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Abstract— In this paper we describe a new approach for 
accelerating the Conjugate Gradient (CG) method using an 
FPGA co-processor.  As in previous approaches, our co-processor 
performs a double-precision sparse matrix-vector multiplication.  
However, our implementation doubles the amount of 
computation per unit of input data by exploiting the symmetry of 
the input matrix and computing the upper and lower triangle of 
the input matrix in parallel.  Using a Virtex-2 Pro 100 FPGA, we 
have achieved an observed computational throughput of 1155 
MFLOPS. 
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I.  INTRODUCTION 
Linear system solvers are used frequently in scientific 

computing.  They are also computationally expensive and 
highly parallelizable, and this has made them popular targets 
for FPGA acceleration.  Linear system solvers constitute the 
kernel computation of many partial differential equation (PDE) 
solvers [ 1 ], which are used for modeling many types of 
physical systems.  Linear system solvers can be divided into 
two categories:  direct, where the solution is computed by 
evaluating a derived formula, and iterative where the solution is 
approximated until a certain acceptable value is reached.  
Direct methods can only be feasibly used for solving small 
systems of equations.  Nevertheless, there has been recent work 
to accelerate such methods, and these efforts are motivated by 
problems in electrical power distribution [2,3].  These solvers 
are usually limited to matrices of order less than 100.  Iterative 
methods are used to solve larger systems of equations, but are 
only guaranteed to converge to a solution if the input matrix 
adheres to a set of characteristics that are specific to each 
method.  The computationally intensive component of 
performing iterative methods is the matrix-vector 
multiplication, and one need only to implement this operation 
in hardware to effectively accelerate an iterative method.  In 
most iterative methods, the matrix is invariant across iterations 
so it need only be transferred to the co-processor memory once 
per method invocation.  As such, it is generally the case that the 
co-processor’s memory bandwidth will determine the 
performance of the matrix-vector multiplication. 

In this paper we describe our accelerator architecture for the 
double-precision Conjugate Gradient method for large input 
matrices.  In order to reduce the effect that off-chip memory 

transfer capacity on the multiplier’s throughput, we take 
advantage of the property of CG that requires the input matrix 
to be symmetric.  This allows the multiplier to compute both 
the top triangle and bottom triangle of the input matrix in 
parallel.  To our knowledge, this is the first sparse matrix-
vector multiplier architecture that exploits matrix symmetry to 
nearly double the ratio of computation to communication and 
thus achievable computational throughput.  This paper 
describes an actual, working implementation of this accelerator 
architecture, and our test results include all actual 
communication, system, and data encoding overheads. 

II. BASE ARCHITECTURE 
Our SMVM architecture is specifically designed to 

accelerate the conjugate gradient (CG) method.  CG requires 
that the input matrix be symmetrical.  When only the upper 
triangle and the diagonal is used to represent the matrix, the 
FPGA performs two multiplications for each non-zero matrix 
input value that is not on the diagonal.  These products are used 
for accumulating the dot products for two distinct rows, which 
nearly doubles the amount of computation performed per unit 
of I/O.  To take advantage of this symmetry, we have divided 
our SMVM architecture into two sections--one that performs 
computation for the upper triangle, including the diagonal, and 
the other that performs computation for the lower triangle 
excluding the diagonal.  Each matrix value streamed into the 
accelerator is fanned-out to both sections.  As a result, each dot 
product computed by the SMVM architecture is partially 
computed by both the upper and lower architectures, except for 
the first row.  This arrangement produces two result vectors, for 
the upper and lower triangle, which are added by the host in 
software to produce the final vector product. 

We designed our SSpVxM core using custom VHDL and 
targeted our Annapolis Micro Systems Wild Star II Pro 
computing card with its Virtex-II Pro 2 100 FPGA.  Before 
computation begins, the matrix is transferred using DMA from 
the host memory into the FPGA card’s onboard SRAM, which 
is composed of six banks of 36-bit wide DDR2 SRAM 
modules that can theoretically deliver a new word every 5 ns 
for a total of 5.15 GB/s of memory bandwidth.  We map the 
memory banks onto two 64-bit double-precision matrix values 
and their corresponding 16-bit column identifiers, utilizing 160 
of the 216 bits.  Our double-precision adders and multipliers 
(generated with Xilinx Core Generator) are limited to 148 MHz 
in the context of our design, allowing our design to utilize 
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Fig 1.  Upper Triangle Architecture 

 
Fig. 2.  DSA Reduction Circuit Design from [4]. 

approximately 3 GB/s of the total theoretical memory 
bandwidth. 

In our design we use a slightly modified version of the 
Compressed Row Storage (CRS) format  The CRS format 
stores a matrix in three arrays, val, col, and ptr.  val and col 
contain the value and corresponding column number for each 
non-zero value, arranged in a raster order starting with the 
upper-left and continuing column-wise left-to-right and then 
row-wise from the top to bottom.  The ptr array stores the 
indices within val and col where each row begins, terminated 
with a value that contains the size of val and col.  Instead of 
using the ptr array, our design assumes the end-of-row 
information is encoded within the val and col arrays using zero-
termination.  We do this for practical reasons as described 
below.  Since our accelerator is designed specifically for 
symmetric matrices, we assume that only the non-zero matrix 
values on the diagonal and within the upper triangle of the 
matrix are represented in the matrix input data. 

The purpose of the upper triangle architecture was to 
compute the partial dot products for only the diagonal and 
upper triangle of the input matrix: 
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where i is the row for which the partial dot product is being 
computed. 

Our upper triangle architecture is shown in Figure 1.  A 

copy of the vector is stored on-chip in a two-port 64-bit block 
RAM for each multiplier. Both of these BRAMs are directly 
written in parallel by the host using a DMA transaction. 
Incoming matrix values read from the on-board SRAM are 
paired with a corresponding value from the vector and sent into 
a multiplier. Each pair of products are added and their sum is 
sent into a reduction circuit for accumulation. 

A. Reduction Circuit Design 
Our reduction circuit design is the double-strided adder 

(DSA) from [4] and shown in Figure 2. The DSA has two 
adders that independently operate in one of three states:  fill, 
steady state, or coalesce.  In the fill state, a new value from the 
FIFO is added to zero, sending individual inputs into the adder 
pipeline. This is performed until the adder pipeline fills or until 
input values for the current input set are exhausted.  In the case 
where the adder pipeline fills and additional input values for 
the current input set are waiting in the FIFO (i.e. the number of 
input values exceeds the number of adder pipeline stages), the 
adder switches to steady-state mode.  In this state, subsequent 
input values are added to the sums being fed back from the 
adder output.  After all input values for the current input set are 
exhausted, the adder switches to the coalesce state.  In this 
state, the adder does not consume any input values from the 
FIFO.  Instead, the two most recent non-zero values produced 
by the adder pipeline are fed back into the adder.  When two 
non-zeros values are not available, zeros are routed into the 
adder instead.  The adder stays in this state until all the sums in 
the adder pipeline have been coalesced into a final output sum. 

For an adder with α pipeline stages, an input set of n values 
requires ⎡ ⎤ 21log2 −+αα cycles to coalesce when α≥n , 

but requires ⎡ ⎤ ⎡ ⎤( )nn n −−+ 2log
2 21logα  cycles when 

α<n .  For example, for our 14-cycle adders, this means that 
matrix rows that have at least 28 values per row will require 68 
cycles to coalesce, since 2 input values are included with each 
DSA input.  When an adder is coalescing it does not accept 
new input values from the FIFO, but as long as the other adder 
is not also in the coalesce state it will take over accepting new 
values.  This is guaranteed if the size of each input set is greater 
than or equal to the number of coalesce cycles required for the 
previous read input set.  However, if this is not the case, there 
will be cycles where both adders are in the coalesce state, 
causing the input FIFO to grow.  Since the DSA is only capable 
of reading one value at a time, there is no time where the size 
of the FIFO will decrease until the core stops reading new 
matrix values from the on-board memory.  As a result, input 
matrices having rows with less than 136 non-zero values have 
the potential to casue the FIFO to overflow.  For these cases, 
we designed a throttler circuit that forces the SSpVxM core to 
stop reading new matrix values when the FIFO size reaches 
90% and resumes when the size reaches 10% (our DSA input 
FIFO holds 1024 values). 

If the DSA throttles the SSpVxM core during operation, 
this effectively reduces our memory bandwidth and thus the 
performance of the core.  However, this behavior depends on 
the characteristics of the input matrix, i.e. it will only affect 
small input matrices or large matrices that are very sparse, 
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Fig 3.  Lower triangle architecture.  This design multiplies each incoming matrix value by the vector element corresponding to the current matrix row.  

These products are accumulated into a BRAM for each multiplier.  If a RAW data hazard is detected in either accumulation circuit, the product is “aborted,” 
by being sent to the host and accumulated in software.  After each matrix row, the values accumulated in each BRAM are added and sent to the host. 

having less than 136 non-zero values per row on average on the 
upper triangle. 

B. Lower Triangle Architecture 
The primary contribution of this paper is the lower triangle 

architecture, which is shown in Figure 3.  Computing the vector 
contributed by the lower triangle in parallel with computing the 
vector contributed by the upper triangle allows two additional 
multiplies without requiring any additional memory bandwidth. 

The lower triangle architecture treats the row number of 
each incoming value as its column number.  Since the 
incoming matrix values are grouped by row, the corresponding 
vector value can be read from one of the on-chip vector 
BRAMs and stored prior to each matrix row being streamed 
from on-board memory into the FPGA (shown as BUF1 in Fig. 
3).  This saves BRAM utilization, as the lower triangle 
architecture need not include an on-chip copy of the vector--the 
vector value for each row can be read during the zero-
termination for the previous row.  This allows for a substantial 
savings in on-chip memory, but does require that we zero-
terminate the values from each row as well as including a 
leading zero as the first value in the matrix storage. 

The stream of products produced by the two lower triangle 
multipliers must be accumulated into the result location 
referenced by the column numbers of the incoming matrix 
values (i.e.the column number is now treated as a row number).  
As a result, the values to be accumulated will not arrive in a 
contiguous stream, preventing us from using a reduction 
circuit.  Instead, we use a BRAM for each multiplier to keep 

track of the accumulated values for each entry in the result 
vector for the lower triangle, along with a traditional feedback-
based adder (BRAM3 and BRAM5 in Fig. 3).  There are 
several complications that arise from this arrangement.  The 
first is the initialization.  While BRAMs can be initialized 
when the FPGA is configured, they cannot be reset after each 
matrix-vector multiply.  To solve this, we use set minimal-
width BRAMs (16 bits) as flags to mark whether a given result 
vector entry has previously been written (BRAM4 and BRAM6 
in Fig. 3).  The entries of the flag BRAMs are reset by the host 
as it writes the input vector and are set to one when the first 
result vector entry is accumulated.  These flags control the 
input to the feedback accumulator. 

The feedback-based accumulator is also subject to data 
hazards caused by the adder latency.  This occurs when two 
input matrix values with the same column number are not 
separated by the latency of the accumulator adders.  To address 
this problem, we designed a circuit that detects these data 
hazards, i.e. when a product emerging from a multiplier is to be 
added to an accumulated value that is currently in the adder 
pipeline.  This happens when two values in the matrix having 
the same column are not separated by at least nα entries in the 
matrix memory, where n is the number of multipliers and α is 
the combined latency of the adder and accumulator memory.  
This corresponds to 30 in our design.  When this happens, the 
product is “ejected” from the accelerator and instead read by 
the host.  We refer to this as an “abort value”.  Abort values are 
added into the final result vector by the host.  These data 
hazards are detected by a 15-stage shift registers for each adder 
that keeps track of which accumulator entry is to be updated by 
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TABLE 1.  PERFORMANCE RESULTS FOR MATRIX-VECTOR MULTIPLY.  COLUMN “AVERAGE NZ/ROW UPPER TRIANGLE” LISTS THE AVERAGE NUMBER OF NON-
ZERO VALUES PER ROW ON THE UPPER TRIANGLE.  LOWER VALUES FOR THIS LEAD TO THE DSA THROTTLING THE INPUT, EFFECTIVELY REDUCING THE 

MEMORY BANDWIDTH. 

Matrix 

average 
nz/row 
upper 

triangle 
Software 

time 
Software 
MFLOPS 

Co-
processor 

time 

Co-
processor 
MFLOPS 

Result 
throughput 

% 
products 

on 
upper 

triangle 
aborted 

BCSSTK10 10.7 294 μs 154 
MFLOPS 216 μs 209 

MFLOPS 235 MB/s 20% 

BCSSTK13 21.4 1923 μs 88 
MFLOPS 492 μs 345 

MFLOPS 208 MB/s 11% 

BCSSTK15 15.4 1430 μs 168 
MFLOPS 895 μs 268 

MFLOPS 268 MB/s 22% 

BCSSTK16 30.2 8812 μs 66 
MFLOPS 1343 μs 436 

MFLOPS 128 MB/s 4% 

BCSSTK17 20.0 5055 μs 172 
MFLOPS 2649 μs 329 

MFLOPS 181 MB/s 9% 

BCSSTK18 6.7 2320 μs 133 
MFLOPS 1716 μs 181 

MFLOPS 242 MB/s 15% 

BCSSTK25 8.7 7844 μs 66 
MFLOPS 2571 μs 203 

MFLOPS 258 MB/s 20% 

S3RMT3M3 19.8 4726 μs 87 
MFLOPS 1350 μs 307 

MFLOPS 140 MB/s 5% 

S2RMT3M1 20.3 2537 μs 172 
MFLOPS 1380 μs 316 

MFLOPS 149 MB/s 6% 

S2RMQ4M1 24.5 9451 μs 55 
MFLOPS 1497 μs 352 

MFLOPS 245 MB/s 16% 

BIGMATRIX 500.5 16168 μs 123 
MFLOPS 1731 μs 1155 

MFLOPS 14 MB/s .02% 

the value currently in the adder pipeline.  If there is a match 
with the column associated with the value emerging from the 
multiplier, the value is aborted and sent to the host. 

III. EXPERIMENTAL SETUP 
We implemented our architecture on a Virtex-2 Pro 100 

FPGA on our Annapolis Micro Systems WildStar II-Pro 
platform.  At peak, our architecture performs four double-
precision multiplies and six double-precision adds per cycle at 
148 MHz (1480 MFLOPS).  It is relatively trivial to scale this 
architecture to accommodate platforms with higher memory 
bandwidth.  We tested the co-processor using a set of real 
symmetric positive definite matrices (requirements imposed by 
the CG method) obtained from Matrix Market [5].  We also 
added a randomly generated, fully populated order 1000 matrix 
for comparison.  This matrix cannot be solved with CG. 

Table 1 summarizes our results for a single matrix-vector 
multiply for each test matrix.  As shown in the table, the 
performance of the co-processor increases with the average 
number of non-zero values per row for the upper triangle is 
increased.  This is due to the DSA throttling the input speed 
when its FIFO fills.  The “result throughput” indicates the 
amount of DMA capacity that was used to send the result data 
to the host memory.  This value depends on the percentage of 
products computed by the lower triangle architecture that are 
aborted due to a data hazard.  This percentage is shown in the 
last column.  As far as we know, none of these multiplies 
required more result DMA capacity than was available. 

Our test matrix is the only matrix that has at least 136 non-
zero values per row on average, and thus represents an upper 
bound for our expected performance.  Because of its high 
density, it also causes the least number of aborted products due 
to data hazards. 

IV. CONCLUSIONS 
We presented a sparse matrix-vector multiplier design for 

accelerating the Conjugate Gradient method that exploits 
matrix symmetry to achiever higher computational parallelism.  
We have shown that the performance of the design depends 
heavily on the reduction circuit and its behavior when reducing 
input sets that are smaller than its latency.  In our future work 
we will replace the DSA reduction circuit with one that exhibits 
higher adder utilization for matrices with a low average number 
of non-zero values per row. 
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