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Abstract—OpenVX is a standardized, cross-platform software
framework to aid in development of accelerated computer
vision, machine learning, and other signal processing applica-
tions. Designed for performance optimization, OpenVX allows
the programmer to define an application using a graph-based
programming model, where the nodes are selected from a
repertoire of pre-defined kernels and the edges represent the flow
of successive images between pairs of kernels. The graph-based
representation exposes spatial and temporal concurrency and
provides tuning opportunities to the managing runtime library.
In this paper, we present a performance model-based approach
for optimizing the execution of OpenVX graphs on the Texas
Instruments C66x Digital Signal Processor (DSP), which has
similar characteristics to other widespread DSPs such as the
Qualcomm Hexagon, Nvidia Programmable Vision Accelerator,
and Google Visual Pixel Core. Our approach involves training
performance models to predict the impact of tile size and node
merging on performance and DRAM utilization. We evaluate
our models against randomly-generated, valid, and executable
OpenVX graphs.

Index Terms—OpenVX, DSP, domain-specific, computer vi-
sion, tuning, optimization, embedded systems, DSL, DSA

I. INTRODUCTION

Image processing accelerators are now commonly integrated

as part of embedded System-on-Chip (SoC) architectures.

These types of accelerators go by different names, such as

“Visual Processing Units (VPUs)” and “Image Processing

Units (IPUs),” but are generally structured as Digital Signal

Processor (DSPs)-type architectures, which themselves differ

from general purpose processors and Graphics Processor Units

(GPUs) in that they rely on compilation techniques to statically

schedule all instructions, they have a complex instruction set,

and use software-defined scratchpad memory and software-

defined asynchronous pre-fetching and buffering of data blocks

in the scratchpad using a direct memory access (DMA) con-

troller as opposed to – or in addition to – traditional caches.

Examples of such processors include the Google Pixel Visual

Core [1], Qualcomm Hexagon DSP [2], Nvidia Programmable

Vision Accelerator [3], and the Texas Instruments C66x DSP

[4]. In addition, Field Programmable Gate Arrays (FPGAs)

loosely fit this category when used with High Level Synthesis

compilers [5], [6].

OpenVX is a code-portable and performance-portable open

programming interface to aid in the design of accelerated

signal processing subroutines, and has widespread support on

a variety of coprocessor architectures [7]. It was originally

conceived as a domain specific language (DSL) for image

processing, but it is extensible to other domains. OpenVX

relies on a graph-based model that allows the programmer

to compose processing pipelines by assembling a collection

of cooperative kernel primitives. This way, each graph node

represents a kernel and each edge represents the flow of one

image or video frame between kernels or as top-level inputs or

outputs. This representation potentially allows the runtime en-

vironment to identify opportunities for optimization. Examples

of OpenVX vendor implementations are Intel OpenVINO [8],

Nvidia VisionWorks [9], AMD OpenVX (AMDOVX) [10],

and Texas Instruments Vision SDK [11]. In this paper we

target the Texas Instrument’s TDA2x System-on-Chip and our

baseline results are given by the release version of the Texas

Instruments Vision SDK with OpenVX framework [12].

Kernels in an OpenVX graph exchange images, and a kernel

cannot begin execution until it receives an image for each

of its inputs. Executing an OpenVX graph on a DSP-type

architecture requires that images be conveyed as a sequence

of smaller fixed-sized tiles for the purpose of buffering in on-

chip scratchpad memory. The size of the tiles impacts both the

memory system performance and instruction throughput. Ad-

ditionally, tiles associated with internal edges may optionally

be kept in scratchpad only or exchanged with DRAM between

kernel invocations.

This paper’s contribution is the development of perfor-

mance models to predict both DMA bandwidth and instruction

throughput given features of input and output tiles. Using these

models, we select weakly-connected sub-graphs that exchange

tiles instead of whole images. This causes the runtime envi-

ronment to schedule successive kernels after processing each

tile as opposed to processing each image. We refer to this as

“kernel merging”. Our approach performs tile size selection

for all individual kernels and groups of merged kernels.

To evaluate the potential performance impact of our tuning

methodology, we use large sets of randomly-generated graphs

and compare their predicted performance improvement over

that of the baseline software. Using this methodology, we

achieve a speedup of 1.53 on average, with average error rates

of 13% and 8% for DMA and compute respectively.

II. BACKGROUND

Like other domain-specific processors, Visual Processor

Units (VPUs) favor the use of software-controlled on-chip

memories instead of traditional caches. A scratchpad offers

several advantages over a traditional multi-level cache. A
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Fig. 1. Example timing diagram for double buffering execution on the TI C66x DSP. In this example, the execution is memory-bounded, since the time
required for the DMA transfers exceeds the time required for processing one tile. “trigger time” is the time needed for the processor to initiate concurrent
DMA transfers.

scratchpad combined with DMA controller operates asyn-

chronously with the processor, allowing the programmer to

overlap DRAM transfers with the corresponding compute

workload. For applications where the access pattern is fixed,

a scratchpad makes more efficient use of memory, as caches

are susceptible to conflict misses when accessing multidimen-

sional data. Scratchpads can also achieve higher throughput to

off-chip memory by transferring larger blocks of consecutive

words. For example, a scratchpad might transfer tiles of 128 by

96 four byte pixels, generating 512-byte consecutive transfers

per row, larger than a typical cache line of 64 bytes.

The introduction of image tiling, DMA, and scratchpad

into the OpenVX runtime on the Texas Instruments C66 DSP

provided a benefit of a 2.3 speedup as compared to using

cache [12]. This baseline implementation decomposes each

input, output, and intermediate image into 64x48-pixel tiles,

each of which is transferred between the on-chip L2 scratchpad

and off-chip DRAM using the integrated DMA controller. The

DSP cores in our target platform (the TDA2x) have an L2

memory size of 288 KB, which the program code (usually

the bootloader) can configure as a partial hardware-controlled

L2 cache and partial software-controlled scratchpad. For our

experiments, it is configured as a 128 KB scratchpad SRAM

with the rest as cache.

Since the DSP is an in-order architecture, the latency of data

exchanges between the cache and DRAM cannot be hidden

and, as a result, a cache miss always causes the DSP to idle

until the miss is complete. On the other hand, the latency of

exchanges between the scratchpad and DRAM may be hidden

by exposing concurrency between the DSP core and DMA

controller. In this way, the DSP processes tile n concurrently

with the outgoing transfer of output tile n − 1 and incoming

transfer of input tile n+ 1. This is referred to as “ping-pong

buffering” or “double buffering”. The scratchpad memory,

while being an on-chip memory, exists at level 2 and is itself

cached by a 32 KB 2-way set associative L1 cache.

When executing an OpenVX graph, all tiles comprising

each of a kernel’s output edges are transferred back from

scratchpad to DRAM before the DSP begins executing any

other kernel in the graph. For example, if a graph contains

a kernel that has two inputs and one output, the software

will allocate three scratchpad buffers–one for each edge–until

the kernel has completed processing its output image and the

DMA engine transfers the last of its tiles to DRAM. At this

point, the software will re-allocate the scratchpad memory for

the next kernel and start fetching tiles from DRAM.

As shown in Fig. 1, the software allocates two scratchpad

buffers, ping and pong, for each input and output image

of the kernel. Each buffer holds one tile and the software

operates an outer loop that processes one tile. In each iteration,

the software instructs the DMA controller to transfer the

previously-computed output tile into DRAM and transfer the

next input tile into scratchpad. After computing, the processor

might need to wait until the DMA transfer completes before

processing the next tile.

The “trigger time” refers to the time required for the pro-

cessor to initiate DMA transfers and the “waiting time” refers

to the difference in total DRAM transfer time and compute

time. Note that for smaller tiles, the cumulative trigger time

across the frame can be significant since there are more blocks

to trigger per frame than for larger tiles. The tile size can vary

significantly, since the pixel size varies from one to four bytes

and some kernels have more inputs and outputs than others. If

a kernel’s compute time exceeds its DMA transfer time then

it is compute bound and its waiting time will be near zero.

Tile size selection has a potentially significant effect on

performance, and the vendor implementations currently offers

limited support for automatically tuning this parameter. Also,

although OpenVX’s graph-based model decomposes the appli-

cation into discrete operations, there are still opportunities for

combining kernels within subgraphs to improve memory local-

ity and avoid unnecessary transactions with off-chip memory.

For example, consider two connected kernels that each

have one input and one output. During execution, each kernel

requires that an input tile and output tile to be stored in

scratchpad at any given time. The first kernel will transfer
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Fig. 2. A graph with nodes A, B, C, and D, nodes B and D are grouped,
and the image is comprised of three tiles. Kn denotes the execution of tile
n for node K. In this case, the DSP must alternate execution of tiles within
the set of grouped nodes.

all its output tiles to DRAM before the second kernel begins

retrieving each of these tiles for processing. Alternatively, if

the first kernel conveys each of its output tiles as input to

the second kernel through a scratchpad buffer and without

transferring the tile to DRAM, the combination of both kernels

will require that three total tiles are stored in scratchpad at

any given time, comprising the input tile, intermediate tile,

and output tile.

This approach reduces the total number of DMA transfers

from three to two, which can improve performance if the sum

of DMA transfer time of both kernels exceeds the sum of

their execution time. However, storage of additional tiles will

potentially limit the maximum tile size.

Also, as shown in Fig. 2, grouping kernels in this way

increases the frequency at which the DSP must alternate its

execution state between kernels, putting increased pressure on

the L1 instruction cache. Likewise, processing multiple tiles at

once increases the size of the working set, increasing pressure

on the L1 data cache.

III. DATA-DRIVEN PERFORMANCE MODELS

As described in the previous section, the OpenVX pro-

gramming model grants the runtime environment two degrees

of freedom for optimization. The first is how to decompose

the input, output, and intermediate images into tiles. DMA

performance depends on characteristics of the DMA transfers,

such as tile size and geometry. Also, since such architectures

also have L1 data caches, tile size can also affect L1 data

cache performance. The second is how to schedule the kernels

onto the processor. The processor can execute the kernels in

any order so long as it obeys the graph’s data dependencies.

The data dependencies are defined using the graph edges,

but their granularity can be in terms of whole images or

individual tiles. This way, the runtime environment can execute

each kernel for a whole image or only a single tile. In the

latter case, the processor must switch between kernels at a

higher rate than in the former case, which potentially affects

L1 instruction cache performance. We propose the use of

DMA and compute performance models to facilitate achieving

automated exploration of optimization decisions.

Fig. 3. DMA and compute cycles for AccumulateSquared Kernel for a Variety
of Tile Sizes.

A. Performance Bounds

Fig. 3 shows a comparison of the total number of DMA and

compute cycles required to process a 1600x1200 pixel image

for the AccumulateSquared OpenVX kernel for tile sizes

ranging from 32x16 to 384x16. The best DMA performance

is achieved at tile size 320x24, which is a 2.11 speedup as

compared to the worst-performing tile size of 32x16. The

best compute performance is achieved at 64x48, which has

a speedup of 1.58 as compared to the worst-performing tile

size of 320x24. Note that 320x24 is the worst-performing

tile size for compute but the best for DMA. However, since

the execution time is max(timeDMA, timecompute), the best

performing tile size is 128x48.

The current release of the OpenVX implementation for the

TDA2x sets all tile sizes to 64x48. Our results show that for

individual kernels, the 64x48 tile sizes achieves within 21%

of the best performing tile size for DMA time, and within

8% of the best performing tile size for compute time, and

within 12% of the best when assuming the execution time is

max(timeDMA, timecompute).

B. DMA Model

As shown in Fig. 1, the DMA engine concurrently transfers

the previously-computed output tile(s) from scratchpad to

DRAM, and then transfers the next input tile(s) from DRAM

to scratchpad. At the same time, the DSP core processes

the current tile(s), reading and writing to scratchpad. DMA

performance depends on characteristics of the transfer, such

as the size of the transfer, the number of consecutive bytes

accessed, and the stride length and frequency. Our approach is

to develop a DMA performance model that associates features

of the transfer to an achieved DMA bandwidth.

To build a training set for the model, we used performance

counters on the DSP to measure effective DMA bandwidth

over a variety of tile sizes and pixel depths, as well as

characteristics specific to each individual OpenVX kernel such
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Fig. 4. Order-4 Polynomial Fit of DMA Bandwidh vs. Total Tile Size and
Total Tile Width.

as its number of inputs and outputs, and the differences in input

and output tile size caused by the halo region of stencil-based

kernels. The data set covered 3240 kernel invocations over

36 tilable OpenVX 1.1 [13] kernels for all of their respective

pixel depths and over 25 different tile sizes for a 1600x1200

image size. From these tests we found that DMA throughput

varies from 189 MB/s to 4.33 GB/s.

Each of the observations in the dataset is associated with a

specific kernel, tile size, and pixel depth. We associated each

of these with two values: (1) the sum of tile widths in bytes

for each of the inputs and outputs, and (2) the total tile size

in bytes of all the inputs and outputs. We then associated

these two values with the resulting DMA bandwidth. In

general, tile width plays an important part of DMA bandwidth

because wider tiles have more consecutively accessed pixels,

which reduces the frequency of row activations in the DRAM

controller, while total tile size determines the total payload

transferred, reducing the impact of time needed to start the

DMA transfer.

Fig. 4 shows a polynomial fit of DMA bandwidth to these

two values. Each data point is shown as a black dot, while the

surface shows the fitted curve. This model suffers from over-

fitting, achieving a root-mean-square (RMS) training accuracy

of 32 MB/s but a testing accuracy of 248 MB/s over an

observed range of 189 MB/s to 4.33 GB/s. However, the

model illustrates the nonlinear nature of the DMA behavior,

the steep slope in bandwidth for smaller tiles, and the point of

diminishing returns for larger tiles. In order to improve model

accuracy, we developed methods to increase the number of

features that comprise the independent variables for which we

hope to predict bandwidth.

In the original dataset, we labeled each observation as a

feature vector using a combination of elements chosen from:

(1) input tile width in pixels (TIW), (2) input tile height in

pixels (TIH), (3) output tile width in pixels (TOW), (4) output

tile height in pixels (TOH), (5) total input width (tile width

x pixel size x number of inputs) (TTIW), (6) total output

width (tile width x pixel size x number of outputs) (TTOW),

(7) total input size, (TTIW x TIH) (TIS), (8) total output

size, (TOW x TOH) (TOS), (9) number of inputs (NI), (10)

number of outputs (NO), (11) pixel depth (PD), (12) stencil

neighborhood width (SNW), and (13) stencil neighborhood

height (SNH). Each combination of feature vectors caused

multiple observations to have the same feature vector value

but with different DMA bandwidths. We refer to each of these

sets of observations as “classes”.

Table I shows three different feature sets and the resulting

average class size and mean error of each classes’ members

to the average DMA bandwidth of the class. Our best mean

error came from the TTIW, TIH, TTOW, TOH (total tile input

width, tile height, total tile output width, total output width)

feature set. Note that input tile size and output tile size differ

in the presence of neighborhood-based kernels such as filters,

as well as kernels having a different number of input vs. output

images.

TABLE I
TRAINING RESULTS FOR VARIOUS DMA MODEL FEATURE SETS

Ave. Mean class

Features class error

size

TTIW, TTOW, TIH, TOW,
NI, NO, TIS, TOS

2.9 114 MB/s

TIW, TIH, NI, NO, TIS,
TOS, SNW, SNH

2.9 219 MB/s

TTIW, TIH, TTOW, TOH 3.3 100 MB/s

After decomposing our original training set into classes, the

model behaves as a lookup table for inputs that match observed

training points. Otherwise the model uses interpolation to

predict the bandwidth.

The model performs interpolation as shown in Equation

1. For each class classi, the model calculates the distance

between the input features, Fin and the features of each of

the classes classFi . The model sorts the classes according to

their distances to the input features, then the model calculates

a weighted average with respect to the inverse normalized

distances. This model achieved an RMS testing error of 62

MB/s.

∀i : classdi = |Fin − classFi |

sort(class, classd)

bwpredicted =
N∑
i

(classdi )
−1

∑N

j

(
classd

j∑
N
k

classd
k

)
−1
× classbwi

(1)

The model is illustrated in Fig. 5, where the center node

represents an unknown feature vector to be predicted and the

five outer nodes represent the five closest observed feature

vectors and their associated bandwidths.

C. Compute Model

The C66x DSP relies on the compiler to statically schedule

its instructions. All stalls resulting from data, control, and

structural hazards are explicitly defined in the object code
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domain-specific languages. Quio et al extended Hipacc, an

open source source-to-source compiler to automatically fuse

kernels by analyzing the AST (Abstract Syntax Tree) of a

compiled image processing application written in Hipacc DSL

[25]. PolyMage [26] and Halide [27] are two popular domain-

specific languages, both embedded in C++, for auto-tuning

image processing applications. Both use a “position indepen-

dent” representation, in which the programmer provides an

element-level description of a computation with only relative

indexing and without the surrounding loop constructs or any

notion of the order in which the elements are processed.

PolyMage relies on polyhedral analysis to generate tiled loop

nests. Halide requires its programs to include both a functional

representation as well as a meta-program that specifies a

method that Halide should follow to optimize the program.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we describe our approach for modeling

the impact of subgraph merging and tile size selection on

OpenVX graph performance. Our performance models predict

the impact of tile size and geometry on DMA bandwidth and

compute time. We apply machine learning techniques to train

the models from data collected from observed OpenVX kernel

performance with various tile characteristics. Our models

achieve average error rates of 13% and 8% for DMA and

compute respectively. Using the models to select node merging

and tile size achieves average predicted speedups in the range

of 1.43 to 1.59 for 2-to 16-node graphs.

In future work we will extend our performance models to

capture the effect of merging OpenVX kernels at the loop

level, allowing kernels to pass intermediate results through

registers instead of scratchpad buffers. This will allow for a

2-pass optimization, merging kernels at the loop level and also

at the scratchpad level to maximize performance.
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