
FPGA Acceleration of Gene Rearrangement Analysis

Jason D. Bakos
University of South Carolina

jbakos@cse.sc.edu

Abstract

In this paper we present our work toward FPGA

acceleration of phylogenetic reconstruction, a type of
analysis that is commonly performed in the fields of
systematic biology and comparative genomics. In our
initial study, we have targeted a specific application
that reconstructs maximum-parsimony (MP)
phylogenies for gene-rearrangement data. Like other
prevalent applications in computational biology, this
application relies on a control-dependent, memory-
intensive, and non-arithmetic combinatorial
optimization algorithm. To achieve hardware
acceleration, we developed an FPGA core design that
implements the application’s primary bottleneck
computation. Because our core is lightweight, we are
able to synthesize multiple cores on a single FPGA.
By using several cores in parallel, we have achieved a
25X end-to-end application speedup using simulated
input data.

1. Introduction

Phylogenetic analysis is the study of evolutionary
relationships amongst a set of species. A phylogeny
(or phylogenetic tree) is as an unrooted binary tree
where each vertex represents information associated
with a species and each edge represents a series of
evolutionary events that transformed one species into

another. Analyzing phylogenies is a fundamental tool
that biologists use to infer common characteristics
across different species based on their evolutionary
relatedness. Analysis of phylogenies is a vital
component of research in such areas as drug and
vaccine development and bio-pathway discovery [1].

As shown in Figure 1, a phylogeny is an unrooted
binary tree. Each of the n leaves has degree 1 and
represents a species that currently exists, while each of
the n - 2 internal vertices has degree 3 and represents a
species that is a common ancestor. Each edge is
associated with an evolutionary distance, representing
the number of evolutionary events that separate the
two corresponding species. Both the topology and the
edge distances are important characteristics of the
phylogeny.

In general, the problem of phylogenetic
reconstruction can be summarized as such: given n
input species, find a phylogeny that most closely
resembles the species’ actual relative evolutionary
history. Maximum parsimony (MP) phylogeny
reconstruction is generally considered to be among the
most accurate reconstruction techniques because it (1)
incorporates an evolutionary model into the
reconstruction procedure and (2) computes biological
data for ancestral vertices. MP techniques operate by
performing a bounded exhaustive search over the
space of all possible phylogenetic trees to find the
phylogeny that minimizes the number of evolutionary

Figure 1. Three of the 105 possible phylogenies for 6 input genomes. Input species (g1, g2, …, g6)
are shown in black while ancestral species are shown in white.

2007 International Symposium on Field-Programmable Custom Computing Machines

0-7695-2940-2/07 $25.00 © 2007 IEEE
DOI 10.1109/FCCM.2007.8

85

2007 International Symposium on Field-Programmable Custom Computing Machines

0-7695-2940-2/07 $25.00 © 2007 IEEE
DOI 10.1109/FCCM.2007.8

85

2007 International Symposium on Field-Programmable Custom Computing Machines

0-7695-2940-2/07 $25.00 © 2007 IEEE
DOI 10.1109/FCCM.2007.8

85

steps required to explain a given input set. In other
words, the goal is to find the tree with the minimal
score, where the score is the sum of all the tree’s edge
distances.

For n input species, there are (2n-5) * (2n-7) * … *
3 possible trees. Since the tree space grows
exponentially, the (optimal) MP technique is limited to
relatively small input sets. When implemented as a
branch-and-bound search, reconstruction of reasonably
sized datasets are feasible. This search can also be
effectively parallelized on a cluster computer, where
each processing node searches disjoint regions of the
tree space [2]. However, even in this mode, a single
reconstruction procedure for 13-17 input species may
require months of computation on a large-scale cluster
(depending on the data set’s genome size and
evolutionary rate).

The goal of this work is to design FPGA cores that
will allow a single accelerated processing node, with
one or two FPGAs, to achieve equivalent performance
to a medium- to large-scale cluster. The efficiency of
this approach would allow biology labs to have greater
access to cluster-class compute capacity for genome
analysis. We also seek to demonstrate that
applications that rely on combinatorial optimization
can be accelerated with FPGA co-processor
architectures, as opposed to control-independent
arithmetic computations with which FPGA
acceleration has traditionally been associated.

Genome A: 1 2 3 4 5 6 7 8
Genome B: 1 -5 -4 -3 -2 6 7 8
Genome C: 1 -5 -4 6 7 8 -3 -2
Index: 0 1 2 3 4 5 6 7

Figure 2. Genome B is produced from genome
A by an inversion from genes 1 through 4.
Genome C is produced from genome B by a
transposition of genes 5 through 7 to index 3.

2. Gene-Rearrangement Data

In our current project, our goal is to accelerate MP
reconstruction for gene rearrangement data, which
refers to both the type of data used to represent each
species’ genome as well as an implied evolutionary
model. When reconstructing phylogenies for this type
of data, the edge distances for a given tree cannot be
computed until after genome data for each of the
internal vertices is computed. Thus, for each candidate
tree that is evaluated during the tree search, (1) its
internal vertices must be labeled with ancestral data,
(2) its edge distances are computed, and (3) these
distances are summed to determine the tree score.

Computing an edge distance can be performed with
a fast (linear-time) algorithm, but labeling an internal
vertex is extremely expensive (NP-HARD) [3]. For
input sets with relatively high evolutionary rate (i.e.
large diameter), the labeling computation constitutes
the performance bottleneck for the overall
reconstruction procedure. In our initial work, we have
implemented an FPGA core that performs the labeling
computation entirely in hardware. In addition, we

developed a top-level architecture where multiple
cores can be used in parallel to either (1) speed up the
labeling computation for a single internal vertex, or (2)
perform multiple labeling computations in parallel to
label multiple internal vertices concurrently. When we
replace the software version of this computation with
our hardware-based one, we have achieved an overall
application speedup of 25X for distantly related
datasets.

In DNA sequence research, nucleotide sequences
are known to undergo various edit events, including
insertions, deletions, and substitutions. Gene
rearrangement data (also known as gene-order data),
on the other hand, is represented by a ordered
sequence of genes (usually circular). Each gene itself
represents a nucleotide sequence and thus exists in
either a positive or negative orientation, where the sign
denotes the internal ordering of the nucleotide
sequence that the gene represents.

According to the Nadeau-Taylor model of evolution
[3], gene-order data is subject to gene rearrangement
events. These events include inversions (a gene
subsequence is reversed in both order and polarity),
transpositions (a gene subsequence is relocated within
the ordering), and inverted transpositions (an inversion
is followed by a transposition over the same gene
subsequence). Examples of these events are shown in
Figure 2. The relative rarity of genomic rearrangement
events combined with the increased availability of
complete genome sequences make gene-rearrangement
data very attractive to biologists. As a result, many
biologists have embraced this new type of data in their
phylogenetic work [4,5,6,7] while computer scientists
are slowly solving the difficult problems posed by
analyzing manipulations of gene orders [8,9].

3. GRAPPA

Sankoff and Blanchette pioneered the maximum-
parsimony methods in BPAnalysis [10], and Moret et
al improved the approach of BPAnalysis in a package
called GRAPPA [11]. Extensive tests on biological

868686

and simulated datasets have shown that trees returned
by GRAPPA are superior to those returned by other
methods [11].

GRAPPA computes a lower bound for each
possible tree based on the ordering of its leaves [11].
The search discards any tree, regardless of its
topology, whose lower bound is greater than or equal
to the best tree scored so far. For example, the lower
bound of a 5-leaf tree having leaf ordering (g5, g2, g1,
g4, g3) is computed as (d(g5,g2) + d(g2,g1) + d(g1,g4) +
d(g4,g3) + d(g3,g5)) / 2. In practice, GRAPPA typically
prunes more than 99.9% of trees without scoring them.

GRAPPA scores each candidate tree not pruned by
the lower bound computation. Ultimately the tree
score is defined by the sum of its edge distances, but
the first (and most expensive) step of the scoring
procedure is to label each internal vertex with a
median genome. The median genome is the optimal
(but not necessarily unique) gene order that minimizes
the sum of pair-wise distances between itself and the
genome labels of each of the three neighbor vertices.

GRAPPA labels the tree’s internal vertices using a
two-step algorithm. In the first step, GRAPPA
initializes the labels of the internal vertices. We refer
to this as the initialization phase. GRAPPA offers
several different initialization methods, but the most
effective is to label each internal vertex by computing
the median of the three nearest labeled vertices.
Initially, only the labelings of the leaves are available.
However, since the labels are applied as soon as they
are computed, an increasing number of internal
vertices are labeled (and available) as the algorithm
progresses.

Figure 3. A median computation becomes
more time consuming as the diameter of its
inputs increase.

Figure 4. The relative amount of total
execution time that GRAPPA spends
labeling internal vertices (performing median
computations) increases asymptotically to
100% with the diameter of the input data set.
Thus performing median computations is the
performance bottleneck for relatively
“difficult” input data.

Once the initialization phase initially labels all
internal vertices, GRAPPA proceeds with a re-labeling
phase, which is an iterative refinement algorithm that
continually re-computes each internal vertex label
using its immediate neighbors. If the new label
improves the median score, the new label is applied
immediately. The re-labeling is terminated after the
first iteration where no labels are updated. Note that
this algorithm is guaranteed to converge but only
guarantees a locally optimal solution. Once the tree
converges, the edge distances are computed with a
linear-time distance function and summed to yield the
tree score.

4. Median Computation Performance

Labeling an internal vertex requires computing a
median of three gene orders. Our performance
characterization of GRAPPA has shown that the time
required to perform a median computation is an

exponential function of the sum of pairwise distances
between the three input gene orders and their optimal
median. This can also be expressed as the diameter of
the inputs. This was no surprise, since the median
algorithm is NP-HARD. This is shown graphically in
Figure 3.

The effect of this is that the portion of GRAPPA’s
total execution time that is spent labeling sharply
increases with the evolutionary rate the inputs. This is
also caused by lower pruning rates (thus higher scoring
rates), since the lower bound is less effective for more
distantly related input sets. In practice, even
moderately distant input sets will require over 99.9%
of GRAPPA’s total execution time computing
medians. This is shown graphically in Figure 4.

Note that the median computations performed in the
initialization phase typically consume several orders of
magnitude more time than the medians computed in
the re-labeling phase, since the diameter of these
median computations are significantly higher in the
early stages of the refinement procedure.

878787

Figure 5. Breakpoint median TSP

formulation.

Figure 6. Graphical representation of a
breakpoint median TSP depth-first search tree
and associated data structures. Pruned edges
are excluded from the lower bound
computation from the level they are pruned to
the bottom of the tree, the “otherEnd” array
stores TSP path end-points to prevent cycles
that do not include all vertices, and the “used”
array keeps track of which vertices in the
current solution state have degree 2.

5. Breakpoint Median Algorithm

The breakpoint distance is an estimate of the

number of rearrangement events that separate two
genomes. The breakpoint distance between genomes A
and B is defined as the number of adjacent gene-pairs
gh that appear in A when neither gh nor -h-g appear in
B. For example, (circular) genomes A=(1 -2 -3 4) and
B=(4 2 -1 -3) have a breakpoint distance of 2, because
gene pairs (-2 -3) and (4 1) appear in A but neither {(-2
-3) or (3 2)} nor {(4 1) or (-1 -4)} appear in B.

5.1. Breakpoint Median

Given three genomes A, B, and C, the breakpoint
median is a fourth genome M such that the breakpoint
median score, score = d(A,M) + d(B,M) + d(C,M), is
optimally minimal where d(x,y) is the breakpoint
distance between genomes x and y.

As shown in Figure 5, computing a breakpoint
median for three genomes requires solving a traveling
salesman problem (TSP) formulated in the following
way [10]. Given genomes A, B, and C, each
consisting of an ordering of n signed genes, construct a
fully-connected undirected graph having vertices = {-

gn, …, -g1, g1, …, gn} and define w(g,h) to be the
weight between vertices g and h.

For each gene g, w(g,-g) = -∞, guaranteeing that
each gene will appear alongside its reverse polarity
counterpart in the TSP solution. Define u(g,h) to be
the number of times vertices -g and h are adjacent in
the three genomes, and define w(g,h) = 3 - u(g,h). If
s1, -s1, s2, -s2, …, sn, -sn is the solution of the TSP, then
the resultant breakpoint median is M = s1, s2, …, sn.
This solution guarantees that the breakpoint median
score is optimally minimal. Note that the TSP tour
cost of the solution, excluding the -∞ edges between
each vertex-pair representing the positive and negative
version of each gene in the tour, is equivalent to the
breakpoint median score of the solution.

888888

The number of cities in the TSP graph is 2n, where
n is the number of genes. Since n is typically less than
1000, optimally solving the TSP is feasible. Finding
an optimal solution is important since heuristic
methods to compute medians will have a detrimental
effect on the accuracy of the reconstruction procedure.

5.2. Algorithm Implementation

As shown in Figure 6, the breakpoint median
algorithm bundled with GRAPPA performs a depth-
first branch-and-bound search over the space of all
possible paths through the graph implied by the three
input genomes.

The first step of the algorithm is to establish an
initial “best found so far” TSP tour cost to use as the
initial upper bound. Recall that the TSP tour cost and
the median score of the corresponding solution are
equivalent values. During the re-labeling phase, this
initial upper bound is the median score of the
previously computed median label. During the
initialization phase, there is no previous median label
so the initial upper bound is determined by finding
which of the three input genomes has a minimum sum
of distances to the other two, and uses this sum as the
initial upper bound, i.e. upper bound = min
(d(A,B)+d(A,C)),(d(A,B)+d(B,C)),(d(A,C)+d(B,C))}.

If the search exhausts the search space without
finding a better result, it returns this input genome as
the result. The second step is to read the input
genomes and construct the resultant TSP graph. By
definition, each edge in the graph has weight - ∞, 0, 1,
2, or 3. The algorithm organizes the weight 0, 1, and 2
edges into a list sorted by edge weight.

It then creates an empty edge set to serve as the
current search state, which we refer to as the partial
solution. All the weight -∞ edges are assumed to be in
the current partial solution. Thus, every vertex in the
partial solution has a degree of one. Note that the
weights of these edges are not included in the tour
cost.

The algorithm iterates through the sorted edge list
in order (beginning with the first edge) and adds each
edge to the partial solution that obeys two conditions:
(1) the edge must not cause any of the vertices in the
tour implied by the current partial solution to have a
degree of greater than two since the TSP tour must not
contain branches (in our implementation, this is
implemented with the used memory), and (2) the edge
must not create any cycle in the current partial solution
unless the addition of this edge results in a full tour (in
our implementation, this is implemented with the
otherEnd memory).

If no edges from the current point forward in the
sorted edge list satisfy these two conditions, the
algorithm will record the current tour as the best found
solution if its cost (including any weight-3 edges that
must also be included to complete the tour) is less then
the current upper bound.

The first condition for adding an edge is
implemented by keeping track of the degree of each
vertex in the partial solution. Condition 2 is
implemented with a memory that keeps track of the
end-points of all path fragments in the partial solution.
This allows a quick way to avoid adding certain edges
to the partial solution or including these edges into the
lower bound computation if their inclusion would
result in a cycle (unless the cycle includes all vertices).

When the search begins, this memory is initialized
to indicate that the vertices representing the positive
and negative version of each gene form a two-city
partial tour fragment, i.e. OtherEnd(a) = -a. As the
search progresses, these partial fragments grow in size.
Each time an edge with vertices a and b is added to the
current partial solution, the following assignments are
made:

OtherEnd(OtherEnd(a)) = OtherEnd(b) and
OtherEnd(OtherEnd(b)) = OtherEnd(a).
In order to prevent loops in the partial tour, a

candidate edge (a,b) will not be added to the partial
solution (or lower bound computation) if OtherEnd(a)
= b, unless adding the edge will complete a full tour.

5.3. Lower Bound Computation

Each time the search adds an edge, it computes a
lower bound for the partial solution. If the lower
bound is greater than or equal to the upper bound, it
prunes the last added edge, re-computes the lower
bound, and either adds a new edge or prunes again.

The search computes the lower bound using the
following technique [6]. Initialize the lower bound to
zero. For each vertex that currently has a degree of
one in the current partial solution, add the weight of
the lowest weight edge that leads to another vertex of
degree one in the partial solution. This technique adds
twice as many edges as required, so divide the final
sum by two.

The lower bound computation disregards any edges
that were previously pruned at or above the current
level in the search tree. It also disregards any edges
that would result in a tour cycle if that edge were
added to the partial solution unless adding the edge
would complete the tour. Each time the search prunes
an edge, the search re-computes the lower bound
because the exclusion of the pruned edge constitutes

898989

Figure 8. Finite state machine representation

of median core controller.

Figure 7. Simplified block diagram for the

breakpoint median core. The core design is
a large sequential logic circuit that

establishes datapaths among several
memory elements in each clock cycle. Static
interconnects between memory elements are

shown, while multiplexed interconnects
among memory elements are established

through the control unit (integrated within its
output logic).

information that was not available before the search
added the edge originally.

6. Core Design

We designed our breakpoint median core in
custom-written VHDL. It. implements the same basic
breakpoint median algorithm as the one bundled with
GRAPPA with a few notable differences. GRAPPA’s
breakpoint median core relies on recursion such that its
depth-first search may be realized using the program
activation stack. In order to achieve similar run-time
behavior, we have implemented a stack memory using
an on-chip block RAM (BRAM).

The median core uses this stack to keep track of
information required to restore the state of the search
when a branch of the search tree is pruned. For each
edge that is added to the partial solution, the previous
values of the otherEnd memory and the edge’s index

into the sorted edge list are pushed on the stack. Each
time an edge is pruned (due to the lower bound or tour
completion), the pruned edge’s index in the sorted
edge list is pushed on the stack so that edge can be re-
included in the lower bound computation when the
state of the search that caused the prune is changed.

Before the median core begins operation, the host
system performs two tasks in software. First, it
computes the initial upper bound. Second, it loads the
input genomes and the initial upper bound into a
specific set of on-chip memory locations that
correspond to the median core to which it wishes to
dispatch the median computation. The host performs
these data transfers using a programmed I/O
transaction across the PCI-X bus.

The core requires a one-time overhead of 2n cycles
to reset the search state memory of the core, 4n cycles
for each input genome to construct the TSP graph, and
10n clock cycles to construct the sorted list of edges
(where n is the number of genes).

After the initialization phase, the core proceeds by
adding an edge (7 cycles), computing the lower bound
(requiring 2n clock cycles), then either pruning
(requiring 3 to 10 cycles) and performing a re-
computation of the lower bound, or simply adding
another edge. Any time the core reaches the end of the

909090

sorted edges list (and thus the bottom of the search
tree), if the cost of the current tour is less then the
current best, it constructs the result tour and saves it
(requiring n clock cycles).

The operation of the core is clearly dominated by
the lower bound computation. Even for less expensive
median computations, the core will spend nearly all of
its execution time in this state.

Figure 7 shows a simplified view of the median
core microarchitecture. As shown, the median core
design consists of a single block of control logic that is
interconnected to a set of on-chip block RAMs
(BRAMs), counters, and registers. The controller is
designed as a finite state machine with integrated
multiplexers that establish datapaths between the set of
BRAMs and registers. The state diagram for the
controller is shown in Figure 8.

The median core is capable of computing
breakpoint medians of any reasonable size using only
on-chip memory, although larger genome sizes (>
1000 genes/genome) will increase the resource
utilization of each single median core beyond the
numbers described below. The median core requires
21 of the 444 BRAMs available on the FPGA (< 5%).
A single median core’s logic requirements are 944 of
the 44,096 logic slices (2%), including the logic
overhead required for the PCI-X interface. These
resource requirements indicate that the required
number of independent on-chip memories is the
limiting scalability factor for this design. Even with
this limitation, we have successfully implemented 20
independently accessible median cores on our FPGA
(although it is possible to fit 21).

Our breakpoint median core implementation is
limited to a 56 MHz clock speed (two full orders of
magnitude less than the microprocessor to which we
are comparing against). Our clock speed is currently
limited by the high latency data path required by the
lower bound computation.

Figure 9. Simplified block diagram for the

top-level FPGA implementation of a 20-core
design. Due to the high clock speed

requirement for the PCI-X interface (an
independent clock domain from the slower
core clock), the fan-outs and fan-ins are

pipelined with degree 4 and 5. Dual-ported
split clock BRAMs are used for the input and

output data to cross clock domains.

 The PCI-X interface must meet a 133 MHz clock
speed requirement. The BRAMs used to store the
inputs and outputs are dual-ported/dual-clocked in
order for the data to cross clock domains. In order to
meet the timing requirements for the PCI-X interface,
the PCI fan-out/fan-in to/from the cores are pipelined
as shown in Figure 9.

7. Exploiting FPGA Resources

There are several techniques for using the
parallelism of multiple median cores to speed up a
single median computation. We developed one
technique that is intended for the tree initialization
phase. During initialization, each median core must
rely on its three input genomes to compute an initial
upper bound, since no previous label will exist for
internal vertices until the re-labeling phase begins.

Under normal circumstances, the median core is
initialized with an initial upper bound determined by
the minimal median score corresponding to three input
genomes. For input genomes A, B, and C, A’s median
score is d(A,B) + d(A,C), B’s median score is d(B,A) +
d(B,C), and C’s median score is d(C,A) + d(C,B).

If the median core does not find a median solution
with a lower score (which would guarantee that none
exists), the software driver for the median core returns
the corresponding input genome as the optimal result.
If the core does find a better solution, the score of this
result is guaranteed to be less than the initial upper
bound.

919191

A v e r a g e B r e a k p o in t M e d ia n C o r e S p e e d u p v s . S o f t w a r e

0

5

1 0

1 5

2 0

2 5

3 0

1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4

A v e r a g e D i s t a n c e F r o m I n p u t G e n o m e s t o M e d i a n

S
pe

ed
up

1 c o r e
4 c o r e s
8 c o r e s
1 2 c o r e s
1 6 c o r e s
2 0 c o r e s

Figure 10. Per-median average performance results over 1000 median computations, when 1, 4,

8, 12, 16, and 20 cores are used to compute a single median using the technique described in
Section 7.

In our multi-core strategy, if the initial upper bound
inferred from the input genomes is s, initialize n cores
with initial upper bounds s - 1, s - 2, …, s - (n - 1). If
the optimal median has a score less than s, the core
with the lowest initial upper bound greater than the
optimal score will converge on the optimal solution
fastest. Therefore, after the first core completes its
search having found a solution with a score lower than
its assigned initial upper bound, the host will stop the
other cores.

8. Characterizing the Breakpoint Median
Core

Our test system consists of a Dell Precision 650
server containing a 3.06 GHz Intel Pentium Xeon
processor. This system is used both to execute the
GRAPPA software implementation and to host the
FPGA accelerator.

The FPGA accelerator card is an Annapolis
Microsystems Wild-Star II Pro card with a single
Xilinx Virtex-2 Pro 100 FPGA. It is connected to the
host though a PCI-X interconnect. Input genomes and
the initial upper bound for any core are transmitted to
the FPGA across the PCI-X interconnect using a
programmed I/O write. After this, the host uses a
programmed I/O read to poll the state of any median
core on the FPGA. This allows it to determine when
any individual core has completed computation. When
this occurs, the host performs another programmed I/O
read to read the result genome from the core.

Our software breakpoint median performance
results were gathered from execution using the

microprocessor, and our hardware breakpoint median
results were gathered from execution on the set of
breakpoint median cores available on the FPGA.

For each test, we generated 1000 three-leaf
phylogenies and extracted the leaves to use as the
median inputs. Each edge within each of these
phylogenies has a distance chosen from a uniform
random distribution having a range distance +/- 2,
where distance is a parameter. We performed these
tests for a genome size of 100 genes.

For each set of genomes, we invoke GRAPPA’s
breakpoint median routine bbtsp and record its
execution time. We then use the same three genomes
to invoke the hardware breakpoint median computation
and record its execution time. Note the hardware
execution time includes the CPU-to-FPGA
communication time as well as the time to compute the
initial upper bound (which occurs in software).

Speedup is measured in the traditional way, i.e.
timesw / timehw. A speedup of 1 would indicate
equivalent performance between the software median
computation and hardware median computation. Our
results list the arithmetic mean of the individual
speedups relative to software for the set of 1000
individual median computations for each input
distance:

1000
)(
)(1000

1
∑

== i hw

sw

itime
itime

speedup , where timehw(i) represents

the hardware execution time of input data i.
Figure 10 shows our performance results when each

breakpoint median is executed over 1, 4, 8, 12, 16, and
20 cores. The results show a clear trend where higher-
diameter inputs achieve higher acceleration. This is

929292

primarily because the overheads required to dispatch
computations to the FPGA (i.e. the host to send the
inputs to the core, for the core to initialize itself, for
the host to poll the core’s state, and for the host to read
the result from the core) have greater relative effect for
easy-to-compute input sets. However, the lowest
speedup result was still greater than one for a single
median core (verified down to distance=8). We
stopped recording results at distance=24 due to very
high run times (> 30 minutes average computation per
median software computation).

The results also show that more distant input sets
are able to take greater advantage of multi-core
parallelism than less distant input sets. In fact, less
distant input sets actually perform worse with more
cores as compared to fewer cores due to the additional
communication overheads associated with transferring
the inputs into multiple cores. However, there is a
point of diminishing returns at 12 cores, as the 16 and
20 core approach consistently performs worse than the
12-core approach for the inputs tested. Our best result
is 26.4X for distance 24 over 12 cores.

9. Accelerated-GRAPPA

We made several modifications to the GRAPPA
code to accelerate the tree scoring procedure by
forcing it to dispatch all median computations to the
median cores on the FPGA.

During the initialization phase, GRAPPA derives
great performance benefit from computing each initial
vertex’s label serially using previously computed
labels as potential inputs, as opposed to computing
each initial label in parallel using only the nearest leaf
labels (this technique reduces the average diameter of
the three genomes involved in each individual median
computation and improves the distances of the trees
that enter into the labeling phase). Accelerated
GRAPPA uses this same technique, but computes each
initial label by dispatching each median computation in
parallel to twelve median cores. Because the
initialization phase dominates the time GRAPPA
spends for tree scoring, this technique contributes
significantly to overall application speedup.

A v e r a g e A c c e le r a te d G R A P P A
S p e e d u p v s . S o f tw a r e

0

5

1 0

1 5

2 0

2 5

9 1 0 1 1 1 2 1 3

A v e r a g e E d g e D is ta n c e fo r In p u t S e t

Sp
ee

du
p

s p e e d u p

Figure 11. Average performance results over
10 phylogeny reconstructions of 8 input

genomes. These results indicate the total end-
to-end application speedup for accelerating the
median computation within GRAPPA. The X-

axis specifies the average edge distance of the
randomly generated phylogenies whose leaves

are used as inputs.

In the re-labeling phase, GRAPPA labels each
internal vertex serially and applies the label
immediately if the new label improves the
corresponding vertex’s score. Each label that is
applied may be used in subsequent median
computations within the same iteration. In this phase,
Accelerated-GRAPPA dispatches each median
computation to a single core, but performs these
median computations in parallel for all of the tree’s

internal vertices for each iteration. Although there is a
sufficient number of available cores to dispatch each
median to multiple cores (i.e. eight leaves have six
internal vertices, requiring 18 of the 20 cores for three-
core median computations), the low diameter of the
median computations in this phase would make the
communication overhead of this approach negate the
benefits.

After the slowest median computation has
completed for a given iteration, only the median results
that improve the score of the corresponding internal
vertex label are applied for the next iteration. If no
median computation improves the score of the
corresponding label, the re-labeling phase is
terminated.

A consequence of parallel re-labeling is that only
the labels from the previous iteration (or from the
initialization phase, in the case of the first iteration) are
available for any given iteration. This changes the
convergence behavior from the software re-labeling
phase, but still yields significant improvement in most
experimental runs. Unfortunately, accelerating the re-
labeling phase contributes only minor overall
application speedup due to the relatively low overall
time spent during this component of the scoring
procedure.

Figure 11 shows our average speedups for entire
GRAPPA runs over 10 unique 8-leaf, 100-gene
synthetic datasets. The input sets were produced by

939393

synthesizing phylogenies using a specified average
edge distance. The leaves are extracted for use as
inputs. The speedup for each experimental run was
computed as timeSW / timeHW). The results shown are
the arithmetic mean of the individual speedups relative
to software over each set of 10 GRAPPA runs for each
input distance, as described in Section 8.

As with the breakpoint median performance results,
the results show a clear trend where the average
speedup increases with the evolution rate of the input
set. These results are very sensitive to the average
diameter of the input set. There are two reasons for
this. First, higher evolutionary rate input sets force
GRAPPA to spend higher portions of its execution
time computing medians. In other words, more
difficult data sets force the median computation to
become more significant a bottleneck. Thus,
accelerating the median computation has a higher
impact on overall application speedup. Second, the
median computations themselves are more greatly
accelerated as the diameter of the median inputs
increase. Speedup results span from one to 23 as the
average input diameter increases.

10. Conclusions and Future Work

Our current results demonstrate that Accelerated-
GRAPPA is capable of achieving a 23X speedup for
input sets that have a relatively high evolution rate.
Our most significant problem is that we can only
effectively utilize the parallelism from 57% of the
FPGA resources (12 out of a maximum of 21 cores).
Even when using these resources, the performance
improvement does not scale efficiently with increasing
numbers of cores. Our future work is focused on more
efficient exploitation of hardware resources.

We are currently developing an enhancements to
our median core design to allow for extraction of finer-
grain parallelism and allow for more efficient use of
median cores. In one approach, multiple median cores
will search disjoint regions of a single TSP search
space and broadcast updates to a global upper bound.
In this approach, all cores must exhaust their search
space and the best result found across all the cores is
guaranteed to be optimal.

In another approach, each core will search over the
entire search space but choose equal-weight edges in
different orders, since following different search paths
will allow some cores to find lower upper bounds
faster than others. A globally maintained upper bound
is also used in this approach (using an upper bound
broadcast). As in the previous approach, at least one
core is guaranteed to find the optimal solution.

In addition, we are developing a tree generation and
bounding core that will explore the phylogeny search
space. Our current design requires only two BRAMs,
indicating that it is possible to implement 222 parallel
tree generation cores on a single Virtex-2 Pro 100.
Since this is exactly how GRAPPA runs in cluster
mode, we refer to this approach as “cluster-on-a-chip”.
Our ultimate goal is to combine tree generation and
bounding cores with median cores on a single FPGA,
allowing candidate trees from any of the tree
generation and bounding cores to be scored with
median cores on the same FPGA.

11. References

[1] B.M.E. Moret, J. Tang, L.-S. Wang, T. Warnow, "Steps
toward accurate reconstructions of phylogenies from gene-
order data," Journal of Computer and System Sciences, 2002,
vol. 65; part 3, pages 508-525.
[2] D.A. Bader, B.M.E. Moret, “GRAPPA runs in record
time,” HPC Wire, 9(47), 2000.
[3] B.M.E. Moret, J. Tang, T. Warnow, “Reconstructing
phylogenies from gene-content and gene-order data,”
Mathematics of Evolution and Phylogeny, O. Gascuel, ed.,
Oxford Univ. Press, 2005, 321-352.
[4] Raven, J.A., J.F. Allen (2003), “Genomics and
chloroplast evolution: what did cyanobacteria do for plants?”
Genome Biol 2003, 4, 209.
[5] Olmstead, R. and J. Palmer (1994), “Chloroplast DNA
systematics: a review of methods and data analysis,” Amer.
J. Bot. 81, 1205–1224.
[6] G. Bourque and P. Pevznerr, “Genome-scale evolution:
Reconstructing gene orders in the ancestral species,”
Genome Research 12, 26—36 2002.
[7] T. Garland, P. E. Midford, A. R. Ives, "An Introduction
to Phylogenetically Based Statistical Methods, with a New
Method for Confidence Intervals on Ancestral Values,"
American Zoologist 1999 39(2):374-388;
doi:10.1093/icb/39.2.374.
[8] Felsenstein, J. (1978).,“The number of evolutionary
trees,” Systematic Zoology 27, 27–33.
[9] W. H. E. Day, D. Sankoff, "Computational Complexity
of Inferring Phylogenies by Compatibility," Syst. Zool.,
35(2):224-229, 1986.
[10] M. Blanchette, G. Bourque, D. Sankoff, “Breakpoint
phylogenies,” S. Miyano and T. Takagi, editors, Genome
Informatics 1997, pages 25-34, Univ. Academy Press,
Tokyo, 1997.
[11] B.M.E. Moret, S. Wyman, D.A. Bader, T., Warnow,
and M. Yan, “A new implementation and detailed study of
breakpoint analysis.”, Proc. 6th Pacific Symp. on
Biocomputing (PSB 2001), World Scientific Pub., 583-594.

949494

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

