
Abstract
This paper presents a novel reconfigurable data  

flow  processing  architecture  that  promises  high 
performance  by  explicitly  targeting  both  fine-  and  
course-grained  parallelism.   This  architecture  is  
based  on  multiple  FPGAs  organized  in  a  scalable  
direct network that is substantially more interconnect-
efficient than currently used crossbar technology.  In  
addition,  we  discuss  several  ancillary  issues  and 
propose  solutions  required  to  support  this  
architecture  and  achieve  maximal  performance  for  
general-purpose  applications;  these  include 
supporting  IP,  mapping  techniques,  and  routing  
policies  that  enable  greater  flexibility  for 
architectural evolution and code portability.

1. Introduction
Most  widely-used  architectures  for  high-

performance  computing  consist  of  shared-memory 
multiprocessing architectures, message-passing cluster 
computers,  and  hybrid  architectures.  These 
architectures  exploit  course-grain  parallelism  at  the 
processing node level while at the same time riding the 
wave of microarchitectural advancements that exploit 
fine-grain  parallelism  at  the  instruction  level.   The 
individual processing nodes in both models consist of 
general purpose microprocessors, making it relatively 
easy  to  write  and  compile  programs  for  these 
architectures.   Field  Programmable  Gate  Arrays 
(FPGAs),  when  used  as  the  processing  nodes  in  a 
parallel  computing architecture,  offer  the benefits of 
application-specific processing while their ability to be 
reconfigured allows them to be used for a wide range 
of computations. 

The  proposed  architecture  is  one  where  all  the 
FPGAs  of  a  reconfigurable  supercomputer  have 
themselves been networked independent of the control 
processors to which they are tied.  This is a departure 
from  the  classical  high  performance  reconfigurable 
computing  (HPRC)  methodology  which  has 

considered  the  FPGAs  as  a  subordinate  application 
accelerator (co-processor).  In this new model, the role 
of the CPU and FPGA are inverted.  CPUs are tasked 
with support operations such as the DMA of data to 
and from disk and the execution of codes which do not 
translate  well  into the  systolic  operations,  while  the 
FPGAs perform the majority of the computation.  The 
CPUs  are  also  required  to  provide  control  and 
coordination of the FPGA network.

The  end  product  of  this  new  architecture  is  a 
scalable  fabric  of  hardware  computers  that  are 
networked to stream data, providing partial (fine-grain 
processed) resultants to other downstream processing 
elements.   Through  this  tunneled  approach,  much 
larger  computations  can  be  accommodated  than 
currently fit in the limited resources of a single FPGA.

The  proposed  interconnection  network  employs 
the newly available  multi-gigabit  transceiver  (MGT) 
blocks of current-generation FPGAs.  Using these on-
chip devices as the backbone of the network reduces 
the cost of implementing such a network and has the 
added benefit of allowing data to be sent directly into 
the FPGA for processing.  This negates the need for an 
external ASIC router and I/O penalty resulting from 
the traversal of the slower parallel pads of the FPGA.

In conjunction with the hardware architecture, we 
describe facilities which must be implemented in the 
FPGA core.  These facilities include the router logic, 
which is assigned to a partially programmable column 
of the FPGA, and a core logic interface, providing a 
standard  communication  interface.   Covered  as 
research topics, we address additional considerations 
which  must  be  analyzed  and  solved  for  such  a 
platform to perform at its fullest potential.

The  remainder  of  this  paper  describes  the 
architectural  design  and  considerations  of  such  a 
system.  Section two provides a background on HPRC. 
Following this primer, section three  details the open 
research  topics  for  our  architecture.   After  these 
introductory considerations, section four examines the 
computing  architecture  and  section  five  describes  a 

A Reconfigurable Distributed Computing Fabric
Exploiting Multilevel Parallelism

Charles L. Cathey, Jason D. Bakos, Duncan A. Buell
Dept. of Computer Science and Engineering

The University of South Carolina
{catheyc, jbakos, buell}@cse.sc.edu

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



candidate  network  architecture  which  satisfies  the 
HPRC space.  Section six then addresses algorithmic 
compilation  and  mapping  techniques  utilizing 
graphical analysis.  Finalizing this paper, section seven 
dictates the research roadmap, providing a path to the 
resolution of the presented open research topics.  

2. Background
Almost  all  modern  HPCs  have  employed  one 

variety  or  another  of  von  Neumann  CPU.  These 
devices exhibit many different problems which have 
been  patched  over  the  years.  Recent  processor 
technologies  such  as  Symmetric  Multi  Threading 
(SMT) and SuperScalar architectures have attempted 
to diminish the shortcomings of the underlying serial 
instruction stream.  As can be seen with these new 
devices, the added complexity of patching the original 
architecture  comes  at  the  cost  of  price,  power,  and 
area.  After accounting for the use of instruction and 
data  caches,  pipeline  buffers,  branch  predictors, 
instruction  reorder  units,  etc.,  an  increasingly 
disproportionate  amount  of  the  modern  CPU power 
and area budget is spent supporting these performance 
enhancing  architectural  patches  without  achieving  a 
correspondingly proportional speedup.  In defense of 
the current  designs,  microprocessors have enjoyed a 
degree of flexibility and ease of programmability and 
thus  do  not  require  changes  to  the  way  they  are 
programmed.  However, if we are to continue to push 
the envelope of  processing throughput based on the 
exploitation of parallelism (the common characteristic 
of HPC applications), a back to basics approach will 
be  needed  to  combat  the  growth  of  these  parasitic 
trends.

The Field Programmable Gate Array (FPGA) is a 
device which accepts a binary  stream (bitstream) that 
programs the state of its internal gates implemented as 
look  up  tables.   In  the  FPGA  domain,  this  binary 
stream can be considered a program.  After the FPGA 
has  been  configured  by  the  program,  the  resulting 
hardware  is  the  physical  implementation  of  the 
program,  commonly  referred  to  as  a  hardware-task. 
Entities  such  as  Mitron  and  SRC have  successfully 
advanced  the  field  to  a  level  of  abstraction  which 
allows the hardware to be programmed in a sequential 
semantic  language much like C.   The techniques  of 
translating  this  C-like  language  to  a  concurrent 
semantic Hardware Description Language (HDL) (and 
then to a synthesized bitstream) comprise a significant 
sum  of  their  work.   Advantages  of  using  such  an 
intermediate  language  in  opposition  to  the  classical 
VHDL/Verilog  design  model  are  portability  and  the 
translation of legacy code written for general purpose 
processing  environments.   Both  concerns  are  of  the 
utmost importance to these companies' end-users. 

In  the  case  of  currently  implemented  HPRCs, 
such as the Cray XD1, SRC 6, and the forthcoming 
SRC 7, the FPGA subsystem (the SRC MAP® is an 
example)  is  used  to  farm  highly  parallelizable  and 
deterministic  code  segments  to  dedicated 
reconfigurable hardware computers.   The motivation 
for  this  methodology  is  attributed  to  physical 
constraints  including  the  relatively  slow  speed  of 
FPGAs  in  comparison  to  CPUs,  the  bandwidth 
limitation of the interconnection bus of the FPGAs and 
the  CPU  control  processor,  and  the  inability  for 
FPGAs  to  adequately  handle  nondeterministic 
workloads.

3. Open Research Topics
The reconfigurable processing element of current 

commercially  available  HPRC systems  is  used  as  a 
coprocessor  to  perform  highly  deterministic  work 
upon a static selection of data.  This does not lead to 
the  required  flexibility  needed  by  general-purpose 
processing.  First, the limitation of data injection into 
the  reconfigurable  element  presents  a  time  penalty, 
and second, the decoupled approach does not lead to 
efficient algorithmic decomposition.  As such we need 
to  address  three  key  concerns  that  span  distinct 
classical disciplines: distributed computing, compilers, 
and system-on-chip/network-on-chip.

Priority one is the creation of a fast and scalable 
interconnection network for the FPGA side processing 
fabric.   Bandwidth is the greatest limitation observed 
in the reconfigurable computing space.  Since FPGAs 
perform best when implementing a systolic operation, 
the  need  for  one  FPGA's  partial  result  to  feed  into 
another will grow as problem sizes and complexities 
increase.  In most current systems, data transfers from 
the host to the FPGA coprocessor are performed via a 
DMA from system memory to memory mapped on-
board RAMs.  Vendors such as SRC, as of the Carte 
2.1 release, have attempted to improve this transfer by 
implementing  libraries  that  allow  for  streaming  to 
these memories with varying success [19].  However, 
a  much more efficient  technique must  be developed 
that  bypasses  the  memory  hierarchy  of  the  von 
Neumann backend.

Priority  two  is  the  need  to  adequately  partition 
algorithms  into  parallelizable  and  non-parallelizable 
code  segments  as  well  as  distribute  the  segments 
across multiple processing elements.  This will allow a 
hybrid CPU/FPGA peer processing model to achieve 
greater  speedups  over  the  classical  distributed 
processing model.  It is currently the responsibility of 
the programmer to define this boundary based on a set 
of  loose guidelines,  often requiring repetitive testing 
and rewrites.  Such a method is utilized in the SRC 
and  Mitrionics  approaches,  where  the  programmer 

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



writes the CPU-side application in C and the FPGA-
side  subroutines  in  either  MAP-C  or  Mitrion-C. 
However,  this  decoupled  approach  will  become 
cumbersome  as  our  applications  grow  to  span  an 
increasing number of  FPGAs and CPUs.

Priority  three  is  the  need  to  map  a  partitioned 
algorithm's  segments  across  the  distributed 
reconfigurable processing fabric to achieve large grain 
parallelism.   Currently,  most  HPRC  systems  are 
intended to be used in a single user batch processed 
model.  However, HPRC systems of the future will use 
more reconfigurable processing elements, such as the 
Cray XD1 and SRC crossbar  extension for  multiple 
MAPs,  necessitating  the  ability  to  run  multiple 
applications  concurrently  as  a  means  of  achieving 
greater  utilization.   To  execute  these  multiple 
processes without contention, a mapping strategy and 
supporting  routing  policy  must  be  developed  that 
reduces the blocking behavior of the interconnection 
network  both  for  single  and  multiple  process 
scenarios.

Only with these problems solved can HPRCs be 
perceived  as  a  viable  alternative  to  CPU  based 
solutions  for  an  equally  wide  sampling  of  HPC 
applications.

3.1. Processing Element Network
We  propose  a  new  generalized  system 

architecture  for  HPRC  systems  where  multiple 
FPGAs, acting as processing nodes, are interconnected 
in  a  direct  network.   Interestingly,  much  of  the 
research in the System-on-Chip and Network-on-Chip 
fields  is  directly  analogous to  developing a  feasible 
HPRC  architecture.   However,  translating  these 
techniques to the needs of HPC requires the addition 
of  some basic  networking capabilities.   Namely, we 
must  provide  a  standardized  processing  element 
interface  for  all  reconfigurable  processing  devices 
allowing  the  abstraction  of  the  network  from  the 
processing elements.

The stringent requirement of network abstraction 
can be split into two main considerations.  The first is 
the need to allow the underlying network structure of 
the  global  architecture  to  change.   Numerous 
networking parameters such as routing policies, router 
design  and  features,  and  network  topologies  should 
remain alterable, while not invalidating the processing 
element  interface.   If  this  abstraction  level  is  not 
provided,  the  architecture  will  be  tied  to  a  specific 
network structure which will hinder the flexibility of 
the  overall  architecture  as  it  evolves.   The  second 
consideration  centers  on  processing  element 
flexibility.   Only  with  a  middle  layer,  such  as  the 
interface,  can  a  single  processing  element  be 
instantiated any number of times, at any location in the 

network.   With this  added flexibility,  larger  designs 
will become easier to realize.

3.2. FPGA Reconfiguration
There are currently two different forms of FPGA 

programming.  One involves the reprogramming of the 
entire FPGA where normal reprogramming periods are 
on the order of seconds.  This produces a significant 
penalty for systems which change jobs (the hardware-
tasks being executed) at a relatively high frequency. 
The other  form of  programming involves the partial 
reprogramming  of  a  segment  (column)  of  the  unit. 
Current  FPGA densities  have  not  yet  warranted  the 
use  of  partial  reprogramming  in  many  real  world 
applications.  However, the technology does currently 
exist  and  will  be  relied  on  by  the  on-FPGA router 
required for our interconnection network.

Marescaux et al. [1] have begun an investigation 
and  early  prototyping   of  a  partially  reconfigurable 
FPGA  device  which  utilizes  a  wormhole  routed 
network [11] to interconnect the tiles of the FPGA. By 
providing  such  a  fabric,  the  development  team 
succeeded  in  dynamically  changing  the  operating 
mode  of  the  FPGA,  enabling  a  low-power  highly 
efficient  portable  multimedia  device  capable  of 
handling  interactive  workloads.   Their  work 
demonstrates that such a device is conceivable using 
current technology.  However, due to the constraints 
of  the  Xilinx  Virtex  II  FPGA,  the  chosen  two 
dimensional mesh network was collapsed into a single 
row.   Other  shortcomings of  the  design  include  the 
inability  to  clock  the  interconnection  network  at 
speeds  greater  than  the  reconfigurable  fabric.   This 
results  in  the  creation  of  an  artificial  bottleneck.  If 
these  techniques  are  to  be  further  developed,  an 
alternative structure must be realized.

Our  method of  addressing  these  problems is  to 
translate the techniques employed by Marescaux et al. 
to a larger  grain interpretation of a  virtual  hardware 
component.  Rather than attempting to place an entire 
network internal  to the FPGA (as is  done in ASICs 
with  a  NoC)  we  view  each  FPGA's  user  logic 
(omitting  the  router  column)  as  the  atomic  unit  of 
reconfiguration.  Using many FPGAs interconnected 
by an MGT network, we are able to increase the speed 
of  the  network  by  using  their  integrated  high-speed 
transceivers.  We  can  more  easily  reconfigure  the 
atomic devices since only the router must be pushed 
into a partially reconfigurable column, and the need to 
compress  or  collapse  the  network  structure  is  not 
required since the network topology and structure is 
created external to the FPGAs by board-level traces.

Additionally,  since  jobs  execute  for  extended 
periods of time in the HPC domain, we can amortize 
the  reprogramming  costs.   However,  if  we  wish  to 

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



have a flexible processing environment, the ability to 
process  nondeterministic  workloads  is  required.   In 
this sense, the term nondeterministic workload means 
the  ability  to  handle,  variable  sized  data,  branch 
conditions,  exceptions,  and  data-dependent  loop 
structures.  Classically,  these  problems  have  been 
avoided by the various FPGA HPRC vendors since it 
is a complex problem outside the scope of their work.

3.3. Algorithmic Partitioning
At this  time,  FPGAs are  generally  limited  to  a 

maximum logic speed of 250 MHz [18] whereas an 
Intel Pentium 4 is capable of operating at a pipeline 
frequency of 3.8GHz. Although both devices utilize a 
90nm fabrication process, FPGAs suffer from longer 
wiring  traces  and  increased  area  required  for  its 
reconfigurable elements [8].  This overhead results in 
lower  logic  densities  and precludes  the  FPGA from 
rivaling  the  clock  speeds  of  a  full-custom ASIC of 
equivalent data path depth.

To  address  this  hindrance,  FPGAs  must  be 
programmed to  employ sufficiently  wide  data  paths 
such  that  the  resulting  parallelism  produces  greater 
throughput  verses  the  sequential  computation of  the 
faster  microprocessor.   Currently,  this  problem  is 
solved  by  constructing  HDL  which  exhibits  the 
configurable hardware as a concurrent device or using 
other  high-level  languages  and  their  corresponding 
compilers.   However,  neither  HDL,  nor  any  of  the 
currently  available  HLL  compilers,  allow  their 
languages  to  be  implicitly  compiled  across  multiple 
hardware units.  The determination of which segments 
of  a  large  algorithm  should  be  partitioned  into 
atomically  reconfigurable  units,  as  well  as  their 
placement in the interconnected network is a problem 
not currently addressed.

This introduces a new concern stemming from the 
multi-level  parallelism  that  such  a  partitioning  and 
mapping  strategy  would  produce.   Regardless  of 
whether the partitioning is performed by hand or an 
automated  process,  the  placement  of  the  resulting 
bitstreams within the reconfigurable network will need 
to be optimized.  If a naïve mapping is performed, the 
resulting  contention  for  network  resources  will 
degrade  the  throughput  potential  of  the  computing 
device.

4. Computing Architecture
Our  proposed  architecture  employs  a  serial  routed 
direct network of interconnected FPGAs as shown in 
Figure  1.   In  this  system,  messages  containing 
intermediate  results,  address  location,  and  function 
unit instructions may be set from any source node to 
any  destination  node.   This  network  forms  a 
“collaboration  network,”  similar  to  that  used  in  the 

TRIPS multi-core architecture [10].
Each FPGA is interconnected using the MGTs of 

the current generation FPGAs.  Both Xilinx and Altera 
have  released  implementations  of  their  flagship 
FPGAs (Virtex  II  Pro/X,  Virtex  4,  Stratix  GX,  and 
Stratix II GX) with this functionality [15][16][17][18]. 
Note that the routers are drawn internal to the FPGAs. 
The router logic is encapsulated into  the FPGA as a 
partially  programmable  column.   This  router  logic 
allows  data  to  be  routed  across  the  many  available 
channels  of  the  FPGA  (the  Stratix  II  GX  includes 
twenty 6.375Gbps bi-directional channels).

Figure 1: FPGA Array 
With Control Processor

4.1. Definitions & Terminology 
Before an adequate discussion of the Processing 

Element Interface (PEI) can be made, a general outline 
of the greater computing system as shown in Figure 2 
must  be described as well  as the names assigned to 
each physical  and  logical  element  in  the  computing 
fabric.

Figure 2: FD Elements With Some 
Omissions

A  physical  FPGA  device  in  the  fabric  will  be 
called an  FD (FPGA Device),  the bitstream used to 
program an  FD shall  be  referred  to  as  a  PE 
(Processing Element), and the routers shall be called 
an R (Router). For the purposes of our discussion the 
FDs, PEs, and Rs shall be appended with a numerical 
value  to  indicate  which  physical/logical   device  is 

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



being referenced.
Algorithms  in  the  realm  of  this  device  are 

implemented  via  a  control  and  mapping  description 
(CMD) and a series of one or more PEs.  The CMD is 
used by the control processor (CP) to determine how 
many of each type of PE must be loaded and in what 
order.   This  allows the  CP to  dynamically  program 
available  FDs for use as a specified  PE (look-ahead 
can  be  utilized  to  ease  the  time  penalty  of 
programming).

Since data must traverse the network, additional 
PE housed logic must  be instantiated to support  the 
PEI.  The atomic element required by the interface is 
the Port Handler (PH).  A port handler facilitates the 
composition, injection, and ejection of packets to and 
from the  router  on  its  designated  port.   This  is  an 
event-based (asynchronous) device which ensures that 
blocking behavior is arbitrated.

4.2. Processing Element Interface (PEI)
To enable bitstream reuse, it is imperative that a 

standardized  network  interface  exist  across  all 
bitstreams which is amenable to the architecture.  We 
have chosen a ports system, where a given  PE has a 
series  of  Port  Numbers  (PNs)  which reference  local 
Port Handlers within the PE.  To assist our discussion 
we  will  first  examine  the  packet  structure  of  the 
network.  Following this examination we will discuss 
the two primitive operations, injection and ejection of 
packets via the PEI.

4.2.1.  Packet  Structure.  The  packet  structure  is 
shown  in  Figure  3.  Each  packet  in  the  underlying 
collaboration network is composed of a routing header 
and a payload. 

Figure 3: Packet Format

The payload is composed of a variable number of 
tuples  which  contain  a  port  number  field  and  an 
argument  field.  The  port  number  is  a  numerical 
designator  which  references  an  internal  PH.  The 
argument of the tuple is the data which is to be copied 
to  the  internal  array  which  the  PH  services.   The 
arguments are of variable word count which is set at 
synthesis time.  However, each argument that traverses 
the  network  must  be  the  same  word  count  as  the 
BRAM array it is to be stored in.

4.2.2.  Packet Ejection.  When a packet  is  received 
from  the  collaboration  network,  the  arguments  are 

forwarded to the  PH as designated by the PN of the 
tuple. The PH then buffers the argument in the local 
BRAM  referenced  by  the  port  number,  shown  in 
Figure 4.

Figure 4: Tuple to Port Handler Ejection 
Interface

This structure introduces overhead in the form of 
BRAM  utilization,  reducing  the  available  local 
memory  for  the  computations  provided  by  a  PE. 
However, the PE may not be capable of processing all 
data as it arrives, resulting from physical computation 
restrictions  and data  dependencies.  By buffering the 
arguments that a given  PE requires, issues stemming 
from  out-of-order  argument  arrival  and  blocking 
behaviors,  such  as  multi-party  sources,  can  be 
circumvented.

4.2.3.  Packet  Injection.  Packet  injection  is 
accomplished by a series of  PH's being scheduled for 
out-bound sends in conjunction with the addition of a 
header formulated by the Packet Constructor.  

Figure 5: FD Elements for Packet 
Injection

A thorough functional description of each element 
shown  in  Figure  5  is  necessary  to  understand  the 
operation of the PEI when constructing and injecting a 
new packet into the collaboration network.

When a core event occurs (computation complete 
etc.) that requires a packet transmission, the event is 
passed to one of the packet constructor blocks of the 
PEI  (multiple  packet  constructors  may  exist).   Not 

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



shown is the existence of a FIFO internal to the Packet 
Constructor  to  service  multiple  events  by  order  of 
arrival or priority.

The number of  packet  constructors that  may be 
placed  in  a  PEI  is  a  determined  by  the  number  of 
possible  packet  transmissions  and  the  port  handlers 
which comprise the arguments of the payload.  It  is 
easiest to think of a constructed packet as a vector of 
destinations (address) and a vector of packet handlers 
(payload).   If  two  packets'  PH vectors  are  disjoint, 
meaning that  they share no port  handlers,  then they 
may belong to separate packet constructors, since the 
reservation of the packet handlers will not result in a 
deadlock.   However,  should  more  than  one  packet 
share  port  handlers,  these  dependent  packets  must 
belong  to  the  same  packet  constructor  to  avoid  PH 
reservation conflicts.

The  packet  constructor  is  partitioned  into  two 
stages:  setup  and  execution.   The  setup  stage  is 
responsible for resource allocation and resolution; the 
execution  stage  places  these  resolved  addresses  and 
port  number-argument  tuples  onto  the  injection  bus 
and deallocates the resources required for the packet 
after they have been used. 

When a core event occurs, the packet constructor 
is  activated and  the  setup stage  begins.   Internal  to 
each  packet  constructor  is  a  lookup  table  which 
instructs  the  packet  constructor  as  to  which  non-
resolved processing element(s) and port number(s) this 
packet (spawned by the core event) is to be delivered. 
This information is  set  at  synthesis time.  Since the 
synthesized information may need to be updated based 
on runtime criteria (adaptation), these non-resolved PE 
and  PN  entries  are  then  sent  to  the  PE  and  PN 
resolution tables as indices.  The results of the lookups 
are the physical network addresses and port numbers. 
This flexibility allows the dynamic placement of PEs 
within the FD fabric without requiring the re-synthesis 
of all PEs used in a given application.

In  parallel  to  the  resolution  lookup,  the  packet 
constructor also lodges a reservation request to all the 
PHs that  are part  of the subject  packet's  PH vector. 
The  PHs  may have  been  reserved  previously  by  an 
ejected packet or a core logic component.  Only when 
all  PHs  have  been  released  and  send  the  ready 
acknowledge signal back to the packet constructor will 
the packet constructor lodge a request in the out-bound 
request  queue.  This queue is  a FIFO, which means 
that some additional latency may be observed as other 
packet constructors (already in line) are serviced.  The 
out-bound request queue reservation signals the end of 
the setup stage.

Once  the  packet  constructor  under  examination 
reaches the head of the line, the packet constructor is 
sent  the  go  signal  beginning  the  execution  stage. 

Afterward, the packet constructor places the resolved 
PE  lookups  onto  the  injection  bus.   Following  the 
exhaustion of the PE lookups, it then inserts a resolved 
PN  from  the  PN  vector  and  then  instructs  the 
corresponding  PH  to  barrel  shift  its  data  onto  the 
injection bus.  This process is repeated until all PN and 
PH tuples (the payload) have been exhausted.  After 
each PH barrel  shifter  rolls  its  data  onto the bus,  it 
resets its reservation and is considered reservable by 
another  packet  constructor  event,  core  logic 
component, or ejection operation event.  After the last 
PH has unloaded its data, the packet constructor may 
then service the next core logic event in its queue.

As long as the inputs and outputs of the PE are 
serviced by different port handlers, the PE can stream 
data  in  and  out  simultaneously  on  the  multi-
dimensional MGT network.

5. Network Architecture
The  collaboration  network  is  composed  of  an 

MGT-interconnected topology of FPGAs.  The choice 
of  topology  and  routing  policy  is  an  open  ended 
matter.  Preexisting  topologies  and  policies  have 
emerged  over  the  past  years  in  different  machine 
architectures.  The examination of Dally's wormhole 
routing  and  the  later  extended  virtual  cut-through 
routing was of great interest in the late 80's to early 
90's for distributed multicomputer architectures.  The 
simplicity of  wormhole routing and the multitude of 
routing policies that have been developed following its 
introduction have also made it  a good candidate for 
current NoC research [4, 5, 6, 16, 18].  Building on 
these  previous  networks,  aspects  of  the  proposed 
interconnection  topology  and  routing  policy  will  be 
discussed and elaborated.  

5.1. Topology Selection
At  this  time,  all  HPRC vendors  have  chosen  a 

crossbar  switch  solution  to  network  multiple 
accelerators.   In  the  case  of  the  Cray  XD1,  each 
accelerator is directly connected to the host processors 
of each blade and the other blades of the cluster via 
their  proprietary  RapidArray Interconnect (a product 
of  OctigaBay).   Under  the  hood,  the  RapidArray 
Interconnect is a very large crossbar switch.  Similar 
to  the  Cray  efforts,  SRC  has  employed  a  similar 
approach,  the  Hi-Bar switch,  to  network  multiple 
MAPs.

However,  the  crossbar  will  eventually  meet  its 
end,  since  its  ability  to  scale  with  the  number  of 
networked elements is O(n2).  A much more desirable 
growth pattern would be one that scales linearly, O(n), 
with  the  number  of  networked  elements  while 
preserving the ability to route data to all destinations 
from any given source.  Many such topologies exist 

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



including  the  mesh,  torus,   and  alike.   Other  more 
exotic topologies such as the k-ary n-cube, butterfly, 
and fat-tree also exhibit admirable traits, but do so at 
the cost of added complexity.

It is the opinion of the authors that a simple 2D 
bi-directional  mesh  or  torus  network  topology  will 
result in the best possible throughput.  This should not 
be interpreted as meaning that one topology is better 
than  another  for  randomized  traffic.  Rather,  the 
statement  is  intended  to  mean  that  if  adequate 
precautions and pre-calculations are made, this simple 
topology  will  render  near  if  not  exactly  identical 
performance  results  while  avoiding  the  need  for 
greater hardware complexity.  Of course,  a proof of 
this  statement  will  be  required  and  is  part  of  the 
research roadmap as stated at  the conclusion of this 
paper.

5.2. Routing Policy Selection
There  is  a  large  number  of  routing  policies 

(algorithms)  that  exist  for  the  virtual  cut-through 
routers  that  we  are  targeting  for  use  in  our  system 
architecture [3][7][12][13]. All these routing policies 
can be classified into one of three sets: deterministic, 
fully-adaptive, and semi-adaptive.

Shortest PathCount=
d xd y !
d x !∗d y!

Figure 6: Possible Paths on a (2D 
Bi-Directional Mesh)

An example of  a  deterministic routing policy is 
the dimension-ordered shortest path algorithm.  In this 
policy, a topology is viewed as a m-dimensional space. 
In truth it is an m+1 dimensional space, but the last 
dimension  (injection  to  and  ejection  from  PEs)  is 
implicit.   Figure 6 shows the 20 possible  minimum 
paths that could be taken from the designated source to 
the destination.

However,  if  using  the  deterministic  dimension 
ordered policy, all of the lowest order dimension will 
be  traversed,  followed  by  the  next  lowest  order 
dimension  (LOD)  until  completion.   This  results  in 
only one possible path from 0 to F by vectors:
< 0 1 2 3 7 B F > in the case that X is the LOD,
< 0 4 8 C D E F > in the case that Y is the LOD.

One advantage to such a routing policy is that if 
we examine the possible flight vector, only m-1 turns 
must be made where  m is the number of dimensions 
(omitting the implied dimension Z).  One disadvantage 
to such a policy is  that if  link 3-7 is  busy due to a 
current  transmission, the policy cannot route around 
the contention (this is called a block).  This means that 
the available bandwidth of the network is not  being 
used to its full potential.

To address the bandwidth utilization problem, a 
number of fully-adaptive policies have been invented 
over the years that attempt to route around blocks by 
taking any minimum routable path from the source to 
the destination.  One disadvantage to such policies is 
their  inability  to  guarantee  freedom  from  deadlock 
without  a  sufficient  number  of  virtual  channels 
(requiring additional  buffers,  arbitration logic,  larger 
internal crossbars, and allocation logic).  However, a 
discussion of such policies is beyond the scope of this 
paper.

The last classification of routing policies is semi-
adaptive.   Like  the  fully  adaptive  algorithms,  this 
policy class allows packets to traverse multiple paths 
from source to destination.  Unlike the fully-adaptive 
algorithms, the semi-adaptive policies enforce a rule 
set  (turn  restrictions)  to  ensure  that  the  network  is 
deadlock-free.  The advantage to this class of policies 
is  their  ability  to  provide  comparable  performance 
without the need for virtual channels maintaining the 
router's simplicity and efficiency.  One such algorithm 
is the Odd-Even routing policy [13].  The O-E policy, 
at this point in our research, appears to hold the most 
promise.  However, even at this early phase, we have 
made  observations  that  could  greatly  improve  the 
effectiveness of the policy such as the implementation 
of a turn-predictor cache, pipelining, and other various 
improvements.

What must be understood about these policies and 
the networks they were originally intended to drive is 
that there is a distinct difference in the pseudo-random 
traffic  they were analyzed with and the NoC/FPGA 
fabric  traffic  that  we  wish  to  optimize.   This 
fundamental difference is the existence of predicable 
traffic patterns.

5.3. Semi-Deterministic Traffic
Semi-deterministic traffic is traffic whose patterns 

exhibit  some  degree  of  predictability.   Often  in  the 
past,  routing  policies  were  analyzed  based  on 
randomized traffic since it offered a good indication of 
the network's capabilities in the general case.  Unlike 
this scenario, after a given  PE has been synthesized, 
we  have  complete  knowledge  of  all  transmissions 
which it may send to any other PE.  

However,  real  algorithms  are  not  completely 

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



static.   Many  operations  in  real  code  are  based  on 
branch  conditions  and  loop  invariants  that  are  data 
dependent.  As such, unless a characteristic data set is 
provided  to  a  synthesized  PE,  knowledge  of  the 
frequency  and  periodicity  of  these  dynamic  aspects 
will not be known.  What should be taken away from 
this realization is  that,  although we might not  know 
the periodicity or frequency of transmissions that may 
be  housed  in  a  static  or  dynamic  segment  of  the 
design, we do know of their existence, the source and 
destination pairs,  and the volume.   Based on this  a 
priori knowledge a globally optimal placement of PEs 
within  the  network  can  be  determined.   PEs  that 
communicate most frequently with the largest volume 
should be placed closer together, and PEs that never 
communicate  with  each  other  should  be  placed  in 
disparate regions of the reconfigurable fabric to avoid 
blocking transmissions.

6. Algorithmic Compilation and Mapping
When  describing  all  the  pre-calculations  which 

must  be  performed  by  the  control  processor,  it  is 
important  to  analyze  the  three  main  portions  of  the 
architecture  that  require  it,  the  CMD,  the  relative 
addresses of PEs and PNs, and the placement of PEs 
within the reconfigurable fabric.

6.1. The Control and Mapping Description
The CMD describes all  of  the PE instantiations 

that are required for a given algorithm, as well as the 
interrelation of these PEs.  If we look at an algorithm 
as a  unified data & control  flow graph of  primitive 
processes, we can determine all of the data that must 
be supplied to a given region of the graph as well as 
all the resultants that are passed out of a region.

That said, a PE is a parallelized region (subgraph) 
of  the  algorithm graph.   We  can  replace  all  of  the 
vertices (primitive processes) of the subgraph with a 
single  vertex  and  connect  all  of  the  incoming  and 
outgoing  directed  edges  from  the  subgraph  to  this 
subsuming vertex.   If  the algorithm graph has  been 

decomposed  into  a  series  of  PE  vertices,  each 
incoming  edge  to  a  given  vertex  is  treated  as  an 
incoming port and all outgoing edges are treated as an 
outgoing port.   Incoming edges transfer data that is 
ejected from the collaboration network (edges) into a 
PE, and outgoing edges transfer data that is injected 
into the network on the part of the PE.

A given vertex need only be knowledgeable of its 
downstream  neighbors.   If  we  look  at  an  example 
graph, as shown in Figure 7a, we see that the Graph G 
has  been  partitioned  into  four  distinct  regions 
(subgraphs)  in  Figure  7b.   Each  subgraph  is  then 
collapsed into a single vertex as shown in Figure 7c.

For  the  architecture  to  function  correctly,  PE_0 
need  only  know  that  PE_3  exists  and  that  it  is  to 
forward  some  of  its  resultants  to  that  Processing 
Element.  To facilitate this local knowledge reflect on 
section 4.2.3's reliance on a PE and PN lookup table. 
When the PEs are loaded onto the FD fabric, it is the 
responsibility of the CP to  adapt these tables to  the 
physical mapping it performed.  The only way that the 
CP could know to do this is  through the use of  the 
CMD, and its knowledge of the topology and routing 
policy of the FD fabric.

The CMD begins with a prologue that defines all 
of  the  PEs  (and  the  ports  of  these  PEs)  used  in  its 
execution.   Multiple  PEs  of  the  same  type  may  be 
instantiated, so this is not a physical definition of all 
the PEs that will be loaded onto the FD fabric.  After 
the prologue, a table describing all of the PE instances, 
and their downstream connections is defined.

For  example,  in  Figure  7c,  PE_1  has  four 
downstream connections,  two of its output ports are 
mapped to PE_0, one is mapped to PE_2, and another 
is not designated by the diagram.  When the CP places 
this  PE  onto  the  FD  fabric,  it  will  be  required  to 
configure PE_1's PE & PN lookup table to point to the 
network  and  port  address  of  all  its  downstream 
connections.

Figure 7: Graphical Algorithm Partitioning
 a : Primitive Control & Data Dependency Graph

b: Partitioned Primitive Graph
c : Collapsed Subgraphs

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



6.2. Relative Addressing Example
The  CP  must  use  the  CMD  to  determine  the 

placement of PE instances on the FD fabric and update 
each PE's lookup tables to reflect that placement.  An 
example will help make this clear.   Using Figure 8, 
assume  that  the  CP has  made  the  following 
assignments: 

PE_0 → FD_(0,0)
PE_1 → FD_(0,2)
PE_2 → FD_(3,3)
PE_3 → FD_(2,0)

Figure 8: FD Fabric
(2D Bi-Directional Mesh)

Since addressing in Wormhole and Virtual  Cut-
through networks is  achieved by  relative  coordinate 
based  offsets,  each  PE  would  need  to  have  the  its 
tables updated with the resolved relative address of its 
downstream neighbors.  PE_0 would need the address 
of PE_3 which, relative to PE_0's placement, is (2,0). 
PE_1  would  need  the  address  of  PE_0  and  PE_2 
which  are  (0,-2)  and  (3,1)  respectively.   PE_2  and 
PE_3's downstream neighbors are not  defined in the 
previous example.

If at a different time, the mapping is not the same 
(perhaps  for  reasons  of  contention  or  a  different 
topology),  the  ability  to  update,  the  PE  Resolution 
Tables,  allows  the  same  CMD  to  be  run  with  a 
different mapping.  It is this ability to adapt the PE to 
runtime characteristics that enables modular reuse of 
pre-compiled PEs.

6.3. PE Mapping
In the previous section we assumed that the  CP 

was  capable  of  performing  a  mapping  based  on  its 
knowledge of the FD fabric's topology and the CMD. 
However, this mapping is of extreme importance, and 
can make or break the architecture.

Recall  that  Wormhole  and  Virtual  Cut-Through 
routing  are  blocking  routing  strategies,  if  a  naïve 
placement of PEs is made, the blocking characteristics 
of  the  network  may  greatly  reduce  the  throughput 
potential of a given mapping.  The  placement problem 
is  NP-Hard  (an  instance  of  a  constrained  quadratic  
assignment problem) which means that heuristics must 

be  used  to  perform the  mapping  determination  in  a 
reasonable amount of time, since it must be performed 
each and every time the CMD is executed [2].   To 
reduce  this  penalty,  it  is  advantageous  to  append 
previously mapped layouts to a CMD to provide clues 
to subsequent executions.

7. Conclusions and Future Work
This paper describes a novel system architecture 

and  application  development  framework  for 
generalized  reconfigurable  distributed  computing. 
The benefits of this architecture include its ability to 
exploit fine- and course- grain parallelism through its 
use  of  a  data-flow  processing  model,  linear 
interconnect  scalability  through  its  use  of  a  direct 
network,  and  its  ability  to  reuse  pre-compiled 
processing elements through its use of pre-computed 
PE/PN lookup tables.  This paper also outlines several 
open research problems that must be resolved in order 
for  this  architecture  to  be  capable  of  executing 
traditional HPC applications. 

To  satisfy  our  hardware  needs  we  are  using  a 
sufficiently  similar  unreleased  hardware  architecture 
to  prototype  our  distributed  reconfigurable  system 
architecture.   However,  many  of  the  research  areas 
cannot be resolved by the mere existence of a physical 
system.  Adequate simulation facilities must  also be 
created to determine the feasibility of the PEI, CMD, 
Topology,  Router  Architecture,  and  Routing  Policy. 
After conducting an evaluation of currently available 
network simulators, it has become evident that a more 
powerful cycle accurate simulator will be required.  To 
address this need, we have started work on NoCsim 
available at http://sourceforge.net/projects/nocsim.

As an introductory use of this simulator, we are 
performing  a  wide  survey  of  routing  policies  under 
semi-deterministic  traffic  patters.   To  automate  the 
generation of these traffic patterns we have written a 
middle layer that allows the translation of task graphs 
from  TGFF  [9]  into  an  XML  traffic  description. 
Using  this  traffic  description  we  are  able  to 
experiment  with  our  mapping  heuristics.   After 
formalizing  and  validating  these  mapping  heuristics 
and  policies  under  varying  characteristic  traffic 
patterns we will begin analyzing real applications.

The  next  major  research  effort  will  be  the 
development  of  algorithm  partitioning  techniques. 
Real task graphs exhibit data-dependent branching and 
looping behavior.  Both dynamic and static loops in a 
graph  are  strongly  connected  subgraphs.   Search 
algorithms  currently  exist  that  are  capable  of 
determining these strongly connected regions.  In an 
effort to reduce communication costs, one employed 
technique is a rule enforcing that strongly connected 
subgraphs must be collapsed into a PE vertex.

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



The  next  step  is  filling  in  the  corresponding 
region  around  these  strongly  connected  segments. 
Using the Kernighan-Lin min-cut algorithm [14], we 
can reduce the amount of communication required for 
each PE.  We are providing an easement of primitive 
vertices  around  the  designated  strongly  connected 
regions.  The size of the easement is determined by an 
approximation  of  how  much  of  the  graph  can  be 
synthesized into one of the FDs.  After creating the 
easements,  we  will  allow  the  K-L  heuristic  to 
determine  where  we  should  draw  our  partitions. 
Unlike  the  application  of  this  algorithm  for  circuit 
board design, we apply a weight to each edge in the 
graph that indicates its traffic density.  This will allow 
us to cut  more edges (create more ports) if  the cost 
reduces the overall transmission density.

Conveniently, the SCALE research compiler [10] 
is capable of translating native C code into a unified 
control and data flow graph representation.  The final 
directive  of  our  research  is  the  integration  of  our 
partitioning  and  PE  mapping  heuristics  into  this 
compiler.  The goal is to create a compiler capable of 
accepting algorithmic descriptions in the form of C, 
graphically explode the code, make determinations of 
which segments should be housed in the FD fabric and 
CPU space, and create the CMD with synthesized PEs 
and CPU side code.

By  taking  these  early  steps  we  are  already 
traveling  down  this  path.   Even  without  the  full 
compiler, the mapping heuristics will be useful when 
placing hand-crafted logic cores onto the FD fabric of 
the machine.  In addition, the evaluation of different 
topologies  and  router  architectures  will  allow  for 
greater  flexibility  and  performance  improvements, 
even in the general case.

8. References
[1] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. 
Lauwereins, “Interconnection networks enable fine-grain 
dynamic multi-tasking on fpgas,” in FPL '02: Proceedings 
of the Reconfigurable Computing is Going Mainstream, 12th 

International Conference on Field Programmable Logic and 
Applications. London, UK: Springer-Verlag, pp.795-805, 
2002.
[2] J. Hu and R. Marculescu, "Energy-aware mapping for 
tile-based NoC architectures under performance 
constraints,” in Proceedings of ASP-DAC, Jan. 2003.
[3] R. Cypher and L. Gravano, “Storage-efficient, deadlock-
free packet routing algorithms for torus netoworks,” IEEE 
Trans. Comput.., vol. 43, no. 12, pp. 1376-1385, 1994.
[4] B. Sethuraman, P. Bhattacharya, J. Kahn, and R. 
Vemuri, “Lipar: A light-eight parallel router for fpga-based 
networks-on-chip,” in GLSVSLI '05: Proceedings of the 15th 

ACM Great Lakes symposium on VLSI. New York, NY, 
USA: ACM Press, pp. 452-457, 2005.

[5] N. Kavaldjiev and G. J. M. Smit, “An energy-efficient 
network-on-chip for a heterogeneous tiled reconfigurable 
systems-on-chip,” in DSD '04: Proceedings of the Digital  
System Design, EUROMICRO Systems on (DSD '04). 
Washington, DC, USA: IEEE Computer Society, pp. 492-
498, 2004.
[6] N. Kavaldjiev and G. J. M. Smit, “A survey of efficient 
on -chip communications for SoC,” in PROGRESS 2003 
Embedded Systems Symposium, 2003.
[7] L. Schweibert and D. N. Jayasimha, “Optimal Fully 
Adaptive Wormhole Routing for Meshes,” In 
Supercomputing '93, pp. 782-791, 1993. 
[8] J. H. Anderson and F. N. Najm, “Power Estimation 
Techniques for FPGAs,” IEEE Trans. on VLSI Syst., vol. 12, 
no. 10, pp. 1015-1027, Oct. 2004.
[9]  R. P. Dick, D. L. Rhodes, and W. Wolf, "TGFF: task 
graphs for free," in Proc. Int. Workshop Hardware/Software 
Codesign, pp. 97-101, Mar. 1998.
[10] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. 
Huh, D. Burger, S. W. Keckler, and C. R. Moore, 
“Exploiting ILP, TLP and DLP with the Polymorphous 
TRIPS Architecture”. In Proceedings of the 30th Int. Symp. 
on Computer Architecture, pp. 422-433, Jun. 2003.
[11] W.J. Dally and C.L. Seitz, "The torus routing chip," in 
Journal of Dist. Computing, vol. 1, no. 3, pp. 187-196, Oct. 
1986. 
[12] H. Matsutani, M. Koibuchi, Y. Yamada, A. Jouraku, 
and H. Amano, “Non-Minimal Routing Strategy for 
Application-Specific Networks-on-Chips,” in Parallel  
Processing, 2005. ICPP 2005 Workshops, pp. 273-280, Jun. 
2005.
[13] G. M. Chiu, “The Odd-Even Turn Model for Adaptive 
Routing,” in IEEE Tran. Parallel Distrib. Syst.., vol. 11, no. 
7, pp. 729-73, 2000.
[14] B. W. Kernighan and S. Lin. “An efficient heuristic 
procedure for partitioning graphs,” The Bell System 
Technical Journal, 49(2):291--307, 1970. 
[15] http://www.xilinx.com/bvdocs/userguides/ug070.pdf  , 
Virtex 4 User Guide v1.4 (UG070), Xilinx Inc., Sept. 2005.
[16] http://direct.xilinx.com/bvdocs/userguides/ug012.pdf  , 
Virtex II Pro and Virtex II Pro X FPGA User Guide v4.0 
(UG012), Xilinx Inc., Mar. 2005.
[17] http://www.altera.com/literature/hb/sgx/sgx_handbook.  
pdf, Stratix GX Device Handbook sgx5v1-1.1, Altera Inc., 
2005.
[18] http://www.altera.com/literature/hb/stx2gx/stxiigx_han  
dbook.pdf, Stratix II GX Device Handbook Preliminary 
Information siigx5v1-1.1, Altera Inc., 2005.
[19] SRC C Programming Environment v2.1 Guide (SRC-
007-16), SRC Computers Inc., Aug. 2005.

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006


	1. Introduction
	2. Background
	3. Open Research Topics
	3.1. Processing Element Network
	3.2. FPGA Reconfiguration
	3.3. Algorithmic Partitioning

	4. Computing Architecture
	4.1. Definitions & Terminology 
	4.2. Processing Element Interface (PEI)

	5. Network Architecture
	5.1. Topology Selection
	5.2. Routing Policy Selection
	5.3. Semi-Deterministic Traffic

	6. Algorithmic Compilation and Mapping
	6.1. The Control and Mapping Description
	6.2. Relative Addressing Example
	6.3. PE Mapping

	7. Conclusions and Future Work
	8. References

