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Abstract—Deterministic and Non-deterministic Finite Automata (DFA
and NFA) comprise the fundamental unit of work for many emerging big-
data applications, motivating recent efforts to develop Domain-Specific
architectures (DSAs) to exploit fine-grain parallelism available in au-
tomata workloads. In this paper we present NAPOLY (Non-Deterministic
Automata Processor OverLaY), an overlay architecture and associated
software that attempts to maximally exploit on-chip memory parallelism
for NFA evaluation. In order to avoid an upper bound on NFA size
that commonly affects prior efforts, NAPOLY is optimized for runtime
reconfiguration, allowing for full reconfiguration in 10s of microseconds.
NAPOLY is also parameterizable, allowing for offline generation of a
repertoire of overlay configurations with various trade-offs between state
capacity and transition capacity. In this paper we evaluate NAPOLY using
our proposed state mapping heuristic and the ANMLZoo benchmark
suite, and we compare NAPOLY’s performance against existing CPU
and GPU implementations. To the best of the authors’ knowledge this is
the first example of a runtime-reprogrammable FPGA-based automata
processor overlay.

Index Terms—overlay, automata processor, NFA, DFA, processor-in-
memory, reconfigurable computing, pattern matching, heterogeneous
computing, domain-specific processor, DSL, DSA, big data, data analytics,
data processing, text processing, deep-packet inspection, state machine

I. INTRODUCTION

Datasets comprised of symbolic data, such as genomic sequences,

item sets, graph edges, web data, biological data, and network traces

are growing rapidly in both size and practical utility. Applications

that involve such data include motif discovery [1], approximate

string matching [2], signature-based threat detection [3], association

rule mining [4], and deep packet inspection [3]. Each of these is

algorithmically reducible to the evaluation of a finite automata. On

general-purpose architectures, throughput of automata are generally

limited by cache performance, especially for datasets having a high

rate of complete pattern matches (“reporting rate”) or partial matches

(“active set”).

Evaluating automata on a domain-specific architecture typically

comprises an NFA compilation step, reconfiguration step, and pattern

matching step. Approaches that synthesize automata directly to an

FPGA fabric have extremely long compilation times (hours) and long

reconfiguration time (10s of seconds) [5] [6] [7] [8], but achieve very

high pattern matching throughput (100s of MB/s or low GB/s).

GPU- and CPU-based approaches have fast compile time and

trivial reconfiguration time but low pattern-matching throughput due

to limitations in on-chip memory bandwidth and cache performance.

These limitations especially affect large automata having a high rate

of pattern match activity at runtime. Using specialized memories to

avoid these bottlenecks can suffer from long reconfiguration times

[9] [10] [11].

Multiple-Instruction Single-Data (MISD) architectures–where the

data to be searched is streamed into multiple functional units, where

each functional unit tracks partial pattern matches–have a faster

reconfiguration time than FPGA-based approaches but lack the ability

to make tradeoffs been state density and transition density [12] [8].
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Fig. 1. DFA for regular expression pattern “ababc”.

NAPOLY achieves a compromise between purely FPGA- and

MISD-based approaches, allowing for rapid runtime reconfiguration

while still having architectural customization. NAPOLY exploits as

much on-chip memory bandwidth as allowed by the target automata

while supporting arbitrarily-large automata workloads.

This paper describes three contributions: (1) an overlay comprised

of an array of hardware modules called state elements (SEs), each

sensitive to a specific pattern and reconfigured at runtime in 21 to 74

μs depending on the overlay size selected, (2) an allocation heuristic

for mapping logical pattern states to SEs, and (3) an analysis of the

tradeoffs between state capacity, interconnect density, output buffer

size, and reconfiguration time, as well as a performance comparison

to multithreaded Intel’s CPU-based NFA software (Hyperscan) and a

well-known GPU-based implementation (iNFAnt).

II. BACKGROUND

Deterministic Finite Automata (DFA) are commonly used to im-

plement regular languages and describe sequential logic. If the states

are limited to a single true or false output, a DFA becomes a method

to search for a set of patterns in a data stream. DFA are designed as

a directed graph comprised of a set of states connected by labeled

edges. During operation, a DFA can have only one active state and

therefore must contain an instanced state for every possible partial

match of every pattern, potentially leading to explosive state growth.
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Fig. 2. Alternative form of NFA with symbols associated with states, for
regular expression pattern “ababc”

Fig. 1 shows an example DFA that recognizes a simple regular ex-

pression pattern “ababc” along with its corresponding state transition

table.

Non-deterministic Finite Automata (NFA) are also described by a

set of states connected by labeled edges, but unlike a DFA any subset

of states may be active at any time. This way, each state needs track

only the progress toward accepting one pattern instead of all possible

patterns, reducing the number of states as compared to that of an

equivalent DFA.

As shown in Fig. 2, an alternative form of the NFA description is

to associate the transition labels with the states instead of the edges,

which requires that all incoming transitions of each state have the

same symbol set. This offers the advantage of requiring only one

symbol set per state, as opposed to one symbol set per transition.

III. NAPOLY STATE ELEMENT AND PROGRAMMABLE

INTERCONNECT

The NAPOLY design is comprised of an array of state elements

(SEs), the design is which is shown in Fig. 3. Each state in the NFA

is allocated to one SE. Each potential outgoing transition from each

SE is encoded using a single bit in an adjacency vector, such that

each slot in the vector corresponds to either a transition or lack of

transition to exactly one other SE. Activation passing is handled by

AND-ing the active state of the current SE with each “slot” in the

interconnect configuration vector to determine if the activation will

be passed to the corresponding successor SE.

If the SE is active on a given cycle, it transmits its active state to

all its adjacent connected successor SEs, which will become active

on the next cycle if their input symbol matches one of the symbols

the SE is configured to match, which are stored in a 256 x 1 RAM

(implemented as an MLAB). Stated another way, an SE will activate

if any of its predecessors pass it an activation (accomplished by OR-

ing all incoming activation signals) AND the SE is configured to

match the incoming symbol.

Because of this design, each SE can potentially be connected

only to a fixed set of potential successor SEs, the number of which

determines the size of the activation vector. The maximum number of

successors (and predecessors) is limited by the overlay’s “hardware

fan-out”. The hardware fan-out also determines the maximum physi-

cal distance between the SEs mapped to a predecessor-successor pair.

Thus, each SE sends an output signal to itself and up to f − 1 of its

neighbors, where f = the hardware fan-out. The SEs adopt a one-

dimensional addressing scheme, where each SE has an ID number

n assigned contiguously across every SE in the overlay and sends

output signals to SEs n− � (f−1)
2
� to n+ � f

2
�.

From this description we can derive the amount of on-chip memory

bandwidth utilized during operation (as opposed to reconfiguration).

Assume freq = the overlay clock frequency, NSEs = the number of

SEs, Nactive = the average number of active SEs, f = the number

of possible outgoing connections from each SE (active or not), and

density = the average population count of all adjacency vectors as

a percentage of f . The on-chip memory bandwidth during operation,

as opposed to reconfiguration, can therefore be approximated as

Equation 1. Note that this approximation does not include bandwidth

used to report accepting state activation, nor does it consider the

overlay’s “down time” during reconfiguration.

bandwidth

(
bits

second

)
= freq ×NSEs ×N%active × f × density

(1)

In short, NAPOLY’s interconnect is based on a fixed set of gateable

point-to-point connections between neighboring SEs. The intercon-

nect configuration vector of each SE, as well as a “start state” flag

and a “reporting” flag, are stored in a set of flip-flops connected in a

global shift register. As each potential connection is pre-allocated, no

special routing need be performed, only “placement” (mapping nodes

and transitions in an automata to SEs and interconnect configuration

vectors) which is discussed in detail in section IV.

A. Resource Constraints

SE capacity is limited by RAM capacity, while fan-out is limited

by both register capacity and logic needed for OR-gate for each SE’s

predecessors. Our evaluation FPGA is an Intel Stratix 5 GX A7,

which contains RAM in the form of M20K embedded RAMs as well

as MLABs (LUT-based memory). Although the S5GXA7 has 7X as

much memory available via M20Ks as via MLABs, there are several

caveats to using M20K resources to store next-state tables.

The M20K blocks are available in only 20 out of the 209

columns on the FPGA, while the MLAB blocks are more uniformly

distributed. Using MLABs avoids congestion around the M20K

columns. Further, the tables must have a depth of 256 to accommo-

date a one-byte symbol alphabet, while the minimum depth required

to fully utilize M20K resources is 512, meaning that only 50% of

the M20K capacity is available for depth-256 tables. Additionally, the

M20Ks have synchronous reads, which if used for the next state table

would reduce throughput by 1/2, as each input symbol would require

one cycle to access the next state table and another for updating

the state flip-flop. Finally, the M20K blocks are needed for other

purposes, specifically for the input and output buffers.

The Stratix 5 GX 7A contains 7.16 Mb of MLAB memory, giving

a theoretical upper bound of 29K SEs, although since the MLAB

RAM is shared with the resources used for the OR-gates there is a

tradeoff between SE capacity and hardware fan-out. In this paper, we

demonstrate experimental results for deployed designs of up to 24K

SEs.

B. Reporting and Output Encoders

Any SE may be mapped to an accepting state, which causes it to

generate a global output signal or “report” in all cycles in which it is

active. Ideally the output buffer would accommodate a scenario where

all states are configured as accepting states and all states are active in

every cycle (easily achievable by setting the “start” and “reporting”

flag on all SEs). However, this is not practical due to the bandwidth

requirements needed (freq×NSEsbits/sec using the variables from

equation 1) (and this estimate doesn’t include the additional volume

of data needed to convey the encoded values of the accepting SE

IDs, as described below).

NAPOLY must store the ID of any reporting SE, requiring an

encoder for each potential report in a single cycle. We instance four

1024-to-10 reporting encoders per group of 1024 consecutive SEs,
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Fig. 3. SE Design.

Fig. 4. Encoder Design.

limiting the number of simultaneous reports to N
1024

× 4 where N is

the number of SEs.

As shown in Fig. 4. The encoders are priority encoders, which take

the reporting bits from a group of 1024 SEs, encodes the right-most

one-bit, zeros the bit, and then passes the remaining bits to the next

encoder. Also, each array’s output buffer has enough entries to store

reports in 4×1024
N

% of cycles where N = the number of SEs.

C. Input Buffer

A 64K x 8-bit M20K-based RAM serves as the input buffer. Once

filled, it streams input data into the SE array at one symbol per cycle

(152 MB/s for the 4K-SE overlay). Filling the input buffer from

DRAM requires 8.6μs ( 7.1 GB/s), performed S/64K times, where

S is the total number of input characters.

D. Overlay Configurations

Table I shows the Pareto optimal set of synthesized and placed-

and-routed overlay configurations with respect to SE capacity and

hardware fan-out. Hardware Fan-out (f ) and Fmax scale inversely

with capacity. The column labeled Max BW for N%active =
0.25(GB/s) gives the upper bound for on-chip memory bandwidth

needed for 25% active states (assuming fully-populated adjacency

vectors). Exploitation of on-chip memory bandwidth is the principle

performance advantage of NAPOLY over CPU- and GPU-based

approaches. The column labeled Output Encoders gives the number

of output encoders, which determines the maximum number of

“reports”, or accepting state activations, allowed per clock cycle.

Likewise, the column labeled Max Reporting Cycles gives the depth

of the output buffer relative to the depth of the input buffer (64K).

Together, these values and Fmax determine the maximum reporting

rate of the overlay configuration, listed in the column labeled Max

Report Rate (GHz). The column labeled Reconfig time (T) lists the

time needed to reconfigure a new NFA onto the overlay. Thus the

execution time scales with R×T × IS
64K

, where 64 KB = the size of

the input buffer and IS is the size of the input data to be searched

for patterns (note that this approximation of execution time does not

include the time needed to flush the input or output buffer, which we

incorporate into our thorughput Equation in Section III.E).

The columns labeled Throughput for 24K states and Throughput

for 128K states lists the effective throughput for the benchmark,

which includes the effect of the target overlays clock speed and

reconfiguration time.

E. NAPOLY Runtime Behavior

NAPOLY follows the timing diagram shown in Fig. 5. For each

block of input characters the array must fill the input buffer from

DRAM (
sizeinput buffer

bwDRAM
), and for each batch of SEs it must recon-

figure its array (timereconfig), flush the input buffer through the

array (timeIBF ), and flush the output to DRAM (timeOBF ).

For a given NFA and input, the effective throughput is calculated

according to Equation 2.

Throughput =
sizeinput buffer

sizeinput buffer
bwDRAM

+R×(timereconfig+timeOBF+timeIBF ) (2)

Fig.6 shows NAPOLY execution time is dominated by the time to

flush input buffer and the time to flush the output buffer. In a future

design we will use a double output buffer to overlap these times.

Fig. 7 plots the throughput of all NAPOLY overlays for 1 million

input characters and for a total NFA workload from 4K to 128K

states. Overlays with higher SE capacity perform better for larger

NFAs, but for greater than 100,000 states the performance differential

is only 10%, indicating that the choice of overlay configuration has

an increasingly small impact for increasingly larger NFAs.

IV. SE ALLOCATION PROBLEM

Definition 1: For a given NFA {V,E}, where V is the set of states

and E the set of edges (transitions), a map is an association between

each of the NFA states of an NFA graph and a corresponding SE

index in the range of [0, N − 1], where N = number of SEs. There

are thus |V |! unique maps for a given NFA assuming |V | = N .

The hardware fan-out determines the number of wire tracks to and

from each SE, as well as the maximum “reach” of each SE in terms

to maximum distance over which a connection can be made between

two SEs: i − j ≤ � f−1
2
� and j − i ≤ � f

2
� for hardware fan-out f ,

for any edge in the NFA description s→ d where state s is mapped

to SE i and state d is mapped to SE j.

The hardware fan-out parameter is a constraint that defines which

subset of maps are valid for a given NFA. In order to find a valid

map, a mapping algorithm must solve the following problem.

Given a set of NFA edges {e : ∀(p, s) ∈ E} , find:

⎧⎪⎪⎨
⎪⎪⎩

map(p),map(s) :
(map(p),map(s) are unique) and

(map(p)−map(s) ≤ �(f − 1)/2�) and

(map(s)−map(p) ≤ �f/2�)

⎫⎪⎪⎬
⎪⎪⎭
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TABLE I
REPERTOIRE OF ACHIEVED NAPOLY CONFIGURATIONS AND RESOURCE COST ON STRATIX 5 GX A7

# SEs Hardware
Fan-out
(f )

Fmax
(MHz)

Max
BW for
N%active =
0.25(GB/s)

Output
Encoders

Max
Reporting
Cycles

Max
Report
Rate
(GHz)

Reconfig
time (T )
(μs)

Throughput
for 24K
states
(MB/s)

Throughput
for 128K
states
(MB/s)

4K 103 152 1866 16 100% 2.4 21 14 3
8K 44 136 1427 32 50% 2.2 31 27 5
12K 25 122 1091 48 33% 2.0 43 32 6
16K 12 121 692 64 25% 1.9 53 36 9
20K 6 119 426 80 20% 1.9 67 31 9
24K 3 112 240 96 17% 1.8 74 67 11

Fig. 5. NAPOLY Timing Diagram
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Fig. 6. Execution time makeup of NAPOLY.

Fig. 7. NAPOLY Performance vs. NFA size.

Definition 2: For a given NFA graph {V,E} and a given map,

a mapping violation is any edge (p, s) ∈ E where (map(p) −
map(s) > �(f − 1)/2�) or (map(s) − map(p) > �f/2�). In

other words, a mapping violation occurs for each NFA edge whose

predecessor and successor states are mapped to SEs whose indices

are too far apart given the hardware fan-out of the target NAPOLY

interconnect.

For a given map, our heuristic greedily finds and resolves each

mapping violation. Our heuristic resolves each violation in order of

ascending predecessor SE index by remapping either the predecessor

or successor state in a way that minimizes the resulting mapping

score.

The score function is computed as shown in Equation 3.

∑
(p,s)∈E

|map(p)−map(s)| (3)

The score function is the accumulated mapped distance of the

mappings of each predecessor-successor pair, where the distance

is defined as the difference in SE index. The score is not directly

affected by mapping violations, meaning that mapping A could have

a lower score than mapping B when mapping A has more violations

than mapping B.

We found that this approach gives the mapper flexibility to make

decisions that potentially increase the number of mapping violations

in order to achieve longer-term optimization. A consequence is that

violations are likely to still exist after each pass through the SEs,

in which case the heuristic will make additional passes as needed to

resolve all violations.

The mapping heuristic is comprised of four subroutines: val-

idate edges, which returns the number of violations in a given

mapping, check move, which evaluates the mapping score difference

of a proposed resolution, move state, which modifies the placement

of state, and calculate score, which evaluates the mapping score over

the set of a set of edges affected by proposed SE remapping.

validate edges contains the top-level do-while loop, which iterates

until there are no mapping violations. On each iteration, it validates

the placement of each pair of states associated with each NFA edge.

For every mapping violation, validate edges will evaluate the

difference in score given by each of the 2 × (f − 1) potential

resolutions, where f is the hardware fan-out. In other words, for

every edge comprised of predecessor state p and successor state s, the
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routine can fix the violation by either remapping s within the range of

reachable SEs to p or remapping p within range of reachable SEs to

s, where “within range” refers to any SE in the f − 1 positions from

� f−1
2
� locations less and � f

2
� greater than the target SE location.

validate edges eventually chooses one move that results in most

positive or least negative impact on the score.

1 Function validate_edges():
Input: NFA edges

Output: NFA edges

2 do

3 for edge p→ s in current SE assignment do

4 // check for a mapping violation

5 if
(
(p− s) < −f−1

2

)
||
(
(s− p) > f

2

)
then

6 max differential score = - INT MAX

7 // evaluate each potential

solution to the violation...

8 for k = −� f−1
2
� . . . � f

2
� do

9 from = p

10 to = s+ k
11 // ... by moving the

predecessor closer to the

successor

12 max differential score =

check_move(from, to,

max differential score, best from,

best to)
13 end

14 for k = −� f−1
2
� . . . � f

2
� do

15 from = s

16 to = p+ k
17 // ... by moving the

successor closer to the

predecessor

18 max differential score =

check_move(from, to,

max differential score, best from,

best to)
19 end

20 move_se(best from,best to)

21 end

22 end

23 // avoid getting suck in a local

minema

24 if # of violations unchanged for 10 iterations then

25 make 10000 random moves

26 end

27 while fan-out constraint violations exist;

The check move routine evaluates the effect of re-mapping a state

in terms of its impact on the mapping score. Re-mapping a state from

its original location in SE n to new location in SE m where n < m
(i.e. moving a state to a larger SE index) will affect any edge whose

predecessor or successor state is mapped to SE l : n ≤ l ≤ m, or

where m < n (i.e. moving a state to a lower SE index) will affect any

edge whose predecessor or successor is mapped to SE l : m ≤ l ≤ n.

move SE performs a remapping operation on the graph by reas-

signing the state in SE index from to SE index to. Moving a state

in this way causes the states mapped in the range of SEs between

from and to to be shifted by one in order to fill the gap left by the

state being moved.

1 Function check_move():
Input: from, to

Output: max differential score, best to, best from

2 // score for edges affected by the

remapping

3 score = calculate_score(from, to);

4 // perform the remapping

5 move_SE(from, to)

6 // re-calculate score

7 differential score = score - calculate_score(from,

to)

8 // revert mapping to previous state

9 move_SE(from, to); // undo move

10 // check if the new score is better

than the best found so far

11 if differential score > max differential score then

12 max differential score = differential score

13 best to = to

14 best from = from

15 end

This operation is depicted in Fig. 8. In this example, there is an

edge connecting states “fifth” and “second” that are mapped to SEs

n and m, respectively. Since n > m, the edge is oriented in the

upward direction in the figure, in which higher-numbered SEs are

lower as compared to lower-numbered SEs. The left side shows the

original mapping state. Moving the state “fifth” from SE n to SE m
causes all the states between them to shift down, as shown on the

right side. This affects the mapping score contribution of any edges

having successors or predecessors in the range of n to m.

1 Function move_SE():
Input: from, to

Output: NFA edges

2 if from < to then

3 for edge i→ j do

4 if j == from then

5 replace i→ j with i→ to

6 else if j > from && j ≤ to then

7 replace i→ j with i→ j − 1
8 end

9 end

10 else

11 for edge i→ j do

12 if j == from then

13 replace i→ j with i→ to

14 else if j > to && j < from then

15 replace i→ j with i→ j + 1
16 end

17 end

18 end

calculate score accumulates the “distance” of all edges having

successors or predecessors mapped to any of the SEs in a given SE

range, where the distance is defined as the absolute difference in

SE numbers corresponding to the states that comprise the edge. The

mapping heuristic’s objective is to minimize this score by mapping

connected SEs into localized regions in the SE array.

A. Results

To evaluate the suitability of the mapping heuristic for realistic

workloads, we mapped each of the NFA benchmarks in the ANM-
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Fig. 8. Remapping SEs. Edge between state “fifth” and “second” is reassigned
from SEs n and m, where n > m, to m and m+1 (after an operation “move
SE n to m”). In this case, a movement from a higher-numbered SE to a lower-
numbered SE causes all other SEs assignments between the two values to shift
up, requiring an update to all other edges involving these SEs.

1 Function calculate_score():
Input: from, to

2 sum = 0

3 for edge i→ j such that (from ≤ i ≤ to || to ≤ i ≤ from

) || (from ≤ j ≤ to || to ≤ j ≤ from) do

4 sum = sum + |i− j|
5 end

6 return sum

LZoo benchmark suite [13], shown in Table II. A key goal of this

work is to find the minimal hardware fan-out under which we can

map each benchmark.

The mapping heuristic used will run infinitely when it cannot find

a valid mapping, so it will abort execution when the derivative of the

mapping score remains zero after several iterations of validate edges,

and try again with a larger hardware fan-out value. After finding a

valid mapping, a suitable NAPOLY overlay is chosen based on the

needed hardware fan-out. The overlay always has less SEs than states,

but enough SEs to hold the largest distinct graph in the benchmark

(all ANMLZoo benchmarks contain multiple distinct graphs).

Table II shows the mapping result for each of the ANMLZoo

benchmarks. The Minimum f Achieved column lists the minimum

hardware fan-out required for each benchmark based on our heuristic

mapping algorithm. The Target Overlay is the largest overlay that

can support the needed fan-out. # NAPOLY reconfigurations is

computed � S
N
	. The columns labeled Throughput lists the effective

throughput for the benchmark, which includes the target overlay’s

clock speed and reconfiguration time.

For each of the ANMLZoo benchmarks, Table III shows the

performance of competing CPU and GPU automata processing frame-

works. The CPU implementation is Intel Hyperscan [14] measured

independently by the authors using a 3.1 GHz Intel i5-4440 CPU

with 32 GB RAM. The GPU implementation is iNFAnt2 executed

on an Nvidia Titan Xp as reported in [13].

In order to understand the relationship between the NFA and its

corresponding performance on the CPU and GPU implementations,

the table also lists runtime data for each benchmark: the average

number of active states (active set) and total number of reports as

reported in [13].

The rows of the table are sorted in descending order according to

NAPOLY speedup relative to the best of the GPU and CPU results.

NAPOLY performs best for larger benchmarks with more active states

and is faster than both the GPU and CPU NFA implementations in

7 of the 12 benchmarks, while the GPU implementation is fastest in

4 and the CPU implementation is fastest in 1. NAPOLY’s average

speedup is 4.4.

B. Overlay Scalability

As shown in Equation 2, NAPOLY throughput depends on (1)

the number of reconfigurations needed, which may be reduced by

having a larger overlay with more interconnect density, (2) the time

to flush the input buffer, which depends on clock speed, and (3)

reconfiguration time, which depends on DRAM bandwidth.

Table IV shows the NAPOLY capability when scaled up to an Intel

Stratix 10 GS. In general, the Stratix 10 offers roughly a doubling of

overlay capacity, clock rate, and DRAM bandwidth, which according

to Equation 2 would result in a speedup of approximately 1
1

2
+ 1

2
×

1

2

=

1.33

V. PRIOR WORK

This section summarizes prior work in four related areas: (1)

methods for synthesizing automata-type architectures onto an FPGA

fabric, (2) applications that benefit from such architectures, (3) open

source automata models and architectures, and (4) tools and methods

for optimizing automata descriptions.

A. Synthesis of NFAs and Regular Expressions

FPGA implementation of regular expression matchers are often

inspired by networking applications, and some of these are based on

automata-based architectures [15]. A challenge for these approaches

is the high cost of reconfiguring the FPGA to change or update

the target NFA. Prasanna et al developed early methods for syn-

thesizing regular expressions onto both FPGAs and a conceptual

Self-Reconfigurable Gate Array (SRGA) device [16]. Their original

approach bypassed logic synthesis and directly targeted the low-level

FPGA fabric. However, as FPGA architecture evolved in complexity,

this approach became infeasible. Their second design targeted HDL

but introduced additional optimization methods for both the NFA

descriptions and generated architecture [5], [6]. Similar efforts have

produced more dense designs but still suffer from long reconfigu-

ration times [17]. Becchi et al developed a set of techniques for

optimizing both NFA and DFA-based architectures [18], [19], in-

cluding several approaches to identify and explore design parameters

that have the most significant impact on the performance and cost of

the corresponding NFA and DFA implementation. Examples of these

include alphabet size, number of inputs read per cycle (stride), and

storage of next state tables in logic and/or RAM. There are previous

efforts to overcome the high cost of synthesizing automata into an

FPGA fabric. Like NAPOLY, they allow a user to quickly change

the NFA description for an in-place FPGA configuration. However,

while NAPOLY allows updates of both the NFA topology and edge

labels, these earlier efforts are limited to only edge labels, leaving

the NFA toplogy fixed [20], [21].

B. Open Source Automata Processor Architectures, Simulators, and

Benchmarks

Wadden et al. developed a VPR-derived [22] place-and-route tool

that targets a conceptual Automata Processor fabric [23]. This tool

serves as an experimental framework with which to explore the

impact of routing algorithms and interconnect design on performance

and efficiency. Using this tool they compared the hierarchical design

of the AP routing matrix to a non-hierarchical mesh-based network-

on-chip and concluded that the ideal interconnect architecture de-

pends on the input NFA topology. The same group compiled a suite
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TABLE II
ANMLZOO BENCHMARKS AND THEIR NAPOLY MAPPINGS

Benchmark # States (S) Minimum f Achieved Overlay Size (N) # Reconfigura-
tions

Reconfiguration
Time Throughput
(MB/s)

Hamming 11346 21 12K 1 63
Levenshtein 2784 17 12K 1 63
Fermi 40783 8 16K 2 24
Brill 26668 40 8K 4 20
ClamAV 49538 18 12K 5 13
DotStar 96438 4 20K 5 12
PowerEN 40513 29 8K 5 16
RandomForest 75340 12 16K 5 15
SPM 100500 8 16K 5 10
Protomata 42061 42 8K 6 13
Snort 69029 60 4K 17 5
ER 95136 62 4K 19 3

TABLE III
PERFORMANCE RESULTS

Benchmark States (S) NAPOLY
Throughput
(MB/s)

Ave. Active
States (AS)

GPU Throughput
(MB/s)

CPU Throughput
(MB/s)

Speedup vs
max(GPU,CPU)

SPM 100500 10 6331 0.5 0.1 20.0
Fermi 40783 24 3854 2 1 12.0
RandomForest 75340 15 968 2 0.5 7.5
Hamming 11346 63 240 18 10 3.5
Brill 26668 20 14 7 1 2.9
Protomata 42061 13 19 5 1 2.6
Levenshtein 2784 63 88 38 1 1.7
ClamAV 49538 13 4 4 14 0.9
EntityResolution 95136 3 10 4 1 0.8
Snort 69029 5 98 14 0.4 0.4
DotStar 96438 12 3 40 10 0.3
PowerEN 40513 16 31 53 10 0.3

TABLE IV
REPERTOIRE OF ACHIEVED NAPOLY CONFIGURATIONS AND RESOURCE COST ON STRATIX 10 GS

# SEs Hardware Fan-
out

Output Encoders Max Reporting
Cycles

Max Report rate
(GHz)

Fmax (MHz) Max BW for
N%active =
0.25(GB/s)

4K 254 16 100% 4.64 290 8746
8K 126 32 50% 8 250 7510
12K 83 48 33% 12 250 7331
16K 62 64 25% 13.4 210 6208
20K 49 80 20% 15.2 190 5549
24K 40 96 17% 16.32 170 4863
28K 34 112 14% 16.8 150 4255
32K 30 128 12% 16.64 130 3719
36K 26 144 11% 15.84 110 3068
40K 23 160 10% 14.4 90 2467
44K 21 176 9% 12.32 70 1744
48K 19 192 8% 9.6 50 1072

of NFA benchmarks called ANMLZoo containing a representative

example of an NFA description, sample input, and expected outputs

for every publicly-released application for the AP as well as two

synthetic benchmarks [13]. They also developed open source tool

that can simulate the evaluation of arbitrary ANML descriptions

and perform basic transformations to NFA such as elimination of

counters and Boolean elements and use of state replication to limit

the maximum in-degree (fan in) and out-degree (fan-out) of the NFA

[24]. Fang et al. designed the Unified Automata Processor (UAP),

a set of vector extensions added to a traditional von Neuman CPU

optimized for implementing a variety of NFA-based programming

models [8]. The UAP exploits parallelism by concurrently traversing

one edge per cycle for each of its 64 lanes. The design stores NFA

transitions in local memory attached to each lane, comprising 1 MB in

total. The transitions are stored in a compact, efficient format but the

design is limited to NFAs that can fit into the local memory. Wadden

and al. proposed a modified Micron AP Reporting Architecture

to reduce AP overhead and stall cycles during dense reporting

activity [25]. The modified AP reporting region consists of 64 16-bit

sub-RA (Reporting Aggregation) equivalent to one 1024-bit RA in

Micron AP, all gathered in an arbitration unit. Along with reporting

aggregation, there is a shared 64-bit mega tag component to report
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the symbol offset. This architecture improves the reporting sparsity

of some ANMLZoo benchmarks and keeps same performance for

other benchmarks which have dense of reporting.

C. Comparative Studies of NFA Implementations

GPU-, FPGA-, and ASIC-based Automata Processors require

preprocessing overhead when processing a new NFA description.

Depending on the application, this overhead may be performed

offline or at runtime. CPU- and GPU-based approaches are able

to process NFAs stored in DRAM and are generally less affected

by preprocessing time, but their traversal time–especially for larger

NFAs–is limited by their cache performance. Since the behavior of

automata processors is dependent on both the NFA structure and input

stream, performance comparisons between competing architectures is

difficult. Becchi et al. characterized the performance of GPU, AP, and

FPGA-based automata processing approaches, finding that FPGAs

offer a traversal throughput of 2 to 3 times that of the AP and 80

to 1000X that of a GPU at the cost of extremely high preprocessing

time. In this analysis, the preprocessing time including a pass through

the FPGA synthesis and place-and-route design flow [26]. MNCart

is a recently-proposed comprehensive central ecosystem for automata

tools to simplify the comparisons between the CPU, GPU, and AP

platforms [27] proposed. MNCart system includes a new JSON-based

network language MNRL for representing NFA.
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VII. CONCLUSION AND FUTURE WORK

This paper describes NAPOLY, an automata processor overlay.

NAPOLY is parameterized, allowing for tradeoffs in state capacity,

interconnect density, and output buffer size. These tradeoffs allow

for offline generation of a repertoire of overlays that allow for the

overlay to be customized for specific types of NFAs. Once an overlay

is deployed, the user can rapidly program the NFA at runtime,

supporting arbitrarily large NFAs. The performance results include

the time required to program the overlay from DRAM and are

competitive with the state-of-the-art CPU implementation from Intel

and the state-of-the-art GPU implementation. Further, they show that

NAPOLY’s performance scales with on-chip memory capacity, and in

future work NAPOLY’s scale ability on larger FPGAs or multi-FPGA

platforms, such as those available in the cloud will be evaluated.

NAPOLY spends over half its time flushing its input buffer into the

SE array and nearly half its time flushing its output buffer to DRAM.

It is possible to perform these steps in parallel if reports are written

to DRAM immediately after being generated from the SE array. This

change is planned for the next version of NAPOLY.
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