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Abstract: The occurrence of wildfires often results in significant fatalities. As wildfires are notorious
for their high speed of spread, the ability to identify wildfire at its early stage is essential in quickly
obtaining control of the fire and in reducing property loss and preventing loss of life. This work
presents a machine learning wildfire detecting data pipeline that can be deployed on embedded
systems in remote locations. The proposed data pipeline consists of three main steps: audio prepro-
cessing, feature engineering, and classification. Experiments show that the proposed data pipeline
is capable of detecting wildfire effectively with high precision and is capable of detecting wildfire
sound over the forest’s background soundscape. When being deployed on a Raspberry Pi 4, the
proposed data pipeline takes 66 milliseconds to process a 1 s sound clip. To the knowledge of the
author, this is the first edge-computing implementation of an audio-based wildfire detection system.

Keywords: wildfire detection; acoustic signal detection; embedded system

1. Introduction

The occurrence of wildfires often results in significant fatalities. In California, wildfires
killed more than 30 people, destroyed more than 8500 structures, and torched 4 million
acres of land in the period between January 2020 and mid-October 2020 [1]. The ability to
identify wildfires at their early stage is important as wildfires are notorious for their high
speed of spread [2]. However, the task of early detection of wildfires remains a challenging
research question [3].

Satellites and both occupied and unoccupied aerial vehicles equipped with infrared
sensors or high-resolution cameras have been used to identify wildfires. Previously,
Lin et al. [4] proposed a Kalman filter based model running on a system of UAVs to monitor
the heat generated by wildfire. Even though not explicitly stated, such a method would
require a temperature sensor to measure the heat generated by the wildfire. However,
infrared sensors and optical cameras are both susceptible to physical obstacles in the di-
rect line of sight. Wildfires can be classified into three types according to the combustion
materials: underground fire, surface fire, or crown fire [5]. Underground fire may not be
detectable by cameras at its early stage, whereas the initial surface fire might be obstructed
by the leaves and branches of trees. Attempts have been made to identify wildfire according
to its acoustic characteristics. An in-depth acoustic spectral analysis on different types of
fire has been conducted Zhang et al. [5].

Previously, Internet of Things (IoT) devices that transmit collected acoustic signals
with wireless sensor networks to a centralized data center for wildfire detection have been
proposed [5,6]. Specifically, Zhang et al. [5] proposed to use LoRa to transmit collected
acoustic signals. Such approaches rely on transmitting original acoustic signals efficiently
and correctly. However, LoRa’s transmission rate is bounded between 0.3 and 27 kbps
depending on the environment and the transmission protocol [7]. Such limitations could
be a significant drawback when transmitting acoustic signals from the forest to a remote
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computing center in a timely manner. Furthermore, continuously streaming data from the
forest to a remote server would result in continuous high power consumption, which is
undesirable in remote locations where access to electricity is limited.

In this paper, a machine learning data pipeline derived from the framework proposed
by Salamon and Bello [8] is implemented to distinguish wildfire sound from generic forest
sounds. In addition, an edge computing device (Raspberry Pi 4) is utilized to run the data
pipeline to demonstrate that the proposed data pipeline can be deployed on embedded
systems in remote locations. The main idea of the original framework is to perform
feature engineering with spherical k-means [9], followed by classifying feature vectors
with a classification algorithm. Different from the original framework, an additional
PCA decorrelation is added to prevent the downstream classifier from overfitting. In
this work, the support vector machine [10] is the chosen classification algorithm. Even
though deep neural networks are considered as general function approximators and have
been demonstrated to perform well on time-series classification tasks, their expensive
computational and memory requirements during inference make it difficult to fit on an
embedded system [11,12].

The main contributions of this work are twofold. First, this is the first edge-computing
implementation of an audio-based wildfire detection system to the knowledge of the
authors. Second, the added PCA decorrelation step is demonstrated to enhance the gen-
eralization capability of the trained data pipeline. Moreover, the proposed method could
be generalized to recognize underwater species, classify bird species, or detect unusual
activities in cities [8,13–15].

2. Preliminary

This work uses a self-compiled dataset that consists of 5880 labeled sounds from
two classes: fire and forest. The fire sounds are downloaded from the Forest Wild Fire
Sound Dataset [16], whereas the generic forest sounds are downloaded from the Internet.
The current dataset is a mix of forest ecosystems throughout the world. The development of
comprehensive datasets focusing on specific ecosystems (e.g., Sub-Saharan forests, tropical
forests) is left to future work as the focus of this paper is on the development of a data
pipeline that capable of being deployed to embedded systems. Previous research suggests
that humans can recognize everyday scenes from 4 s audio clips with an 82% accuracy on
average [17]. Therefore, all the audio in the dataset are chunked into 4 s duration audio files.
Segments shorter than 4 s are dropped and not used in the training procedure. In addition,
all the audio is re-sampled to 44.1 kHz; however, the selected sample rate was arbitrary.
Due to the small sample size, the dataset is pre-sorted into 10 folds and the performance is
reported with 10-fold cross validation. Moreover, an additional wildfire sound and another
generic forest sound that are not included in the training dataset are used as a test dataset.
The testing wildfire has a duration of 5 min and 25 s, while the testing forest sound has a
duration of 3 min and 28 s.

3. Methodology

The proposed sound classification pipeline is shown in Figure 1 and follows the frame-
work proposed by Salamon and Bello [8]. The main steps consist of audio preprocessing,
feature engineering, and classification. The audio preprocessing step converts the time-
domain sound wave into frequency-domain spectrograms. Next, the feature engineering
step is used to recognize commonly observed patterns in spectrograms within each inter-
ested category of sound. Compare to the framework proposed by Salamon and Bello [8],
an additional PCA decorrelation is added after applying pooling functions to decorrelate
similar cluster centroids and prevent downstream classifiers from overfitting. Lastly, the
classification step classifies the input sound based on recognized spectrogram features.
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Figure 1. Flowchart of the proposed data pipeline showing how collected audio is classified positively
or negatively as wildfire.

3.1. Preprocessing
3.1.1. Mel Spectrogram

Sound waves are unsuitable choice of input for classification algorithms due to the
curse of dimensionality [14]. Therefore, sound waves are transformed into Mel spectro-
grams that resemble human hearing perceptions for further processing. Compared with
short-time Fourier Transform (STFT) spectrograms, Mel spectrograms have lower dimen-
sionality, which is beneficial to tackle the curse of dimensionality issue in machine learning.
Note that a Mel spectrogram is a matrix in R f×t space, where f is the number of frequency
bins in the spectrogram and t is the number of time frames.

3.1.2. Shingled Vector

Feature engineering is applied to groups of consecutive frames in spectrograms. In
other words, a spectrogram is sliced temporally into multiple spectrograms with shorter
duration for further processing. The action of grouping s consecutive frames is termed
shingle with shingle size s. The grouped frames are flattened into column vectors in
Rs· f space and are termed shingled vectors. Shingling enables the temporal dynamics
to be captured by the machine learning system and therefore increases the stability and
performance of the system [8]. The total number of shingled vectors n for a spectrogram is
determined by the stride size r and the number of time frames in the spectrogram.

3.2. Feature Engineering
3.2.1. Projection Vector with Spherical k-Means

It is recognized that sounds within the same category have similar spectral charac-
teristics. As shingled vectors are slices from spectrograms, shingled vectors within the
same class will also share similar identifiable characteristics. Therefore, class-conditioned
spherical k-means [9] was proposed by Salamon and Bello [8] to capture such structure,
i.e., a system of c categories of sound will have c spherical k-means instances. Each spher-
ical k-means instance will have k cluster centroids, where each cluster centroid entails a
“meta-spectrogram” that is commonly observed in the training data. Salamon and Bello [8]
previously demonstrated that the classification performance using the class-conditioned
approach has slightly better performance compared to that of using a single gigantic
k-means instance.

In the spherical k-means algorithm, a PCA instance is used to reduce the dimension-
ality of the input vectors prior to either fitting or projecting onto cluster centroids. The
explanatory power of the PCA instance is determined by a hyperparameter termed ex-
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plained variance. The explained variance controls the resolution of the “meta-spectrograms”
entailed by the identified cluster centroids. During inference time, each shingled vector
of a spectrogram is projected onto cluster centroids, and the cosine similarities between
shingled vectors and cluster centroids are measured. Therefore, a spectrogram of n shingled
vectors would have n vectors of cosine similarities. The vectors of cosine similarities is
termed as the projection vectors and are vectors in Rk, where k = ∑c

i=1 ki is the total number
of cluster centroids across all class-conditioned spherical k-means.

3.2.2. Pooled Vectors

Summarizing the projection vectors over the time axis is necessary as an audio recording
has multiple projection vectors. It was previously demonstrated by Salamon and Bello [8]
that the usage of mean and standard deviation as the pooling function has the best clas-
sification performance. Therefore, the same combination of pooling functions is adopted.
The pooled vectors are the resulting vectors after the pooling functions are applied to the
projection vectors. The pooling size p is the number of projection vectors to be evaluated by
the pooling function and is a hyperparameter in this paper. The number of pooled vectors is
o = b n

p c and the leftover projection vectors are dropped. Note that full pooling was used by
Salamon and Bello [8], which means the pooling size is set to the total number of projection
vectors of a spectrogram. Such an approach assumes the input signal was truncated to
contain nothing except the sound of interest. However, when the system is being deployed
to classify wildfire sounds in real time, sound waves are streamed from the microphone
and the knowledge of when the event of interest begins is generally unavailable. Thus,
truncating the sound to include only the events of interest are impossible.

3.2.3. Vector Decorrelation with PCA

Upon visual inspection, it is realized that some cluster centroids are highly correlated,
i.e., certain subsets of cluster centroids are extremely similar and cause certain dimensions
in the projection and the pooled vector space to be activated at the same time. Such
phenomena could cause the downstream classifier to overfit the training dataset. Even
though removing highly correlated features from learned spherical k-means is possible,
such an approach is neither scalable, nor time efficient. Therefore, a PCA decorrelation is
applied on pooled vectors in the hope of eliminating highly correlated dimensions. The term
decorrelated vectors is used to describe the pooled vectors after the PCA transformation.

3.3. Classification

The classification algorithm takes a decorrelated vector as input and returns a class
label or a vector of class probabilities as output. Since full pooling is not utilized, an input
sound containing o pooled vectors would have o class predictions. Therefore, the voting
scheme is used to determine whether a given input sound belongs to a particular category.
In this work, the support vector machine [10] is the selected classification algorithm. Even
though deep neural networks are considered as general function approximators and have
been demonstrated to perform well on time series classification tasks, their expensive
computational and memory requirements during inference make it difficult to fit on the
target embedded system [11,12].

4. Experimental Setup

Sound waves are transformed into log-scaled Mel spectrograms with 40 components
covering the audible frequency range (0–22,050 Hz) with window size and hop size of
5.8 ms (256 samples at 44.1 kHz). The shingle size is set to 16 frames. The explained
variance associated with spherical k-means is set to 85%. The optimal number of clusters ki
is first roughly estimated with knee point algorithm [18] with respect to distortion score
with ki’s in the range of [5, 1000] and step size of 5. (Intuitively, the distortion score is
the mean sum of squared distances between each shingled vector and its assigned cluster
centroid. However, the PCA instance in spherical k-means transforms the shingled vectors
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into a latent space in which are found the cluster centroids. Therefore, the distortion score
is technically the mean sum of squared distance between each “latent” shingled vector
and its assigned cluster centroid.) The actual ki’s are then selected manually around the
estimated ki’s based on the trained pipeline’s performance. For simplicity, the selected
ki’s are subject to the constraint of ki = k j, ∀i 6= j. The explained variance of the PCA
between pooled vectors and classification is set to 99%. In this work, the support vector
machine implemented in Scikit-learn [19] is the chosen classification algorithm. For RBF
kernel, the parameter gamma is set to "scale", which is the default of Scikit-learn at the
time of the work. (From Scikit-learn documentation, the value of gamma is calculated from
the formula 1/(n_features*X.var()).) In this case, n_features is the dimensionality of
the decorrelated vectors and X is a matrix of all the decorrelated vectors in the training
dataset [19]. The trained models are serialized into the Open Neural Network Exchange
(ONNX) format [20] and are deployed on Raspberry Pi 4 Model B 2GB with Ubuntu
Mate 20.04.

As suggested by Zhu et al. [21], a smaller latent mixture model trained with a “clean”
training dataset could outperform a bigger model trained with a noisy training dataset. In
this work, the spherical k-means instance in the data pipeline serves as the latent mixture
model and is trained on sound waves in the dataset without data augmentation. However,
it is realized that sound waves streamed from the forest might contain different levels
of noise. However, small datasets, such as the one used in this work, are notorious for
their poor generalization capability. Hence, for each sound wave in the training dataset,
the probability of the sound wave being augmented with white noise is set to 0.5. If the
audio is selected for augmentation, the amount of noise to be injected is measured by the
signal-to-noise ratio (SNRdB) and is determined by a sample from a uniform distribution
within a prespecified range (0, 4.77). The SNRdB formulation adopted in this work is:

SNRdB = 10 log10

RMS2
signal

RMS2
noise

(1)

When being deployed in real time at remote locations, it is realized that the collected
sound wave would be the combination of both wildfire and forest sounds. Therefore, the
testing wildfire sound is played back with different levels of forest sound in the background
to test the pipeline’s ability to identify wildfire in the stated scenario. The loudness of the
background forest fire is determined by the mixing factor α ∈ R. Since the testing wildfire
sound is longer than the testing forest sound, the testing wildfire sound is truncated to
have the same duration. Let Awildfire,t denote the amplitude of wildfire at time step t and
Aforest,t denote the amplitude of forest at time step t, the amplitude of mixed sound wave
at time step t is denoted as Amixed,t and is calculated as follows:

Amixed,t = Awildfire,t + αAforest,t (2)

5. Result

The average estimated optimal k identified by knee point algorithm across all
10 validation folds is kfire = 142 with sample standard deviation of 19.178 and kforest = 164
with sample standard deviation of 29.957. The elbow plots for cross-validation set 1 is
presented in Figure 2. Selected spectrogram features learned by spherical k-means are
presented in Figure 3. Note that the estimated optimal k for cross-validation set 1 is outside
one sample standard deviation.

Based on the average estimated optimal k, the proposed data pipeline is trained with
4 different fixed ks in the range of [50, 200] with a step size of 50. The large range is selected
due to the high standard deviation observed above. All the experimented classifiers reached
99% training and validation accuracy. However, the best-performing data pipeline can
only reach 90% accuracy on the test dataset. The complete classification performance on
the test dataset is presented in Table 1. It is observed that a data pipeline with a spherical
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k-means of k = 100, SVM with C = 0.1, and RBF kernel has the best performance among
the 16 experiments executed. The confusion matrix of the best-performing data pipeline
classifying the test dataset is presented in Figure 4. The proportion of time the pipeline
identifies wildfire occurs vs. the mixing factor α is presented in Figure 5.
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Figure 2. The elbow plots for cross-validation set showing: (a) the elbow plot for fire and (b) the
elbow plot for forest.

(a) (b)

Figure 3. Selected centroid plots identified by spherical k-means showing (a) the selected fire centroid
plots and (b) the selected forest centroid plots.
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Figure 4. The confusion matrix of the data pipeline trained at k = 100 with SVM using RBF kernel
and data augmentation. Note that the presented confusion matrix is the average of the confusion
matrix across all 10-validation fold rounded to the nearest integer.
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Figure 5. The proportion of instances the data pipeline correctly recognizes as wildfire versus the
mixing factor α, the amount of forest sound being mixed in to the wildfire sound.

Table 1. Model Performance on Test Dataset with Data Augmentation.

Kernel RBF Linear

C 0.1 0.3

k 50 100 150 200 50 100 150 200

Accuracy Mean 0.886 0.909 0.904 0.907 0.773 0.812 0.803 0.831
Accuracy SD 0.012 0.006 0.006 0.006 0.028 0.026 0.032 0.023

Precision Mean 0.999 0.995 0.995 0.995 0.999 0.998 0.997 0.997
Precision SD 0.002 0.001 0.0 0.0 0.001 0.001 0.001 0.001
Recall Mean 0.811 0.852 0.844 0.848 0.622 0.687 0.672 0.719

Recall SD 0.019 0.011 0.009 0.010 0.047 0.044 0.053 0.039

The trained data pipeline is deployed to a Raspberry Pi 4 with 2 GB of RAM running
Ubuntu Mate 20.04 with graphical user interface (GUI). A monitor and a keyboard are
connected. Both Wi-Fi and Bluetooth are disabled. The memory profiler reported that the
proposed data pipeline steadily consumes 275 MB when being used to stream and classify
an input sound wave. Out of 326 experiments, processing one-second-long input audio
takes 66 milliseconds on average, with sample standard deviation of 24 milliseconds and a
maximum of 169 milliseconds. When the program is not being executed, the Raspberry Pi
consumes 2.107 Watts on average. While the program is running, the power consumption
of the Raspberry Pi is bounded between 2.91 and 3.59 Watts.

6. Discussion

From the elbow plot shown in Figure 2, it can be observed that the distortion score
decays exponentially with respect to the number of clusters k when k is less than the
estimated optimal k, and linear decay is observed when k is larger than the estimated
optimal k. Based on the observation, it is believed that the range of k values used to run the
knee point algorithm is sufficient. If the range of k values is too small, the experiment may
return an elbow plot that does not have such a distinctive pattern or even fail to converge.
There is no practical benefits except increased experiment time if a larger range of k values
is used.

The learned spectrogram features shown in Figure 3 could correspond to a human’s
experience. In Figure 3a, the vertical stripes might correspond to the sound of branches
snapping while being torched by wildfire, whereas the bright horizontal bright peak at
low frequency in Figure 3b might correspond to birds singing in the forest. It is worth
noting that patterns such as vertical stripes become less obvious as the explained variance
associated with spherical k-means decreases down to 80%.

Comparing test performance shown in Tables 1 and 2, it can be observed that data
augmentation makes a significant contribution to the generalization capability of the trained
data pipeline. It is observed that a SVM with a RBF kernel outperforms a SVM with a linear
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kernel. In particular, the best-performing data pipeline (k = 100, SVM with C = 0.1, and
RBF kernel) demonstrated 99% precision and 85% recall. These metrics have two meanings.
First, whenever the data pipeline reports wildfire occurs, the fire agency could believe
there really is a fire with 99% certainty. In other words, the best performing data pipeline is
unlikely to trigger a false alarm. Second, when we know there is a wildfire happening and
the data pipeline is deployed, it is expected that the data pipeline would recognize there is
a wildfire 85% of the time, which means the best-performing data pipeline is very effective
at detecting wildfire.

Table 2. Model Performance on Test Dataset without Data Augmentation.

Kernel RBF Linear

C 0.1 0.3

k 50 100 150 200 50 100 150 200

Accuracy Mean 0.777 0.869 0.876 0.876 0.672 0.715 0.711 0.701
Accuracy SD 0.009 0.005 0.003 0.005 0.024 0.033 0.024 0.024

Precision Mean 0.998 0.995 0.995 0.995 0.998 0.997 0.996 0.997
Precision SD 0.001 0.0 0.0 0.0 0.002 0.001 0.001 0.001
Recall Mean 0.629 0.786 0.797 0.797 0.453 0.525 0.518 0.502

Recall SD 0.014 0.008 0.006 0.008 0.039 0.056 0.041 0.040

From the result shown in Figure 5, it is observed that the data pipeline’s ability to
identify wildfire reduces exponentially as louder background forest sound is injected. The
observation is as expected, since the sound of wildfire with forest sound playing in the
background is not included in the training dataset. Future research is needed to address
the issue of low-volume wildfire sounds.

The 10% difference between train and validation accuracy and test accuracy suggests
that the dataset currently used might not be a comprehensive representation of real-world
wildfire sounds. In addition, the assumption for the current dataset is that the trained data
pipeline has to be deployed in a remote area where the input is only limited to either wildfire
or natural forest sound. The behavior of the proposed data pipeline taking rock music as
input is undetermined, not investigated, and beyond the scope of this investigation.

Raspberry Pi 4 was selected since it was convenient for our preliminary experiment.
The theoretical lifespan of the system running on a three-cell, 11.1 Volts, 5000 mAh Li-Po
battery can be calculated from the measured power consumption. It was assumed that the
microphone consumes no energy and power losses to heat due to voltage conversion are
negligible. It is estimated that the lifespan of the system is between 15 h 28 min and 19 h
5 min. To enable prolonged deployment, a solar-based battery-recharging system would
need to be developed. Assuming 12 h of sun light and no more than 50% radiation loss due
to foliage or atmospheric ash, a 10 Watt solar panel would be needed.

Even under optimistic assumptions, it is admitted that the energy requirements for the
system might be too strenuous to be deployed in forests with dense foliage or continuous
ash cover. However, based on the profiled memory consumption, the authors believe the
short battery lifespan can be improved by deploying the pipeline on a more compact edge
computing device such as the Raspberry Pi Zero 2 W with consumes less power. In this
way, the size of the solar panel required for sustained operations could be reduced.

7. Conclusions

In this paper, an audio-based machine learning system used to detect wildfire in
forests is proposed. The proposed method is derived from the framework first introduced
by Salamon and Bello [8]. The essential idea is to first build commonly seen patterns within
the spectrograms of interested sounds; the similarity between the current input audio and
all the learned patterns is then measured; the downstream classifier reports the category
label based on the similarity measures. It is also demonstrated that the proposed data
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pipeline has the potential to identify wildfire with precision up to 99% accuracy and could
identify wildfire up to 85% of the time. More importantly, the proposed data pipeline
could be deployed onto an embedded system such as the Raspberry Pi 4 with 2GB of
RAM, which allows the system to be squeezed into a sensor package and be deployed in
remote locations.
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