
Sparse Matrix-Vector Multiply on the

Texas Instruments C6678 Digital Signal Processor

Yang Gao

Department of Computer Science and Engineering

University of South Carolina

Columbia, SC 29208, USA

Email: gao36@email.sc.edu

Jason D. Bakos

Department of Computer Science and Engineering

University of South Carolina

Columbia, SC 29208, USA

Email: jbakos@cse.sc.edu

Abstract—The Texas Instruments (TI) C6678 “Shannon”
is TI’s most recently-released Digital Signal Processor (DSP).
Although its original purpose was voice and video encoding
and decoding, it may have the potential to become a practical
coprocessor for scientific computing. In this paper, we evaluate
the C6678 in terms of its programming methodology, perfor-
mance, and power efficiency. As a case study, we implemented
a sparse matrix vector multiply (SpMV) kernel and used it
to perform a comparative study against the NVIDIA Kepler
GK104 and GK106 Graphical Processor Units. On the DSP, we
take advantage of many of the C6678’s features, including its
VLIW and SIMD instruction set architecture, program-controlled
scratchpad memory, and direct memory access (DMA) controller.
We found that the DSP is unable to outperform the GPUs in raw
performance but can achieve roughly equal power efficiency in
Gflops/Watt. This is more impressive when considering that the
DSP is manufactured in a 45 nm process while the GPUs are
manufactured in a 28 nm process. We believe that subsequent
DSPs, when manufacturered in a modern fabrication process,
may be more competitive with GPUs in power efficiency. We also
found that, for this kernel, the DSP is able to achieve higher
utilization of both its peak memory bandwidth and its functional
units as compared with the GPUs. In this paper we describe our
kernel and the programming techniques required to optimize its
performance.

Keywords—high performance computing; sparse matrix vector
(SpMV); linear algebra; digital signal processor (DSP); graphical
processor unit (GPU); very long instruction word (VLIW)

I. INTRODUCTION

It has recently become common practice to integrate
coprocessors into high-performance computers, and graphi-
cal processor units (GPUs) are currently the most common
coprocessor technology. High performance computers with
GPU coprocessors generally achieve higher overall power
efficiency as compared with those with only CPUs. An exper-
iment performed at the National Center for Supercomputing
Applications evaluated a cluster comprised of 64 dual-core
Opteron 2216 processors and 128 NVIDIA S1070 GPUs for
four scientific benchmark applications and observed a 3 to
23 times improvement in power efficiency as compared to
using CPUs alone [1]. GPU-accelerated computers have also
recently become the second, third, and fourth most power-
efficient computers on the “Green 500” list [2]. While this
sounds encouraging, the most efficient systems on this list are
still limited to an efficiency of 2.5 Gflops/W, implying that an
exascale machine would require 100s of MW to operate at full

capacity using current technology.

The Texas Instruments CorePac architecture may have the
potential to achieve higher power efficiency than GPUs for
scientific kernels. PCI-express-based add-in cards containing
four and eight C6678 DSPs are already available, allowing
these DSPs to be used in the same heterogeneous computing
model as GPUs. However, unlike GPUs, these DSPs have
integrated network interfaces and are capable of running an
operating system. Thus in theory they could participate in a
distributed processing system with little or no involvement
from CPU-based hosts. This may lead to next generation
heterogeneous systems that have less emphasis on CPUs
and achieve a revolutionary improvement in overall power
efficiency.

Much like how the GPU’s role as a coprocessor was an
outgrowth of its initial market in the 3D gaming industry,
the TI DSP is already widely manufactured and deployed in
many of the world’s cellular phone base stations. Much like the
GPU, its primary market will continue to sustain its continued
development while it grows in a potential secondary role as a
coprocessor for supercomputing.

When clocked at 1 GHz, the C6678 has a peak theoretical
throughput of 128 single precision Gflops (16 operations per
clock per core) and achieves 80 sustained Gflops for single
precision general matrix-matrix multiply (SGEMM) using the
current version of TI’s BLAS library [3]. It has 12.8 GB/s of
DDR3 DRAM bandwidth.

The C6678’s design has several features that could make
it highly power-efficient when used with carefully optimized
and parallelized code. It lacks power-hungry features such as
out-of-order and speculative execution and instead exploits
instruction level parallelism using an eight-way very long
instruction word (VLIW). Its eight on-chip cores are loosely-
coupled, as they do not include coherent mid-level caches nor
a shared last-level cache. Instead it relies on explicit inter-core
communication to exploit core-level parallelism. Each core has
two levels of cache, but the caches can be reconfigured by the
software such that a portion or all of one or both level of caches
can be used as a software controlled scratchpad memory.
There is also a separate, shared software-controlled scratchpad
memory. The C6678 supports predicated instructions in order
to prevent small sections of conditional code from degrading
instruction throughput or VLIW utilization.

In this study we targeted the sparse matrix-vector multiply

978-1-4799-0493-8/13/$31.00 © 2013 IEEE ASAP 2013168

kernel using the Compressed Sparse Row (CSR) format as a
case study. We chose this particular kernel for several reasons.
First, SpMV is an important kernel for many scientific appli-
cations. Second, GPU, SIMD, and vector processors generally
achieve a low computational and memory efficiency for this
kernel due to its irregular computational and memory pattern
and its low arithmetic intensity. Third, SpMV is representative
of a large class of kernels that operate on sparse data structures,
such as (such as GRAPH500[4] and the Fast Multipole Method
[5]).

II. SPMV KERNEL

SpMV performs the computation y = AαX + βY , where
A is a matrix stored in a sparse format, X and Y are vectors
stored as dense 1D arrays, and α and β are scalars. Our SpMV
kernel uses the popular Compressed Sparse Row (CSR) sparse
matrix format, where matrix A is represented using three one-
dimensional arrays, val, col, and ptr. The val array holds each
of the matrix’s non-zero values in ascending column and row
order, while the col array holds each value’s corresponding
column index. The ptr array is indexed by row and holds the
position within the val and col array where each matrix row
begins.

For example, an M × N matrix where M = 2 could
be stored using arrays: val = {2, 4, 6, 8, 10, 12}, col =
{2, 3, 4, 5, 3, 5}, and ptr = {0, 4, 6}. In this case, the matrix
contains ptr[M] = 6 nonzero elements, the second row
contains ptr[2]−ptr[1] = 2 elements, and the second element
of row 1 is val[ptr[1]+1] = 12 in column col[ptr[1]+1] = 5.

There are several reasons why sparse matrix-vector mul-
tiply with CSR format is a notoriously difficult kernel for
which to achieve high performance. First, the col array imposes
gather-style indirect references to the input vector X, and the
locality of the irregular accesses to X depends the distribution
of populated columns (defined in the col array). Second, the
unpredictable number of entries per matrix row, as defined
by the ptr array, requires dynamic control behavior when
computing the reduction operation when accumulating the
inner product. Third, the entire operation is generally memory-
bound for modern processors, requiring roughly 3/8 floating
point operations per byte for single precision values and 32-bit
indices, where n is average number of entries per matrix row
(shown later in Equation 2).

As a result of these challenges, modern state-of-the-art
CPUs and GPUs generally achieve 1-5% of their peak through-
put for this computation depending on the density and structure
of the matrix [6]. The most difficult matrices to multiply are
those that are very sparse.

III. IMPLEMENTATION

As is the case with GPUs, the C6678 achieves high perfor-
mance only when the software is carefully hand-tuned to its
architecture. In this section we describe the steps taken to tune
the SpMV kernel in order to establish a general methodology
for DSP code optimization. Note all the performance results
in this section are based on a tri-diagonal matrix input with
10 million rows.

A. Initial implementation

Our initial implementation of SpMV was a simple, naı̈ve
loop that directly performs the kernel as shown in Algorithm
1.

Algorithm 1 Naı̈ve Implementation

row ← initial row
for i = corenum × (M/cores) → (corenum + 1) ×
(M/cores)− 1 do

if ptr [row] == i then
row ← row + 1
y [row] ← y [row] × β

end if
y [row] ← y [row] + α× val [i]× x [col [i]]

end for

This approach achieves 0.55 Gflops per (8 cores) DSP.
The TI compiler reports the number of cycles required to
execute each iteration of each loop, allowing us to estimate
the total number of required cycles assuming no memory stalls.
Dividing this number by the actual number of execution cycles
(recorded by a performance counter) we were able to determine
that only 39.6% of cycles were spent on computing, meaning
that 60.4% of the execution time was spent waiting for memory
access.

B. Scratchpad Memory and Manual Unroll

A unique features of the C6678 is its on-chip memory
architecture. Each core has a 32KB L1 cache and 512KB
L2 that can be programmatically configured to behave as a
traditional cache, as a program-controlled scratchpad memory,
or as a combination of both. To support the on-chip memories,
the device also contains an integrated direct data access (DMA)
controller that allows data to be exchanged between on- and
off-chip memories in parallel to operations being performed
on the DSP. The DMA controller can also be programmed to
perform complex 3-dimensional data access patterns on both
the source and destination memories. When a kernel reads
a data structure using a regular access pattern, this allows a
block of onchip data can be processed on the DSP while the
next block is read from off-chip memory. Likewise, when a
kernel writes a data structure using a regular access pattern, this
allows a block of onchip data to be rendered by the DSP while
the previous block is being written to off-chip memory. This
allows the DSP to overlap computation and communication in
a way that is tailored to the software as opposed to blocking
the instruction stream when a cache miss occurs. On the other
hand, data structures that are read or written in an irregular
pattern can still be cached and take advantage of locality.

In our first optimization, we allocated a portion of the
L2 cache as a scratchpad and used the DMA controller to
implement a double buffer for the val and col arrays. The
input vector, output vector, and ptr are cached. This resulted
in an increase to 0.66 Gflops per DSP and a reduction to 25.7%
of the execution time waiting for memory.

Although the compiler supports automatic loop unrolling,
we manually unrolled the loop by a factor of 2, 4, 8, and 16.
We found that 8 gives the best performance and resulted in a

169

further improvement to 0.78 Gflops per DSP but an increase
in memory waiting time to 28.8%.

C. Predicated Instructions and Assembly Optimization

In order to maximize the utilization of the 8-way VLIW
instructions, the TI compiler attempts to software pipeline any
loop that doesn’t contain branch instructions or function calls.
Software pipelining allows the compiler to break dependencies
within the loop body and improve the functional unit utilization
at the cost of increased register usage (each core has two 32
x 32 bit register files).

The IF statement on line 4 of Algorithm 1 prevents the
compiler from applying software pipelining. In order to enable
this feature, we converted the code to assembly language and
implemented the conditional code with predicated instructions,
as opposed to a branch instruction as was used by the compiler-
generated code. The TI assembler was able to software-
pipeline the assembly language, which resulted in better uti-
lization of the processor’s VLIW utilization, increasing the
performance to 1.63 Gflops per DSP while increasing the
memory waiting time to 50.1%.

D. Loop Fission

Our next optimization was to fission the main loop into
a product loop and an accumulate loop. Algorithm 2 shows
the resulting implementation. In this case, the product loop is
implemented in C while the accumulation loop is implemented
in assembly language with a manually unrolled loop and
predicated instructions. The algorithm is for each block of M
entries fitting in the scratchpad SRAM.

Algorithm 2 Loop Fission

for i = 0→M do //product loop
prod [i]← α× val [i]× x [col [i]]

end for
Acc← 0
for i = 0→M step by K do //accumulation loop

Acc← Acc+ prod [i]
if ptr [row] == i then

row ← row + 1
y [row]← y [row] × β +Acc
Acc← 0

end if
Acc← Acc+ prod [i+ 1]
if ptr [row] == i+ 1 then

row ← row + 1
y [row]← y [row] × β +Acc
Acc← 0

end if
. . .

Acc← Acc+ prod [i+K]
if ptr [row] == i+K then

row ← row + 1
y [row]← y [row] × β +Acc
Acc← 0

end if
end for

The product loop has no dependencies and can be software
pipelined by the compiler, resulting in high computational

Fig. 1. Algorithm Overview

performance, but limited by memory bandwidth to store the
products. In order to further speed up the product loop we
allocated L1 scratchpad memory to hold the product array.

By removing the multiplies from the accumulation loop,
performance are also gained from reduced register usage and
data locality.

The loop fission resulted in a performance improvement to
2.08 Gflops per DSP and a drop in memory waiting time to
36.6%.

The Algorithm 2 and the memory arrangement are shown
in Figure 1.

E. SIMD Instructions

The C6678 includes single instruction, multiple data
(SIMD) instructions, allowing two single precision operations
or load/stores to be performed by a single instruction. However,
only two of the eight VLIW slots can be used for load/store
instructions, so by using the SIMD instructions we can improve
the memory bandwidth by a factor of two but the kernel is still
memory bounded. Even so, adding SIMD instructions resulted
in a 5% performance improvement to 2.2 Gflops.

F. Adaptive Row Pointer

The accumulation loop in Algorithm 2 checks if value i
is the first value of its row before every add operation. This
adds a substantial amount of overhead to this loop. In order

170

Fig. 2. Adaptive Accumulation Loop

to reduce this overhead, we added an optimization where, the
start of the loop body, the code checks the number of values
remaining on the current row, i.e. ptr [row + 1]− ptr [row].

As shown in Figure 2, if this value is > 8, a new inner loop
can perform (ptr [row + 1]− ptr [row])/8 unrolled iterations
without checking the row pointer. We arrived at the unroll
factor of 8 by tuning. In addition, we also use the 2-way SIMD
ADD to further improve the performance of the quick iteration.
This optimization implies the more continuous values in a row,
the better performance the kernel would achieve. Though the
input matrices varies, generally, matrices with more non-zero
values per row has more chances to benefit from it (Figure 4
and Figure 5).

IV. PERFORMANCE RESULTS

A. Experimental Setup

Using the same benchmark we performed an experiment
that measured the power efficiency of the three test processor
technologies. To collect the results we used a Yokogawa
WT500 power analyzer to monitor the current and voltage
at the AC wall socket connector. For the CPU we measured
the difference in system power consumption when idle versus
running the SpMV benchmark. For the GPU, we powered
the GPU coprocessor card with a PCIe power cable from a
secondary ATX power supply that is independent from the
host’s power supply and measured its power consumption
when running the kernel. For the DSP we measured the power
consumption of a standalone DSP evaluation board when
running the kernel. Note that the CPU is at a disadvantage
in these tests since its power usage includes that of the hard
disks, network adapter, and video interface.

We have two reference GPU platform in this test, a high-
end GTX680 and a main-stream GTX650Ti. Both of them are
of NIVIDIA’s latest Kepler architecture. To gather performance
data for SpMV we used NVIDIA’s CUSPARSE library. Our
reference CPU is a four-core Core i5 650 CPU. To gather
performance data for SpMV we used Intel’s MKL library.

B. Power Efficiency

When using a tri-diagonal matrix (which contains three
elements per row centered on the diagonal), a single eight-
core DSP achieves 1.67 Gflops, while the Intel i5 650,
NVIDIA GTX650Ti, and NVIDIA GTX680 achieves 1.89,
4.96, and 12.50 Gflops respectively. In Gflops per Watt, the
DSP achieves 0.12, while these three platforms achieve 0.02,
0.17, and 0.21 respectively.

In order to test kernel performance with denser matrices,
we scaled the tri-diagonal matrix by increasing the number
of values per row, keeping the total number of elements
unchanged which we refer to this as N-diagonal, where N is
the number of values per row.

Figure 3 and Figure 4 show the performance and power
efficiency of the four processors as the matrix density is scaled.
The C6678 achieves equivalent or better power efficiency for
denser matrices, of which N > 71 in Figure 4.

As well as the N-diagonal matrices, Figure 5 shows the
power efficiency results for matrices from and the University
of Florida Matrix Collection [7] and Matrix Market [8]. Notice
that the normalized results relative to C6678 are shown in
Figure 6.

In our experiment, some performance fluctuation is found
in both the sample matrices and N-diagonal matrices for
higher nnz/row. Generally, we expect matrices with more
nonzero values per row to achieve better performance, since
the program has more chance to go through the ”easier” branch
instead of the alternative with more predicated instructions
(Figure 2).

V. MEMORY AND FUNCTIONAL UNIT EFFICIENCY

Recall that SpMV performs the operation Y = AαX+βY .
For single precision values and 32-bit indices, each non zero

171

TABLE I. MATRICES USED FOR TESTING AND CORRESPONDING POWER EFFICIENCY RESULTS

Matrix Rows Columns Nonzeros
Nonzeros

/Row

Intel

i5 650

Nvidia

GTX680

Texas

Instruments

C6678

TSOPF FS b300 c3 84414 84414 13135930 155.6 0.041 0.244 0.225

pdb1HYS 36417 36417 4344765 119.3 0.054 0.333 0.260

m t1 97578 97578 9753570 99.9 0.048 0.290 0.256

audikw 1 943695 943695 77651847 82.3 0.033 0.181 0.278

consph 83334 83334 6010480 72.1 0.049 0.381 0.212

cant 62451 62451 4007383 64.2 0.052 0.372 0.160

pwtk 217918 217918 11524432 52.9 0.036 0.362 0.144

shipsec1 140874 140874 3568176 25 0.041 0.323 0.189

ldoor 952203 952203 23737339 24.9 0.031 0.302 0.155

lhr71c 70304 70304 1528092 21.7 0.038 0.286 0.149

thermal1 82654 82654 574458 6.9 0.015 0.215 0.143

mac econ fwd500 206500 206500 1273389 6.1 0.019 0.278 0.137

ASIC 100ks 99190 99190 578890 5.8 0.024 0.215 0.129

scircuit 170998 170998 958936 5.6 0.021 0.269 0.114

shyy161 76480 76480 329762 4.3 0.025 0.221 0.082

mc2depi 525825 525825 2100225 4.0 0.026 0.277 0.096

Fig. 3. SpMV Performance on N-diagonal Matrices

Fig. 4. SpMV Gflops/Watt on N-diagonal Matrices

value in A, SpMV performs two multiplies (with α and X)
and one add (to compute the dot product), which requires a
load of a four-byte value, a four-byte column index, and a
four-byte vector value from X (is a scalar). If we assume the
cache is perfect and all the values in X would be referred at
least one time during computation, the 3ops in SpMV kernel
would require 8+4/row bytes due to compulsory misses. For
each matrix row, the kernel performs an additional multiply
(with β) and add (to Y), which requires a four-byte load from
Y , a four-byte store back to Y , and a four-byte load from the
ptr array. Row operations occur at frequency of n-times less
often than value operations, where n = average number of

Fig. 5. SpMV Performance on Selected Matrices (matrices are listed on the
x-axis in ascending order in terms of nonzeros/row)

Fig. 6. Normalized SpMV Performance (matrices are listed on the x-axis in
ascending order in terms of nonzeros/row)

non-zero elements per row. As such, SpMV has an arithmetic
intensity(AI) of floating point operations per byte is shown as
Equation 2:.

AI = (1 ×
3ops

8 + 4

rows
bytes

+
1

n
×

2ops

12bytes
)/(1 +

1

n
) (1)

=
9× rows × n+ 8× rows + 2

12(2× rows × n+ n+ 2× rows + 1)
ops/byte (2)

172

Fig. 7. Memory Efficiency on N-diagonal Matrices

TABLE II. PEAK AND ACTUAL PERFORMANCE

Intel

i5 650

Nvidia

GTX680

Nvidia

GTX650Ti

Texas

Instruments

C6678

Max memory

throughput
25.6

Gbytes/s

192.3

Gbytes/s

86.4

Gbytes/s

12.8

Gbytes/s

Peak

computational

throughput

9.59

Gflops

72.1

Gflops

32.4

Gflops

4.80

Gflops

Actual

performance
5.89

Gflops

27.8

Gflops

11.0

Gflops

3.9

Gflops

Memory

efficiency
0.61 0.39 0.34 0.81

For most modern architectures, this level of arithmetic
intensity makes SpMV a memory-bound operation. This allows
us to compute the peak computational throughout as the
product of arithmetic intensity and peak memory bandwidth.
The C6678 has a peak memory bandwidth of 12.8 Gbytes/s,
giving a peak computational throughput of 12.8×AI Gflops,
while the NVIDIA GTX 680 has a peak memory bandwidth
of 192.3 Gbytes/s, giving a peak computational throughput of
192.3×AI Gflops.

Table II shows the peak vs. actual computational through-
put for the diagonal matrix with 151 entries per row and
208,326 rows. Memory efficiency is calculated as the ratio
of these values. As shown, the C6678 achieves the highest
memory efficiency of all three architectures.

More memory efficiency results are shown in Figure 7.
After N = 27 the DSP achieves higher memory efficiency
than the CPU and GPUs.

VI. COMPUTATIONAL EFFICIENCY

Peak computational capacity is often computed by multi-
plying the number of functional units by the clock rate. Using
this metric, the C6678 has a peak throughput of 128 Gflops
while the NVIDIA GTX 680 has a peak throughput of 3090
Gflops, thus for the diagonal matrix with 151 entries per row
the C6678 achieves 3% of its peak performance while the
NVIDIA GTX 680 achieves 0.9% of its peak performance.

Since the floating-point operations in SpMV with CSR de-
pend on memory and integer operations, we can also measure
the peak computational rate by measuring the throughput of

our SpMV kernel by restricting the input to only on chip
memories. In other words, in order to explore the degree in
which the memory bound reduces overall performance for the
DSP, we did an experiment in which we only measured the
execution time required to process a block of data that was
already loaded into an on-chip buffer. For the diagonal matrix
with 151 entries per row, this on chip performance is 4.4
Gflops. The actual performance, 3.9 Gflops, is 88.6% of the on-
chip performance, indicating a good balance between memory
bandwidth and on-chip capacity.

VII. RELATED WORK

Optimizing sparse matrix-vector multiply on emerging
architectures has been the subject of much recent work
[9][10][11][12]. To our best knowledge, this is the first im-
plementation of SpMV on the current generation of the TI
DSP architecture. There has been some recent work in dense
linear algebra on this architecture, demonstrating 80 single
precision Gflops for SGEMM[13]. Although the authors of this
paper didn’t directly measure the DSP’s power consumption,
manufacturer data suggests the device worst case consumption
is 10 Watts, indicating the possibility (though not yet directly
measured) of 8 Gflops/Watt for SGEMM.

There has also been recent interest in predicting
and minimizing power consumption for GPUs
[14][15][16][17][18][19]. Improving the performance or
power efficiency of SpMV on GPUs has also been an area of
intense study [20][21][22][23][12][24][25][26].

VIII. CONCLUSION

The Texas Instruments C6678 is a substantially smaller
device than a typical CPU or graphical processor unit but
is still able to deliver impressive floating-point performance.
As such, the architecture has potential as a building block
for massively parallel arrays of these devices, assuming they
achieve high power efficiency. In this paper we demonstrated
that the C6678 is capable of achieving higher power efficiency
than a CPU and equivalent power efficiency than a GPU
despite having the disadvantage of being manufactured in
45 nm process versus 32 nm and 28 nm process for the
CPU and GPU, respectively. We assume that the TI CorePac
architecture, when implemented in more advanced fabrication
processes, will significantly exceed the power efficiency of the
state-of-the-art GPUs for some scientific kernels.

ACKNOWLEDGMENT

We would like to thank Arnon Friedmann, Murtaza Ali,
and Alan Ward from Texas Instruments and Emily Teng from
Advantech Corporation for their support of this work.

This material is based upon work supported by the National
Science Foundation under grant No. 0844951.

REFERENCES

[1] J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler,
V. Kindratenko, J. E. Stone, and J. C. Phillips, “Quantifying the impact
of gpus on performance and energy efficiency in hpc clusters,” in Green

Computing Conference, 2010 International. IEEE, 2010, pp. 317–324.

[2] S. Hemmert, “Green hpc: From nice to necessity,” Computing in Science

& Engineering, pp. 8–10, 2010.

173

[3] M. Ali, E. Stotzer, F. D. Igual, and R. A. van de Geijn, “Level-3 blas
on the ti c6678 multi-core dsp,” in Computer Architecture and High

Performance Computing (SBAC-PAD), 2012 IEEE 24th International

Symposium on. IEEE, 2012, pp. 179–186.

[4] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. Ang, “Introducing
the graph 500,” Cray Users Group (CUG), 2010.

[5] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method
for the wave equation: A pedestrian prescription,” Antennas and Prop-

agation Magazine, IEEE, vol. 35, no. 3, pp. 7–12, 1993.

[6] K. K. Nagar and J. D. Bakos, “A sparse matrix personality for the
convey hc-1,” in Field-Programmable Custom Computing Machines

(FCCM), 2011 IEEE 19th Annual International Symposium on. IEEE,
2011, pp. 1–8.

[7] T. A. Davis, “The university of florida sparse matrix collection,” in NA

digest. Citeseer, 1994.

[8] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra,
“Matrix market: a web resource for test matrix collections,” Quality of

Numerical Software, Assessment and Enhancement, pp. 125–137, 1997.

[9] Y. Shan, T. Wu, Y. Wang, B. Wang, Z. Wang, N. Xu, and H. Yang,
“Fpga and gpu implementation of large scale spmv,” in Application

Specific Processors (SASP), 2010 IEEE 8th Symposium on. IEEE,
2010, pp. 64–70.

[10] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Dem-
mel, “Optimization of sparse matrix–vector multiplication on emerging
multicore platforms,” Parallel Computing, vol. 35, no. 3, pp. 178–194,
2009.

[11] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” The Journal of Supercomputing, vol. 50, no. 1,
pp. 36–77, 2009.

[12] N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the

Conference on High Performance Computing Networking, Storage and

Analysis. ACM, 2009, p. 18.

[13] F. D. Igual, M. Ali, A. Friedmann, E. Stotzer, T. Wentz, and R. van de
Geijn, “Unleashing dsps for general-purpose hpc,” 2012.

[14] K. K. Kasichayanula, “Power aware computing on gpus,” Master’s
thesis, University of Tennessee, 2012.

[15] R. Suda et al., “Accurate measurements and precise modeling of power
dissipation of cuda kernels toward power optimized high performance
cpu-gpu computing,” in Parallel and Distributed Computing, Applica-

tions and Technologies, 2009 International Conference on. IEEE, 2009,
pp. 432–438.

[16] J. W. Sheaffer, D. Luebke, and K. Skadron, “A flexible simulation
framework for graphics architectures,” in Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware. ACM,
2004, pp. 85–94.

[17] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical power consump-
tion analysis and modeling for gpu-based computing,” in Proceeding

of ACM SOSP Workshop on Power Aware Computing and Systems

(HotPower), 2009.

[18] S. Collange, D. Defour, and A. Tisserand, “Power consumption of gpus
from a software perspective,” Computational Science–ICCS 2009, pp.
914–923, 2009.

[19] J. M. Cebri’n, G. D. Guerrero, and J. M. Garcia, “Energy efficiency
analysis of gpus,” in Parallel and Distributed Processing Symposium

Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International.
IEEE, 2012, pp. 1014–1022.

[20] A. Wijs and D. Bošnački, “Improving gpu sparse matrix-vector multi-
plication for probabilistic model checking,” Model Checking Software,
pp. 98–116, 2012.

[21] J. Godwin, J. Holewinski, and P. Sadayappan, “High-performance
sparse matrix-vector multiplication on gpus for structured grid computa-
tions,” in Proceedings of the 5th Annual Workshop on General Purpose

Processing with Graphics Processing Units. ACM, 2012, pp. 47–56.

[22] W. Xu, H. Zhang, S. Jiao, D. Wang, F. Song, and Z. Liu, “Optimizing
sparse matrix vector multiplication using cache blocking method on
fermi gpu,” in Software Engineering, Artificial Intelligence, Network-

ing and Parallel & Distributed Computing (SNPD), 2012 13th ACIS

International Conference on. IEEE, 2012, pp. 231–235.

[23] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning
of sparse matrix-vector multiply on gpus,” in ACM Sigplan Notices,
vol. 45, no. 5. ACM, 2010, pp. 115–126.

[24] F. Vazquez, G. Ortega, J. Fernandez, and E. Garzon, “Improving the
performance of the sparse matrix vector product with gpus,” in Com-

puter and Information Technology (CIT), 2010 IEEE 10th International

Conference on. IEEE, 2010, pp. 1146–1151.

[25] H. Anzt, M. Castillo, J. C. Fernández, V. Heuveline, F. D. Igual,
R. Mayo, and E. S. Quintana-Ortı́, “Optimization of power consumption
in the iterative solution of sparse linear systems on graphics processors,”
Computer Science-Research and Development, pp. 1–9, 2011.

[26] H. Anzt, V. Heuveline, J. I. Aliaga, M. Castillo, J. C. Fernandez,
R. Mayo, and E. S. Quintana-Orti, “Analysis and optimization of power
consumption in the iterative solution of sparse linear systems on multi-
core and many-core platforms,” in Green Computing Conference and

Workshops (IGCC), 2011 International. IEEE, 2011, pp. 1–6.

174

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
