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Abstract—“Active structures” are physical structures that
incorporate real-time monitoring and control. Examples include
active vibration damping or blast mitigation systems. Evaluating
physics-based models in real-time is generally not feasible for
such systems having high-rate dynamics which require microsec-
ond response times, but data-driven machine-learning-based
models can potentially offer a solution. This paper compares
the cost and performance of two FPGA-based implementations
of real-time, continuously-trained models for forecasting time-
series signals with non-stationarities, with one using High-
Level Synthesis (HLS) and the other a programmable overlay
architecture. The proposed model accepts a uni-variate vibration
signal and seeks to forecast future samples to inform high-
rate controllers. The proposed forecasting method performs two
concurrent neural inference operations. One inference forecasts
the state of the signal f samples into the future as a function
of the most recent h samples, while the other forecasts the
current sample given h samples starting from h+ f − 1 samples
into the past. The first forecast produces the forecast while the
second forecast allows the system to calculate the model’s loss
and perform an immediate model update before the next sample
period.

Index Terms—real-time learning, high-rate machine learning
(HRML), neural network, multi-level perceptron, overlay, SIMD,
high-level synthesis (HLS), control theory, high-rate dynamics,
high-rate structural health monitoring

I. INTRODUCTION

High-rate dynamic systems experience accelerations of high
amplitude over durations of less than 100 ms. Examples
include blast mitigation mechanisms, advanced hypersonic
weaponry and vehicles, and adaptive airbag deployment sys-
tems. Monitoring high-rate systems requires state estimation
capable of providing actionable information for preemptive
measures in the sub-millisecond range [1], [2]. These systems
typically exhibit 1) large uncertainties in the external loads, 2)
high levels of non-stationarity and heavy disturbances, and 3)
unmodeled dynamics generated from changes in the system’s
configuration [3].

The structural state (i.e., health) of a structure is encoded in
its time-series vibration signal. Proper and timely knowledge
on the state of a structure are important factors in providing
closed-loop control of the structure. Changes to its state, either

This material is based upon work supported by the National Science
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from damage or changes in its environment, will result in
changes to how the structure responds to an input that can
be measured as changes in its measured vibration signal. The
ability to maintain a continuously-updated vibration model has
the potential to enable real-time decision-making at the µs
timescale.

Among the many data-driven methods proposed for high-
rate system modeling, neural networks have shown promise in
learning unknown, complex dynamics [4], [5]. The universal
approximation capability of neural networks makes them a
suitable candidate for modeling the complex behavior of high-
rate systems. Recurrent neural networks–specifically Long
Short Term Memory (LSTM)–are generally preferred for mod-
eling time-series sensor measurements [6]. However, recurrent
neural networks require extremely long training times, making
them unsuitable for real-time model updating.

In this paper, we propose an algorithmic approach for
constructing a model that supports real-time learning of a
uni-variate vibration signal that contains non-stationarities.
The model uses two concurrent feed-forward neural networks
whose inputs are read in parallel from two phases of a shared
shift register that stores the most recent samples from an
accelerometer. One of the feed-forward neural networks is
used to forecast future samples while the other is used to
calculate the forecast loss and enable real-time model updating
using back-propagation and parameter update logic.

The model is evaluated using a data set consisting of a
20-second vibration signal collected in our lab [7]. The data
set contains a non-stationarity (an unexpected change in the
signal) at 9.775 s, where the signal changes as a result of an
instantaneous change in the external excitation of the system
being instrumented.

We evaluate the precision of the proposed model by com-
puting the error between the original signal and the forecasted
signal in terms of a signal-to-noise ratio. The sources of
noise in the forecasted signal are from the quantization error,
subsampling error, and model error. We also evaluate the
model’s “re-training time”; the time required for the model
to reach its steady-state prediction accuracy after a non-
stationarity event occurs.

We built and evaluated two implementations of our neural
network-based model. The objective of both is to perform all
the workload needed for both forward passes, the backward
pass, and parameter update within one sample time of the978-1-6654-8332-2/22/$31.00 ©2022 IEEE



targeted sampling frequency. As the sample rate increases the
latency between samples decreases, which imposes stricter real
time schedules for both implementations.

The first implementation is a “pure custom” design ex-
pressed in Vivado HLS C++ code generated from our model
compiler. The model compiler customizes the design for
the required number of inputs (the h parameters), number
of hidden neurons (the s parameter), and precision. Using
this approach, all targeted model configurations met and far
exceeded the real-time latency constraints.

The second implementation was based on an open source
2-D SIMD programmable processor array overlay [8]. The
processor array contained 100 x 100 (10,000) processors. All
eight models were compiled and run on the single overlay
implementation. The use of both a custom implementation and
an overlay allowed us to explore if the overlay could bridge the
best of both worlds; allow all models to be compiled while
still meeting all real time requirements. Results showed the
real-time requirements using this overlay were met for seven
of the eight models. The overlay did not meet the real time
requirement for the most aggressive 20 KHz sample rate due to
the size of the matrix-vector operations that required a divide
and conquer approach to map large matrix-vector operations
onto the array.

The remainder of this paper is organized as follows. Section
2 is a brief review of related work, Section 3 describes our test
data set, Section 4 describes the proposed algorithm, Section 5
describes the HLS implementation of the HLS model, Section
6 describes the overlay implementation of the HLS model,
Section 7 describes performance metrics, Section 8 lists the
performance results, and Section 9 concludes the paper.

II. RELATED WORK

Lindemann et al. discussed the applicability of the RNN,
and specifically, the long short-term memory (LSTM) network
in its ability to accurately predict nonlinear time-varying
systems [9]. The authors found that LSTMs have excellent
nonlinear and time-varying prediction capabilities and excel
at multi-modal and multi-step ahead predictions.

In the high-rate realm, Salmela et al. designed an LSTM
to accurately perform real-time predictions for nonlinear, high
power pulse compression and broadband supercontinuum gen-
eration [10].

Barzegar et al. [11] parallelized multiple LSTM cells in
an ensemble to perform multi-step ahead predictions for high-
rate systems. The ensemble learning architecture allowed each
LSTM to specialize over different temporal features identified
in the input, yielding a leaned architecture and thus faster
computation time, with a reported average computation time
of 25 µs per step. While these techniques showed particular
promises, they typically did not yield actionable information,
unless intensive pre-training was performed on labeled data.

Research on implementing various machine learning over-
lays has become popular to bring programmability and porta-
bility into the FPGA design [12]–[20]. The software pro-
grammability of overlays eliminates the HLS bottleneck of

Fig. 1. Experimental setup for collecting benchmark data set.

having to re-synthesize a custom design each time the ML
algorithm is updated or when network parameters change
within an existing design. Overlays achieve programmability
and portability at the cost of increased resources and slower
clock frequencies. We have further explored this by comparing
our HLS-based design versus an existing ML accelerator
overlay. The overlay reported in this work indicates that over-
lays are viable across ML applications and have comparable
performance to custom designs.

III. TEST DATA SET

Fig. 1 depicts the experimental setup used to obtain our
test data set. A steel cantilever beam measuring 759 × 51
× 5 mm3 is utilized, and an electromagnetic shaker (model
V203R from LDS) is used to drive a forced excitation into
the beam. The electromagnetic shaker has a useful frequency
range of 5-13,000 Hz and a peak sinusoidal force of 17.8
N, itself powered by a power amplifier (LDS model PA25E-
CE). The excitation is initially comprised of frequencies of
100, 120, and 150 Hz. At the t=9.775 s point, the 150 Hz
component is dropped.

A single Integrated Electronics Piezo-Electric (IEPE) ac-
celerometer (model J352C33 produced by PCB Piezotronics)
is positioned near the beam’s edge to measure the beam’s
response to the excitation. This accelerometer has a sensitivity
of 100 mV/g with a frequency measurement range from
0.5 to 9 kHz. Using a 24-bit IEPE signal conditioner (NI-
9234 developed by National Instruments), the sensor data is
digitized. The accelerometer is 0.46 m from the fixed point of
the cantilever beam to ensure that the sensor does not lie at a
node or anti-node for the first 5 frequencies of the beam. This
data is available in a public repository [21].

The spectrum of the measured signal is shown in Fig. 2.
As shown in the Figure, the three excitation frequencies 100,
150, and 200 Hz are the most energetic, but there are several
other components resulting from various aspects of the test
bed. Our goal is to forecast all components of the signal from
0 to N/2 Hz, where N is the chosen sampling frequency.

IV. PROPOSED REAL-TIME FORECASTING MODEL

For the proposed forecasting models, the accelerometer is
sampled at its native sample rate r and produces a discrete
signal V (t), V (t− 1/r), V (t− 2/r), .... In our current data
set, the highest-power components are in the lower frequency
bands, so we re-sample the signal to a rate rs, ensuring that rs



Fig. 2. Spectrum of the data set (all samples, prior and after non-stationarity).
Note the peaks at 100, 120, and 150 Hz.

is sufficient to capture the dynamics of interest (i.e. frequencies
below rs/2). Since rs may not be an integral factor of r,
we use bilinear interpolation to synthesize this new signal,
Vsubsample = V (t), V (t− 1/rs), V (t− 2/rs), ....

The proposed forecasting model accepts a set of the most
recent samples and produces an estimate for a future sample.
The model must learn the input signal in real-time and adapt
to unexpected changes in the signal, with the adaptation time
(“re-training time”) an optimization target.

In contrast to purely data-driven methods, frequency estima-
tion is a common method for learning time-series data [22],
but this approach requires a sampling window that matches the
signal period. This is a significant weakness, because the signal
period is generally not known in forecasting applications. Even
if it is known, the sampling window comprises the mini-
mum time needed to adapt to changes to the signal, causing
unacceptably-long delays adapting to nonstationarities. For
these reasons, utilizing the frequency domain is especially
challenging in the sub-millisecond realm [23]. Scheppegrell
et al. [24] and Yan et al. [25] examined the use of short-term
Fourier transforms and other modal techniques and discussed
challenges for applications in high rate machine learning for
structural health monitoring.

A. MLP-Based Forecast Model

Fig. 3 shows an overview of our proposed MLP based
approach, in which Vsubsample(t) is used to perform two
concurrent inference operations. One inference forecasts the
sample Vsubsample(t+f/rs), the signal state f samples into the
future given the prior h samples: Vsubsample(t), Vsubsample(t −
1/rs), ..., Vsubsample(t− (h− 1)/rs).

Another instance of a forward pass using the same param-
eters (weights and biases) is deployed to perform continu-
ous online model retraining. This second inference forecasts
the current sample, Vsubsample(t), given h samples ending
with the sample read f samples into the past, Vsubsample(t −
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Fig. 3. Neural network-based approach for real-time learning and forecasting
of time series data.

f/rs), Vsubsample(t − (f − 1)/rs), ..., Vsubsample(t − (f − h −
1)/rs).

The second inference allows the system to calculate the loss
of the current model parameters. From this, a back-propagation
calculates the gradients and from these the weights and biases
for both forward passes are updated after every sample.

V. HIGH-LEVEL SYNTHESIS IMPLEMENTATION

In this section we describe the design of the MLP-based
forecast model. The core design is described in C++ and
synthesized with Vivado HLS 2019.1.

A. Forward Passes

Each of the two deployed forward passes are built as fully-
connected multilayer perceptrons (MLP) with one hidden layer
and linear activation functions. For h inputs and s hidden
neurons, the forward pass performs the operation shown in
eq. (1), where I⃗ is a 1×h vector, H is an h×s matrix, O⃗ is a
s× 1 vector (there is only one output neuron), and b⃗h and b⃗o
are the 1× s and 1× 1 hidden and output layer bias vectors,
respectively.

Vf (t+ f/rs) = (I⃗ ×H+ b⃗h)× O⃗ + bo (1)

Each forward pass can be realized as a single two-level
nested loop, since each dot product produced in the hidden
layer can be subsequently multiplied by a single entry in the
output layer vector. The workload for this operation is h × s
multiply-accumulates and s+ 1 additions.

B. Back Propagation

We compute the loss of the output neuron using mean
squared error using the output of the secondary forward pass as
shown in eq. (2). Note that the forecasted sample is f samples
ahead of the current sample due to it being a forecast.

lossoutput =
(Vf (t− f/rs)− Vsubsample(t))

2

2
(2)

The gradient of the loss function with respect to each output
neuron weight is computed as in eq. (3), where i corresponds
to each of the s hidden neurons and N hidden

i is the previous
output of the hidden neuron i.



∂lossoutput

W out
i

= (Vf (t− f/rs)− Vsubsample(t))×W out
i (3)

The loop that calculates loss of each hidden neuron is
unrolled completely and requires a third port to the output
neuron weights, necessitating a third instance of the weight
RAM. The workload for this operation is s+1 multiples, which
is small enough that we do not include it in our workload
calculations.

C. Weight Update

The output neuron weights are updated as shown in eq. (4).
The loop that performs this update is pipelined.

W i
out = W i

out − α× Vf (t− f/rs)×N hidden
i (4)

The output bias is updated as shown in eq. (5). The work-
load for this operation is one multiply, which is small enough
that we do not include it in our throughput calculations.

biasout = biasout − α× Vf (t− f/rs) (5)

Each hidden neuron input weight is updated as shown in
eq. (6), where i is the neuron number and j is the input
number. This loop is pipelined and its inner loop, which
processes each neuron’s input, is unrolled. As with the forward
pass, the II of this loop is ⌈ h

1024⌉.

W j
i = W j

i − α× gradient(i)× inputj (6)

The hidden neuron bias is updated as shown in eq. (7). The
workload for this operation is 2× h× s multiplies and h× s
additions, which is small enough that we do not include it in
our throughput calculations.

biasi = biasi − α× gradienti (7)

D. Compiler

We developed a tool that generates a C++-based description
of the system as shown in Fig. 3 suitable for high level
synthesis. The generated system is customized according to
the following parameters, selected by the user:

1) h, the number of input samples for the inference opera-
tions

2) f , forecast time in samples
3) s, number of hidden neurons
4) datatype to be used for all inputs, weights, internal values,

and the output (float or fixed point and its width in bits)

The generated C description includes a random normal
initialization for all weights as well as the shift register needed
to buffer inputs for both forward passes.

VI. OVERLAY IMPLEMENTATION

The target user base of this real-time forecasting of time-
series signals includes domain experts and software developers
with no hardware design expertise. Additional considerations
included reuse and portability issues of this real time fore-
casting accelerator. This broadened our research agenda from
just determining if an FPGA based system could meet the real
time requirements to encompass software programmable and
portable solutions. The custom-designed accelerator verified
the feasibility meeting the real time requirements on an FPGA
under ideal conditions. This was then augmented with the
investigation to determine if a portable and programmable
accelerator would meet real time requirements and allow pro-
grammers to modify and port the accelerator across different
application domains.

For this investigation, we started with the SPAR-2 customiz-
able programmable SIMD Processor Array Overlay [8], [26].
A high level block diagram of the overlay is shown in Fig.
4. The array is composed of variable sized PE blocks. Each
PE Block is a processor in memory architecture that tightly
integrates bit-serial PEs with a BRAM. This allows all PE’s
to concurrently access data stored in each BRAM. The size of
a PE block for this work was 4× 4 = 16 PEs per PE block.
PE blocks are composed to form Tiles. Each Tile contained
5 × 5 = 25 PE blocks. An array of 5 × 5 Tiles formed the
100× 100 = 10, 000 PEs processor array.

The 2-D processor array is connected to an I/O buffer
on each North-East-West-South (NEWS) side. The I/O
buffers include serial-to-parallel and parallel-to-serial corner-
turn registers to translate between the bit-serial registers of
the edge PEs and external parallel modules such as DRAM
and the activation functions modules. These I/O buffers are
also used to move data between the different edges of the 2-D
processor array.

A. Modification for Back-Propagation

The SPAR-2 array was designed for forward inferencing.
The internal data paths and arithmetic logic units of the
forward inference architecture within the 2-D processor array
did not require modification to support back-propagation. A
new copy instruction and sequence of Micro Operations (µops)
was added within the controller software to back-propagate
data through the original data paths in the hidden layers.
These modifications were all that were required to enable
back-propagation through the original 2-D processor array.
However, initial benchmarking pointed to the need for two
additional data path connections to be added between the
I/O buffers and the PEs to reduce the overhead time of data
transfers during back-propagation. The first data path added
enabled the processor array to directly move data from the
first row of PEs to the last column of PEs. The second data
path was added to directly move data from the last column of
PEs to the first column of PEs. These connections eliminated
the overhead of moving data from one end of the array to
the other through a series of step-by-step Move instructions
between nearest-neighbor PEs across the width of the array.
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Fig. 4. Processor Array Overlay Design [26]

These additional connections are shown using the red arrows
in Fig. 4.

The additional resource added for back-propagation resulted
in a 24.4% increase in Look-up Tables (LUTs) and 9.3%
increase in Flip-Flops (FFs) on the Virtex UltraScale+ VU9P
FPGA.

VII. PERFORMANCE METRICS

In the proposed system there are four performance metrics:
1) Forecast accuracy: A model’s forecast accuracy depends
on its number of model inputs (h), number of hidden neurons,
data type, and subsample rate (rs).

We measure forecast accuracy as shown in eqs. (8) and (9),
where ZOH() is the zero order hold, used to convert the
forecasted signal back to the data set’s original sample rate.
SNR is the ratio of original signal power to the power of the
noise, which is the difference between the original signal and
the forecasted signal in the data set’s original sample rate.
A portion of the noise is caused by the subsampling and
quantization of the original input signal and the remaining
portion is caused by the model’s forecast error.

As shown in eq. (8), the model forecasts the future state
of the signal and the forecasted signal must be appropriately
phase-shifted by f/rs relative to the original signal before
computing the difference.

N(t) = ZOH(Vforecast(t− f/rs))− V (t) (8)

SNRdb = log10
rms(V (t))2

rms(N(t))2
× 20 (9)

Fig. 5 plots the SNR for 50 different MLP-based model
configurations with sr = 2500Hz, f = 50 (20 ms), and while
sweeping h ∈ 25, 50, ..., 250, and sweeping the number of
hidden neurons s ∈ 10, 20, ..., 50.

At sr = 2500 Hz, the subsampled signal SNR is 26.9
dB, which comprises the upper bound for forecast accuracy.

Fig. 5. Signal-to-noise ratio of MLP-based model versus input size h; for 10
to 50 hidden neurons, learning rate 0.1, and double precision floating point.

Fig. 6. Signal-to-noise ratio of MLP-based model versus input size h; 50
hidden neurons, learning rate 0.1, and 4- to 8-bit fixed point and double-
precision floating point.

Networks with 20 to 50 hidden neurons achieve roughly the
same accuracy. Accuracy improves with increased values of
h but with an approximate point of diminishing returns at
h = 100 (or 100/2500 = 40 ms). Note that the period of the
three summed excitation signals, 100 Hz, 120 Hz, and 150
Hz, is 100 ms (lcm( 1

100 ,
1

120 ,
1

150 ) = 1
10 = 100 ms), which

corresponds to window size needed if the forecaster based its
predictions on a replay of the most recent period.

Fig. 6 plots the SNR for 60 MLP-based model config-
urations for sample rate sr = 2500Hz, f = 50 (20 ms),
h ∈ 25, 50, ..., 250, hidden neurons s = 50, and using 4 to
8-bit fixed point as well as double precision floating point as
a point of comparison. As shown, 7- and 8-bit configurations
perform nearly as well as double precision floating point.
For this reason we target 8-bit precision on our hardware
deployments.
2) Retraining time: The forecast model architecture performs
continuous online retraining, allowing for the model to adapt
to nonstationarities in the signal for which it is forecasting.
Our results report the retraining time for the nonstationarity
that occurs at t = 9.775 s by fitting the absolute noise signal
to an exponential curve, as shown in Fig. 7

The noise signal and fitted exponential function are shown



An
example fitted error curve showing the center of gravity, which
is the point at which we consider the error to have stabilized
after retraining the network in response to a nonstationarity.
In this example, the total area under the curve is 2.0, and the
point x = 0.27726 evenly divides both halves.

in eq. (10) and eq. (11). After fitting, the fitted value of a
corresponds to the error floor, a+b corresponds to the decrease
in error between the point of the nonstationarity and when the
model re-converges onto a trained state, and the fitted value
of c corresponds to the error decay rate (i.e. learning rate).

In order to estimate the time needed for the model to retrain
after a nonstationarity, we compute the “center of gravity” of
the fitted error; specifically the point on the x-axis where the
area to the left of that point under the fitted error curve equals
that of the area under the curve to the right, as shown in Fig.
2. To compute the center of gravity, we first adjust the noise
curve by subtracting the noise floor a and then solve for the
value of m, which divides the area under the adjusted noise
curve in half, as shown in eq. (12)-eq. (14).

Retraining time widely varies depending on the model
configuration and learning rate, but when measured with the
method described above, it generally scales down with the
value of h to a minimal value of less than 1000 sample periods.

|N(t)| =
√

N(t)2 (10)

Nfit(t) = fit(|N(t)|) = a− be−ct, where
a > 0, b < 0, c > 0

(11)

∫ m

0

(a− be−ct − a)dt =

∫ inf

m

(a− be−ct − a)dt (12)

b

c
e−ct

∣∣∣∣∣
m

0

=
b

c
e−ct

∣∣∣∣∣
inf

m

(13)

m = −
ln 1

2

c
(14)

Nonstationarity

Fig. 7. Retraining time for 2500 Hz signal with h=200.

Fig. 8. Retraining time versus input size h; 50 hidden neurons, learning rate
0.1, and 4- to 8-bit fixed point and double-precision floating point.

Fig. 8 plots the retraining time vs input size for 50
different MLP-based model configurations for sample rate
sr = 2500Hz, f = 50 (20 ms), h ∈ 25, 50, ..., 250, hidden
neurons s ∈ 10, 20, ..., 50, and learning rate = 0.1. Retraining
time generally improves with h and there is no obvious trend
in retraining time as the number of hidden neurons is varied.

Fig. 9 plots the retraining time vs input size for 4- to 8-bit
fixed-point and double precision floating point for 50 hidden
neurons and learning rate of 0.1. Precision appears to have
negligible effect for models having h/rs ≥ 50 ms.
3) Forecast latency: All forecasts must be performed within
the sample time of the subsampled input signal for the system
to meet its real-time constraint. Forecast latencies for both
architectures are reported below. We attempt to minimize
forecast time to maximize the amount of slack available
for other application-level requirements, such as evaluating
controller transfer functions or computing objective scores for
potential controller decisions.
4) Deployment cost: The proposed framework includes a
compiler that lowers the MLP based models into a low level
description suitable for conversion to hardware using a high-



Fig. 9. Retraining time versus input size h; 50 hidden neurons, learning rate
0.1, and 4- to 8-bit fixed point and double-precision floating point.

level synthesis compiler. The cost of the deployed hardware
is FPGA real estate and power consumption. We report these
costs below.

The model re-training time can be computed as the first mo-
ment of Nfit(t) after adjusting its baseline to 0 by subtracting
the error floor a, as shown in eq. (12)-eq. (14).

VIII. PERFORMANCE RESULTS

Table I examines eight example models, each having a
specified sample rate (rs) of 2500 Hz to 20 KHz and history
size (h) of 80 ms to 176 ms, with all models have 50 hidden
neurons (s).

For each sample rate, the subsampled signal’s accuracy
relative to the original signal is reported as the “subsample
SNR”. This value comprises the upper bound for the forecast
accuracy.

We simulated the real-time training of each model and
reported its overall accuracy of each model are is reported as
“end-to-end SNR t > 9.775” and are evaluated for forecasts
made after the nonstationarity at t = 9.775.

The rightmost four columns give the minimum performance
requirements of a deployed model to meet the real-time
constraint. The column labeled “real-time constraint” is the
period of the corresponding sample rate and the upper limit for
the latency of the model. The column labeled “workload” gives
the total operations required per sample. The rightmost two
columns give the minimum sustained throughput and memory
bandwidth to meet the real-time performance constraint.

A. MLP Deployment Results for HLS

The HLS implementation of the model is comprised of five
loops:

1) forward pass 1: the first forward pass loop (two level
nest), shown in eq. (1)

2) forward pass 2: the second forward pass loop (two level
nest), shown in eq. (1)

3) back propagation: the back propagation loop (one level
nest), shown in eq. (3)

4) the output neuron weight loop (one level nest) and bias
update, shown in eq. (4), eq. (5)

5) weight update: the hidden layer weight update loop (two
level nest), and bias update loop (one level nest), shown
in eq. (6), eq. (7)

These loops are dependant and are performed serially. The
single level loops are all unrolled completely. The cycles
required for the three remaining pipelined two-level loops are
shown in eq. (15).

IIforward pass 1 × s+ ILforward pass 1+

IIforward pass 2 × s+ ILforward pass 2+

IIweight update × s+ ILweight update

(15)

Pipelining the outer loop of the three nested loops causes
the inner loop to be unrolled completely, which in this case
has h iterations This inner loop, if it were to be executed with
a throughput of one iteration per cycle (ideally), would require
parallel access to the inputs and h BRAM banks. The number
of BRAM banks is limited to 1024 (the maximum supported
by Vivado HLS 2019.1), which forces the iteration interval (II)
of the outer loop to be ⌈ h

1024⌉. This loop uses only one port
of each BRAM, with other port used for concurrent weight
update. Since there are two forward passes sharing the same
weights, we must duplicate the weight memory to allow each
forward pass one read port and the weight update logic to have
one write port.

We synthesized several configurations of the MLP-based
model on the Xilinx Virtex UltraScale+ (xcvu9p-flgb2104-2-
i). The results are shown in Table II. Each of the configurations
beyond the first row achieve equivalent throughout of approxi-
mately 150 operations per cycle, with the latency requirement
being linear with the relationship 0.0047× h µs.

B. MLP Deployment Results for Overlay

Table III shows the latencies and resource utilization for
the overlay. All benchmarks were run on the 100× 100 (10k)
PE processor array shown by the single listing for resource
utilization in Table III. The latencies for the processor array
are reported for an achieved clock frequency of 330 MHz. The
objective of the processor in memory architecture is to operate
at the maximum frequency of the BRAMs ( 450 MHz). Two
critical paths limit the achieved clock frequency. The first was
the delay when reading data out of the BRAMs and passing
through the bit-serial ALUs. The second resulted from large
fanouts of control signals issued by the centralized Finite State
Machine (FSM) controller to the 10, 000 bit-serial PE’s. As
an example, the op code was fanned out from the controller
to approximately 625 blocks of PEs. The data paths between
BRAMs and PEs were redesigned and fanouts reduced by
intermediate registering of signals. These two optimizations
allowed the design to be clocked at 400 MHz, nearing the
limit set by the BRAMs. However these modifications have
not been fully tested for the 100 × 100 processor array used
and were not used for comparisons. Interestingly a 400 MHz
clock could would not have significantly altered the results.

The results shown in Table III show that the higher 400 MHz
clock frequency would provide more slack for the seven of



TABLE I
ANALYTICAL RESULTS FOR SELECTED MLP MODELS (HIDDEN NEURONS = 50, LEARNING RATE = 0.1, DOUBLE PRECISION FLOATING-POINT)

Subsample rate; rs
(Hz)

Subsample SNR
w/ZOH (dB)

History size; h
(samples)

History size
(ms)

End-to-end SNR (t > 9.775)
(dB)

Real-time constraint;
1/rs (µs)

Workload/sample
(Multiples and adds)

Required sustained
throughput (Gops/s)

Required sustained
memory b/w (GB/s)

2500 26.9 200 80 24.4 400 70604 0.2 0.07
5000 37.7 700 140 32.9 200 245604 1.2 0.49
7500 42.9 1100 147 39.4 133 385604 2.9 1.15

10000 46.8 1300 130 42.1 100 455604 4.6 1.82
12500 48.9 2200 176 46.8 80 770604 9.6 3.84
15000 50.7 2200 147 48.9 67 770604 11.6 4.61
17500 52.1 2200 126 50.1 57 770604 13.5 5.38
20000 54.1 3200 160 46.6 50 1120604 22.4 8.94

TABLE II
HIGH LEVEL SYNTHESIS RESULTS (8-BIT FXP, 484 MHZ, VIRTEX ULTRASCALE+ VU9P, f=50, s=50, AND MIN(1024,h) MEMORY BANKS

History size; h
(samples)

Total latency
(cycles)

Workload/sample
(Multiplies and adds)

Effective
ops/cycle

Fmax
(MHz)

Effective
throughput

(Gop/s)

Effective
memory b/w

(GB/s)

Latency
µs

BRAM
(%)

DSP
(%)

LUTs
(%)

200 581 70604 122 474 58 22.9 1.2 4 3 8
700 1630 245604 151 484 73 29.1 3.4 16 10 24
1100 2580 385604 149 484 72 28.9 5.3 23 14 39
1300 2980 455604 153 484 74 29.5 6.2 23 14 49
2200 4911 770604 157 484 76 30.3 10.1 23 14 70
2200 4911 770604 157 484 76 30.3 10.1 23 14 70
2200 4911 770604 157 484 76 30.3 10.1 23 14 70
3200 7335 1120604 153 484 74 29.5 15.2 23 14 95

TABLE III
PROCESSOR ARRAY OVERLAY RESULTS (8-BIT FXP, 330 MHZ, VIRTEX ULTRASCALE+ VU9P)

MLP Forward Backward∗ Instruction Count∗∗ Resource Utilization∗∗∗ Number of
history size (h) Latency (µs) Latency (µs) ADD SUB MULT MOVE LUTs FFs BRAMs DSPs PEs

200 5.25 4.55 36+7 0+6 3+9 117+74
700 13.4 7.4 91+12 0+11 8+19 297+74
1100 19.29 9.95 138+16 0+15 12+27 408+83 613220 83659 625 0 10k
1300 23.56 11.15 184+18 0+17 14+31 474+85 (51.8%) (3.5%) (14.4%) (0%)
2200 36.45 16.55 336+27 0+26 23+49 617+94
3200 73.89 22.55 284+37 0+36 33+69 2181+104

∗ For training, each epoch’s latency is the sum of one forward and one backward iteration.
∗∗ The numbers on the left side of the plus sign are the forward path instruction count and the right side numbers are the backward path instruction count
∗∗∗ All MLP networks are run on the same processor array and therefore have the same resource utilization.

eight benchmarks that already met the real time requirements
and narrowly reduce the gap between the overlay and the
custom design. However, the higher clock frequency would
still not be sufficient to allow the overlay to meet the real
time requirements for the last benchmark. Scaling the results
for 400 MHz would yield a latency of 79.5 µs, well short of
the 50 µs real time constraint. Processor array architectures
reduce latency through concurrent execution of the matrix-
vector operations. The large history size of the biggest MLP
networks prevent all matrix-vector operations to be concur-
rently executed in the 100 × 100 = 10k PEs. A classic
divide-and-conquer approach was employed to partition the
matrices/vectors into multiple sub-matrices/sub-vectors such
that they fit into the array. For example, history sizes of 2200
and 3200 samples required 22 and 32 submatrices respectively
to be sequentially processed on the 100 × 100 PE array.
Sufficient BRAM storage was available to store all 8-bit
weights on-chip for the complete matrices.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we presented a Multilayer Perception (MLP)-
based approach for real-time forecasting and learning of
univariate time-series data. A custom High-Level Synthesis
(HLS) and programmable overlay design were developed to
implement the MLP based approach.

Performance comparisons between the HLS and overlay im-
plementations of the MLP yielded expected performance ver-
sus productivity tradeoffs between customization and general-
ization. The HLS design exceeded all real-time requirements
but required each model to be redesigned and synthesized.

The overlay incurred longer latencies than the custom
designs in all cases but did met real time requirements for
seven out of eight models. The performance of the largest and
most challenging models were degraded due to the need to
divide and conquer the matrix-vector operations on the 100 x
100 PE array.
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