahmad, D. Andrews, M. Huang,
A. R. J. Downey, and J. D. Bakos, “Resource scheduling
for real-time machine learning,” in Proceedings of
the 2025 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’25.
New York, NY, USA: Association for Computing
Machinery, 2025, p. 50. [Online]. Available: https:
//doi.org/10.1145/3706628.3708848

[29] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang,
C. Li, Z. Guan, D. Chen, and Y. Lin, “Autodnnchip:
An automated dnn chip predictor and builder for both
fpgas and asics,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, 2020, pp. 40–50.

[30] M. Shahshahani, B. Khabbazan, M. Sabri, and D. Bhatia,
“A framework for modeling, optimizing, and implement-
ing dnns on fpga using hls,” in 2020 IEEE 14th Dallas
Circuits and Systems Conference (DCAS). IEEE, 2020,
pp. 1–6.

[31] H. M. Makrani, F. Farahmand, H. Sayadi, S. Bondi,
S. M. P. Dinakarrao, H. Homayoun, and S. Rafatirad,
“Pyramid: Machine learning framework to estimate the
optimal timing and resource usage of a high-level syn-
thesis design,” in 2019 29th International Conference
on Field Programmable Logic and Applications (FPL).
IEEE, 2019, pp. 397–403.

[32] Z. Dong, Y. Gao, Q. Huang, J. Wawrzynek, H. H. So, and
K. Keutzer, “Hao: Hardware-aware neural architecture
optimization for efficient inference,” in 2021 IEEE 29th
Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). Los Alamitos,
CA, USA: IEEE Computer Society, may 2021, pp. 50–
59. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/FCCM51124.2021.00014

161

Authorized licensed use limited to: University of South Carolina. Downloaded on May 29,2025 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

