
Victim Replication: Maximizing Capacity while
Hiding Wire Delay in Tiled Chip Multiprocessors

Michael Zhang and Krste Asanović

MIT Computer Science and Artificial Intelligence Laboratory
The Stata Center, 32 Vassar Street, Cambridge, Massachusetts�

rzhang, krste � @csail.mit.edu

Abstract

In this paper, we consider tiled chip multiprocessors
(CMP) where each tile contains a slice of the total on-
chip L2 cache storage and tiles are connected by an on-
chip network. The L2 slices can be managed using two
basic schemes: 1) each slice is treated as a private L2
cache for the tile 2) all slices are treated as a single large
L2 cache shared by all tiles. Private L2 caches provide
the lowest hit latency but reduce the total effective cache
capacity, as each tile creates local copies of any line it
touches. A shared L2 cache increases the effective cache
capacity for shared data, but incurs long hit latencies
when L2 data is on a remote tile.

We present a new cache management policy, victim
replication, which combines the advantages of private
and shared schemes. Victim replication is a variant of
the shared scheme which attempts to keep copies of local
primary cache victims within the local L2 cache slice.
Hits to these replicated copies reduce the effective la-
tency of the shared L2 cache, while retaining the ben-
efits of a higher effective capacity for shared data. We
evaluate the various schemes using full-system simula-
tion of both single-threaded and multi-threaded bench-
marks running on an 8-processor tiled CMP. We show
that victim replication reduces the average memory ac-
cess latency of the shared L2 cache by an average of
16% for multi-threaded benchmarks and 24% for single-
threaded benchmarks, providing better overall perfor-
mance than either private or shared schemes.

1. Introduction

Chip multiprocessors (CMPs) exploit increasing tran-
sistor counts by placing multiple processors on a sin-
gle die [21]. CMPs are attractive for applications with
significant thread-level parallelism where they can pro-
vide higher throughput and consume less energy per op-
eration than a wider-issue uniprocessor. Existing CMP
designs [4, 17, 18, 25] adopt a “dancehall” configura-
tion, where processors with private primary caches are

on one side of an interconnect crossbar and a shared L2
cache is on the other. In future CMPs, both the processor
count and the L2 cache size are likely to increase, with
the wire delay reaching tens of clock cycles for cross-
chip communication latencies [1, 12]. Most current L2
caches have a simple fixed-latency pipeline to access all
L2 cache slices. Using the worst-case latency, however,
will result in unacceptable hit times for the larger caches
expected in future processors.

We believe future CMP designs will naturally evolve
toward arrays of replicated tiles connected over a
switched network. Tiled CMPs scale well to larger pro-
cessor counts and can easily support families of products
with varying numbers of tiles. In this paper, we study a
class of tiled CMPs where each tile contains a processor
with primary caches, a slice of the L2 cache, and a con-
nection to the on-chip network, as shown in Figure 1.
This structure resembles a shrunken version of a con-
ventional mesh-connected multi-chip multiprocessor.

There are two basic schemes to manage the on-chip
L2 storage in these tiled CMPs: 1) each L2 slice is
treated as a private L2 cache for the local processor, or
2) the distributed L2 slices are aggregated to form a sin-
gle high-capacity shared L2 cache for all tiles. We refer
to these two schemes as L2P and L2S, respectively.

The L2P scheme has low L2 hit latency, providing
good performance when the working set fits in the lo-

5 mm

5
m

m

A 4 X 4 CMP (20 mm X 20 mm)

Router

CPU

L1
D

$
(3

2K
B

)

L1
I$

 (
32

K
B

)
L2

 T
ag

s

L2
 T

ag
s

(2
56

K
B

)
L2

$

L2
$

(2
56

K
B

)

Figure 1. A tiled CMP design in a 70nm process.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

cal L2 slice. But each tile must keep a local copy of
any data it touches, reducing the total effective on-chip
cache capacity for shared data. Also, the fixed partition-
ing of resources does not allow a thread with a larger
working set to “borrow” L2 cache capacity from other
tiles hosting threads with smaller working sets.

The L2S scheme reduces the off-chip miss rate for
large shared working sets, but the network latency be-
tween a processor and an L2 cache slice varies widely
depending on their relative placement on the die and on
network congestion. As we will show in the results, the
higher L2 hit latency can sometimes outweigh the ca-
pacity advantage of the shared L2 cache, and cross-chip
latencies will continue to grow in future technologies.

L2S is an example of a non-uniform cache access
(NUCA) design [16]. There have been several recent
proposals [5, 6, 16] to reduce access latency for NUCA
caches. Both D-NUCA [16] and NuRAPID [6] attempt
to reduce average latency for a uniprocessor NUCA
cache by migrating frequently-accessed data to cache
slices closer to the processor. However, these two pro-
tocols could yield poor performance when applied to
CMPs, where a given L2 cache line may be repeatedly
accessed by multiple cores located at opposite corners
of a chip. A recent study by Beckmann and Wood [5]
investigates the behavior of block migration in CMPs
using a variant of D-NUCA, but the proposed protocol
is complex and relies on a “smart search” algorithm for
which no practical implementation is given. The bene-
fits are also limited by the tendency for shared data to
migrate to the center of the die.

In this paper, we introduce victim replication, a hy-
brid cache management policy which combines the ad-
vantages of both private and shared L2 schemes. Victim
replication (L2VR) is based on the shared L2 scheme,
but reduces hit latency over L2S by allowing multi-
ple copies of a cache line to co-exist in different L2
slices of the shared L2 cache. Each copy of an L2
cache line residing on a tile other than its home tile is
a replica. In effect, replicas form dynamically-created
private L2 caches to reduce hit latency for the local pro-
cessor. We show that victim replication provides better
overall performance than either private or shared cache
designs, while using a much simpler protocol than pre-
vious NUCA designs.

2. Tiled CMP Designs

In this section, we describe the four L2 cache config-
urations we considered for tiled CMPs. All CMPs are
based on a unit tile replicated in a 2-D mesh configura-
tion as shown in Figure 1. Each tile contains a processor,
primary instruction and data caches, an L2 cache slice
with any associated directory, and a network switch. The

tile in Figure 1 is approximately drawn to scale based on
the floorplan of the Motorola MPC7447A [7] scaled to
70 nm technology, with the Altivec units removed and
the L2 cache doubled to 1 MB capacity. Additional as-
sumptions are as follows:

1. The primary instruction and data caches are not the
focus of this paper, and are kept small and private
to give the lowest access latency.

2. The local L2 cache slice is tightly coupled to the
rest of the tile and is accessed with a fixed latency
pipeline. The tag, status, and directory bits are kept
separate from the data arrays and close to the pro-
cessor and router for quick tag resolution.

3. Accesses to L2 cache slices on other tiles travel
over the on-chip network and experience varying
access latencies depending on inter-tile distance
and network congestion.

4. A generic four-state MESI protocol with reply-
forwarding is used as the baseline protocol for on-
chip data coherence. Each CMP design uses minor
variants of this protocol.

2.1. Private L2 Scheme

The L2P scheme, shown in Figure 2(a), uses the lo-
cal L2 slice as a private L2 cache for the tile. This is
equivalent to simply shrinking a traditional multi-chip
multiprocessor onto a single chip. We employ a high-
bandwidth on-chip directory scheme to keep the mul-
tiple L2 caches coherent, with the directory held as a
duplicate set of L2 tags distributed across tiles by set
index [4]. Cache-to-cache transfers are used to reduce
off-chip requests for local L2 misses, but these opera-
tions require three-way communication between the re-
questor tile, the directory tile, and the owner tile. This
operation is significantly more costly than remote hits in
the L2S case, where a cache-to-cache transfer happens
only if the line is held exclusive.

2.2. Shared L2 Scheme

The L2S scheme manages the L2 slices as a single
shared L2 cache with addresses interleaved across tiles,
as shown in Figure 2(b). L2S is similar to existing CMP
designs, where several processor cores share a banked
L2 cache [4, 18, 25]. Processor to L2 latency varies ac-
cording to the number of network hops to the L2 slice
and network congestion. We maintain coherence among
all primary caches by adding additional directory bits to
each L2 line to track which tiles have copies in their pri-
mary caches. Requests are satisfied by primary cache-
to-cache transfers using reply-forwarding when appro-
priate.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Shared L2 caches
backing up all of the
L1 caches on−chip

Private L2 caches
backing up only the L1
cache on the local tile

(b) Shared L2 Design (L2S)

CPU Core

L1D$L1I$

CPU Core

L1D$L1I$

CPU Core

L1D$L1I$

CPU Core

L1D$L1I$

(a) Private L2 Design (L2P)

CPU Core

L1D$L1I$

CPU Core

L1D$L1I$

CPU Core

L1D$L1I$

CPU Core

L1D$L1I$

Router Router Router Router

L2$ T
ag

D
ire

ct
or

y

L2$ T
ag

D
ire

ct
or

y

L2$ T
ag

D
ire

ct
or

y

L2$ T
ag

D
ire

ct
or

y

Router Router Router Router

Tag
Dup.

Tag
Dup.

Tag
Dup.

Tag
Dup.

Memory
Channel

Memory
Channel

Memory
Channel

Memory
Channel

Memory
Channel

Memory
Channel

Memory
Channel

Memory
Channel

T
agL2$ T
agL2$ T
agL2$ T
agL2$

Figure 2. The two baseline L2 designs. The private L2 design treats each L2 slice as a private cache. The
shared L2 design treats all L2 slices as part of a global shared cache.

2.3. Victim Replication

Victim replication (L2VR) is a simple hybrid scheme
that tries to combine the large capacity of L2S with the
low hit latency of L2P. L2VR is based on L2S, but in
addition L2VR tries to capture evictions from the local
primary cache in the local L2 slice. Each retained victim
is a local L2 replica of a line that already exists in the L2
of the remote home tile.

When a processor misses in the shared L2 cache, a
line is brought in from memory and placed in the on-
chip L2 at a home tile determined by a subset of the
physical address bits, as in L2S. The requested line is
also directly forwarded to the primary cache of the re-
questing processor. If the line’s residency in the primary
cache is terminated because of an incoming invalidation
or writeback request, we simply follow the usual L2S
protocol. If a primary cache line is evicted because of
a conflict or capacity miss, we attempt to keep a copy
of the victim line in the local slice to reduce subsequent
access latency to the same line.

We could create a replica for all primary cache vic-
tims, but L2 slice capacity is shared between victim
replicas and global L2 lines (each set can contain any
combination of replicas and global lines). We never
evict a global line with remote sharers in favor of a local
replica, as an actively cached global line is likely to be
in use. The L2VR replication policy will replace the fol-
lowing classes of cache lines in the target set in descend-
ing priority order: (1) An invalid line; (2) A global line
with no sharers; (3) An existing replica. If no lines be-
long to any of these three categories, no replica is made

and the victim is evicted from the tile as in L2S. If there
is more than one line in the selected category, L2VR
picks at random. Finally, L2VR never replicates a vic-
tim whose home tile happens to be local.

All primary cache misses must now first check the
local L2 tags in case there’s a valid local replica. On a
replica miss, the request is forwarded to the home tile.
On a replica hit, the replica is invalidated in the local L2
slice and moved into the primary cache. When a down-
grade or invalidation request is received from the home
tile, the L2 tags must also be checked in addition to the
primary cache tags.

L2VR has a small area overhead over L2S, because
the the L2 tags must be wide enough to hold physical ad-
dresses from any home tile, thus the tag width becomes
the same as L2P. Global L2 lines redundantly set these
bits to the address index of the home tile. Replicas of re-
mote lines can be distinguished from regular L2 lines as
their additional tag bits do not match the local tile index.

2.4. Small Victim Cache

In effect, L2VR dynamically builds a private victim
cache in the local L2 slice. For comparison, we also con-
sider adding a conventional private victim cache [15] to
the primary caches of the L2S scheme (L2VC). The size
of the victim cache is chosen to approximately match the
area increase for L2VR, which needs additional tag bits
for replicas in the L2 caches. We optimistically assume
that the L1 victim cache access can be completed in one
cycle after a primary cache miss.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

3. Experimental Methodology

In this section, we describe the simulation techniques
we used to evaluate the alternative caching schemes. To
present a clearer picture of memory system behavior, we
use a simple in-order processor model and focus on the
average raw memory latency seen by each memory re-
quest. Clearly, overall system performance can only be
determined by co-simulation with a detailed processor
model, though we expect the overall performance trend
to follow average memory access latency. Prefetching,
decoupling, non-blocking caches, and out-of-order ex-
ecution are well-known microarchitectural techniques
which overlap memory latencies to reduce their impact
on performance. However, machines using these tech-
niques complete instructions faster, and are therefore
relatively more sensitive to any latencies that cannot be
hidden. Also, these techniques are complementary to the
victim replication scheme, and cannot provide the same
benefit of reducing cross-chip traffic.

3.1. Simulator Setup and Parameters

We have implemented a full-system execution-driven
simulator based on the Bochs [19] system emulator.
We added a cycle-accurate cache and memory simula-
tor with detailed models of the primary caches, the L2
caches, the 2D mesh network, and the DRAM. Both
instruction and data memory reference streams are ex-
tracted from Bochs and fed into the detailed memory
simulator at run time. The combined limitations of
Bochs and our Linux port restricts our simulations to
8 processors. Results are obtained by running Linux
2.4.24 compiled for an x86 processor on an 8-way tiled
CMP arranged in a 4 � 2 grid.

To simplify result reporting, all latencies are scaled
to the access time of the primary cache, which takes a
single clock cycle. The 1 MB local L2 cache slice has
a 6 cycle hit latency. We assume a 70 nm technology
based on BPTM [9], and model each hop in the net-
work as taking 3 cycles, including the router latency and
an optimally-buffered 5 mm inter-tile copper wire on a
high metal layer. DRAM accesses have a minimum of
256 cycles of latency. Table 1 lists the important system
parameters used in the experiments.

A 24 FO4 processor clock cycle is assumed in this pa-
per, representing a modern power-performance balanced
pipeline design [11, 23]. High-frequency designs might
target a cycle time of 8–12 FO4 delays [13, 22], in which
case cycle latencies should be doubled or tripled. Note
that the worst case contention-free L2 hit latency is 30
cycles, hinting that even a small reduction in cross-chip
accesses could lead to significant performance gains.

The L2 set-associativity (16-way) was chosen to be
larger than the number of tiles to reduce cache conflicts

Table 1. Simulation parameters. All latencies
are measured in 24 FO4-delay cycles.

Component Parameter

Processor Model in-order
Cache Line Size 64 B
L1 I-Cache Size/Associativity 16 KB/16-way
L1 D-Cache Size/Associativity 16 KB/16-way
L1 Load-to-Use Latency 1 cycle
L1 Replacement Policy Psuedo-LRU
L2 Cache Size/Associativity 1 MB/16-way
L2 Load-to-Use Latency (per slice) 6 cycles
L2 Replacement Policy Random
L1 Victim Cache Size/Associativity 8 KB/16-way
L1 Victim Cache Load-to-Use Latency 1 cycle
Network Configuration 4 � 2 Mesh
One-hop latency 3 cycles
Worst case L2 hit latency (contention-free) 30 cycles
External memory latency 256 cycles

between threads. For L2 associativities of 8 or less, we
found several benchmarks had significant inter-thread
conflicts, reflected by high off-chip miss rates. Inter-
thread interference is a concern for any large scalable
outer-level shared cache that maintains inclusion with
inner-level private caches.

3.2. Benchmark Suite

Table 2 summarizes the mix of single-threaded and
multi-threaded benchmarks used to evaluate the designs.
All 12 SpecINT2000 benchmarks are used as single-
threaded workloads. They are compiled with the In-
tel C compiler (version 8.0.055) using -O3 -static
-ipo -mp1 +FDO and use the MinneSPEC large-
reduced dataset as input.

The multi-threaded workloads include all 8 of the
OpenMP NAS Parallel Benchmarks (NPB) mostly writ-
ten in FORTRAN, Classes S and W are standard in-
put sizes, and class R is custom-sized to have manage-
able runtimes that fall between the S and W classes.
In addition to NPB, we use two OS-intensive server
benchmarks, apache and dbench, written in C. We
also use one AI benchmark, checkers, written in
Cilk [10], which uses a dynamic work-stealing thread
scheduler. All of the multi-threaded benchmarks are
compiled with ifort-v8 -g -O2 -openmp un-
less otherwise noted in Table 2.

All benchmarks were invoked in a runlevel without
superfluous processes/daemons to prevent non-essential
processes from interfering with the benchmark. Each
simulation begins with the Linux boot sequence, but re-
sults are only gathered after the benchmark begins exe-
cution until completion.

Due to the long running nature of the benchmarks,
we used a sampling technique to reduce simulation time.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Table 2. Benchmarks Description.
Single-Threaded Benchmarks Multi-Threaded Benchmarks

Benchmark Description Benchmark Description
(Instruction Count (Instruction Count

in Billions) in Billions)

bzip (3.8) bzip2 compression algorithm BT (1.7) class S. block-tridiagonal CFD
crafty (1.2) High-performance chess program CG (5.0) class W. conjugate gradient kernel
eon (2.9) Probabilistic ray tracer EP (6.8) class W. embarassingly parallel kernel
gap (1.1) A language used for computing in groups FT (6.6) class S. 3X 1D fast fourier transform (-O0)
gcc (6.4) gcc compiler version 2.7.2.2 IS (5.5) class W. integer sort. (icc-v8)
gzip (1.0) Data compression using LZ77 LU (6.2) class R. LU decomp. with SSOR CFD
mcf (1.7) Single-depot vehicle scheduling algorithm MG (5.1) class W. multigrid kernel
parser (5.6) Word processing parser SP (6.7) class R. scalar pentagonal CFD application
perlbmk (1.8) Cut-down version of Perl v5.005 03 apache (3.3) Apache’s ’ab’ worker threading model (gcc 2.96)
twolf (1.5) The TimberWolfSC place/route package dbench (3.3) executes Samba-like syscalls (gcc 2.96)
vortex (1.5) An object-oriented database program checkers (2.9) Cilk checkers (Cilk 5.3.2, gcc 2.96)
vpr (5.3) A FPGA place/route package

We extend the functional warming method for super-
scalars [26] to an SMP system, and fast-forward through
periods of execution while maintaining cache and direc-
tory state [3]. At the start of each measurement sam-
ple, we run the detailed timing model to warm up the
cache, memory and network pipelines. After this warm-
ing phase, we gather detailed statistics for one million
instructions, before re-entering fast-forward mode. De-
tailed samples are taken at random intervals during ex-
ecution and include 20% of all instructions executed,
i.e., fast-forward intervals average around five million
instructions. The number of samples taken for each
benchmark ranges from around 150 to 1,000. Simula-
tions show that the fastforwarding results match up with
detailed runs to within 5% of error. To minimize the bias
in the results introduced by system variability [2], we ran
multiple runs of each benchmark with varying sample
length and frequency. Results show that the variability
is insignificant for our benchmark suite.

4. Simulation Results

In this section, we report on our simulation results.
We first report on the multi-threaded benchmarks, and
then the single-threaded benchmarks.

4.1. Multi-threaded Benchmark Performance

The primary results of our evaluation are shown in
Figure 3, which shows the average memory access la-
tency experienced by a memory access from a proces-
sor. The minimum possible access latency is one cycle,
when all accesses hit in the primary cache.

The average memory access latency is composed of
many complex components that differ between schemes.
In the following, we provide a detailed analysis of the
behavior of each benchmark using three metrics: the
average memory access latency seen by the processors
(Figure 3), the off-chip miss rate of the benchmarks

(Figure 4), and a breakdown of the memory accesses
(Figure 5).

There are different types of hit in the L2 cache across
the different schemes. For L2P (first bar in Figure 5),
hits in remote slices are from cache-to-cache transfers,
which take longer than a remote L2 hit in L2S. For L2S
(second bar in Figure 5), a hit in L2 can be in the local
L2 slice or a remote L2 slice. For L2VR (third bar in
Figure 5), the hits to local L2 cache also include hits to
replicas.

As shown in Figure 3, the small victim cache (L2VC)
improves access latency a little by catching some pri-
mary cache conflict misses. However, by reusing the far
larger data capacity of the local L2 slice, L2VR provides
a much greater reduction in average memory access la-
tency. Thus, we omit L2VC in the following discussion.

We divide the analysis of the 11 benchmarks into
three groups: 1) those with equal performance between
L2P and L2S; 2) better performance with L2P; 3) better
performance with L2S.

Equal Performance for L2P and L2S

Benchmark IS is the sole benchmark in this category.
This benchmark has a working set which fits in the pri-
mary cache, with an average memory access latency of
just over one cycle, and is unaffected by the L2 policy.

L2P Better Than L2S

Seven of the benchmarks perform better with L2P than
L2S. Benchmarks BT, FT, LU, SP, and apache per-
form better with L2P because their working sets fit into
the one megabyte private L2 slice. The lower latency
of L2P dominates performance for these benchmarks.
Benchmark dbench has a similar profile except it has
a working set much larger than even the shared cache,
as shown by the high off-chip miss rate for all three

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

BT CG EP FT IS LU MG SP apache dbenchcheckers
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

L2P
L2S
L2VC
L2VR

Figure 3. Access latencies of multi-threaded
programs.

BT CG EP FT IS LU MG SP apache dbenchcheckers
0

0.1

0.2

0.3

0.4

0.5

0.6
Global Cache Miss Rate

M
is

s
R

at
e

(%
)

Benchmarks

L2P
L2S
L2VR

Figure 4. Off-chip miss rates of multi-threaded
programs.

BT CG EP FT IS LU MG SP apache dbench checkers
90

91

92

93

94

95

96

97

98

99

100
Data Accesses Breakdown

B
re

ak
do

w
n

(%
)

Benchmarks

Misses (Off−chip Memory Accesses)
Hits in Non−Local L2 Data
Hits in Local L2 Data
Hits in L1

Figure 5. Memory access breakdown of multi-threaded programs. Moving from left to right, the three bars
for each benchmark are for the L2P, L2S, and L2VR schemes, respectively. For L2P, hits to non-local data
are from cache-to-cache transfers. For L2S, hits to shared data are in either the local tile or a non-local
tile. For L2VR, hits to local data also include replica hits.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

10

20

30

40
BT

re
pl

ic
a

(%
)

10

20

30

40
CG

10

20

30

40
EP

10

20

30

40
FT

re
pl

ic
a

(%
)

10

20

30

40
IS

10

20

30

40
LU

10

20

30

40
MG

re
pl

ic
a

(%
)

10

20

30

40
SP

10

20

30

40
apache

10

20

30

40
dbench

re
pl

ic
a

(%
)

10

20

30

40
checkers

Figure 6. Time-varying graph showing per-
centage of L2 allocated to replicas in multi-
threaded programs. Average of all caches is
shown.

BT CG EP FT IS LU MG SP apache dbenchcheckers
0

50

100

150

200

250
On−Chip Coherence Messages

N
um

be
r

of
 M

es
sa

ge
 H

op
s

pe
r

1K
 In

st
ru

ct
io

ns

Benchmarks

L2P
L2S
L2VR

Figure 7. Network traffic per 1K instructions
for multi-threaded programs.

schemes. Thus, L2S holds no effective capacity advan-
tage over L2P.

Benchmark CG performs better with L2P as it has a
working set that does not fit in the primary cache (9%
primary cache miss rate) but does mostly fit into the lo-
cal L2 cache slice. Even though CG has a significantly
higher off-chip miss rate for L2P than L2S, the latency
benefit of L2P, magnified by the large number of L2 ac-
cesses, makes L2P the winner by a wide margin.

For all but CG, L2VR is able to create enough repli-
cas so that its performance is usually within 5% of L2P.
L2VR also out-performs L2S significantly. Benchmark
CG is the only case where L2P notably outperforms both
L2S and L2VR.

L2S Better Than L2P

Three of the benchmarks perform better with L2S.
Benchmarks MG and EP work better with L2S because
they experience significantly less off-chip cache misses
than with L2P, (first two bars in Figure 4). This demon-
strates the usefulness of the additional on-chip cache ca-
pacity over L2P. However, L2S does not outperform L2P
by as much as one might expect, (first two bars in Fig-
ure 3), because L2S has a higher average L2 hit latency.

Benchmark checkers also performs better with
L2S, but for a different reason. This benchmark has a
small working set that fits in the local L2 slice, caus-
ing practically no off-chip misses for all three schemes.
However, it uses a dynamic work-stealing scheduler that
incurs a lot of thread migration during execution, shown
by the large number of cache-to-cache transfers. With

L2P, shared data is migrating between different tiles
along with the threads. Most of L2’s hits are to remote
caches using expensive L2 cache-to-cache transfers.

For these three benchmarks, L2VR performs best
overall. Although L2VR has slightly more off-chip
cache accesses than L2S, they are offset by the reduc-
tion in inter-tile accesses from replica hits (second and
third bar in Figure 5).

Multi-Threaded Performance Summary

Out of the eleven benchmarks, one is unaffected by L2
policy. Three benchmarks perform better with L2S than
L2P, but perform best with L2VR. Six benchmarks per-
form better with L2P than L2S, but L2VR has similar
performance to L2P. For only one benchmark, CG, does
L2VR fall significantly behind L2P.

Table 3 shows the per-benchmark savings achieved
by L2VR over L2S, on which it is based. L2VR reduces
memory latency by around 16%, with 7 out of the 11
benchmarks reaching over 14%. While all benchmarks
experiences a moderate increase in off-chip misses for
L2VR over L2S, none is large enough to offset the ben-
efit of the replicas.

4.2. On-chip Network Traffic Reduction

An additional benefit of L2VR is the reduction of on-
chip coherence traffic. Figure 7 shows the number of
coherence message per thousand instructions executed,
weighed by the number of hops each message traversed.
As expected, L2P has by far the lowest traffic for the
all benchmarks except checkers, which has a larger

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

0

50

100
bzip

re
pl

ic
a

(%
)

0

50

100
crafty

0

50

100
eon

0

50

100
gap

re
pl

ic
a

(%
)

0

50

100
gcc

0

50

100
gzip

0

50

100
mcf

re
pl

ic
a

(%
)

0

50

100
parser

0

50

100
perlbmk

0

50

100
twolf

re
pl

ic
a

(%
)

0

50

100
vortex

0

50

100
vpr

Figure 8. Time-varying graph showing per-
centage of L2 allocated to replicas in single-
threaded programs. Individual caches are
shown.

bzip crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr
0

1

2

3

4

5

6

7

8

9

10
Average Data Access Latency

La
te

nc
y

(C
yc

le
s)

Benchmarks

L2P
L2S
L2VR

Figure 9. Access latency comparison of
single-threaded programs.

Table 3. Reduction in memory access latency
for L2VR over L2S.

Single-Threaded Benchmarks Multi-Threaded Benchmarks

Benchmark Reduction (%) Benchmark Reduction (%)
bzip 18.5 BT 10.9
crafty 27.9 CG 37.5
eon 2.0 EP 15.7
gap 13.5 FT 14.8
gcc 21.1 IS 0.0
gzip 46.4 LU 25.6
mcf 41.4 MG 15.0
parser 26.2 SP 16.3
perl 5.1 apache 15.8
twolf 36.1 dbench 8.6
vortex 15.3 checkers 12.7
vpr 30.1

Average 23.7 Average 15.8

percentage of the L2 hits from cache-to-cache trans-
fers. L2VR eliminates some inter-tile messages when
accesses can be resolved in local replicas. The reduc-
tions range from 4% (dbench) to over 70% (LU) with
6 out of the 11 benchmarks reaching over 40%.

4.3. Adaptive Replication Policy

Figure 6 plots the percentage of total L2 cache ca-
pacity allocated to replicas for the eleven multi-threaded
benchmarks in our benchmark suite against execution
time. We plot the final result from each of the detailed
sample points. This graph shows two important fea-
tures of L2VR. First, it is an adaptive process that ad-
justs to the execution phases of the program. Execution

phases can be clearly observed in CG, FT, and dbench.
Second, the victim storage capacity offered by L2VR is
much larger than a comparable dedicated victim cache,
as modeled in L2VC. Five out of the eleven benchmarks
reached over 30% replicas, equal to a 300 KB victim
cache in our case.

It should be noted that for an � -tile CMP, the aver-
age percentage of victims over all caches cannot exceed� � � � � � � , and in our case, 87.5%. This is because at
most � � � replicas can exist for each global line. This
limit does not hold for each individual cache.

4.4. Single-Threaded Benchmarks

Single-threaded code is an important special case for
a tiled CMP. The L2VR policy dynamically adapts to a
single thread by forming a three-level cache hierarchy:
the primary cache, the local L2 slice full of replicas, and
the remote L2 slices acting as an L3 cache.

This behavior is shown in Figure 8, which plots the
time-varying graph of the percentage of replicas in each
of the eight individual L2 caches. Because we are per-
forming a full-system simulation, we sometimes observe
the single thread moving between CPUs under the con-
trol of the operating system scheduler. For benchmarks
bzip, gap, parser, and perlbmk, one tile held the
thread most of the time. For benchmarkscrafty, eon,
gzip, twolf, and vpr, the thread seems to bounce be-
tween two tiles. We did not attempt to optimize the ker-
nel scheduler to pin the thread on one tile throughout the
run. Across the benchmarks, the L2 slice of the tile on
which the thread is running holds a very high percentage
of replicas, usually over 50%.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

bzip crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Global Cache Miss Rate

m
is

s
ra

te
 (

%
)

Benchmarks

L2P
L2S
L2VR

Figure 10. Off-chip miss rate of single-
threaded programs.

bzip crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr
0

5

10

15
On−Chip Coherence Messages

N
um

be
r

of
 M

es
sa

ge
 H

op
s

pe
r

1K
 In

st
ru

ct
io

ns

Benchmarks

L2P
L2S
L2VR

Figure 11. Network traffic per 1K instructions
for single-threaded programs.

Figure 9 shows the memory access latencies for the
single-threaded benchmarks, and Figure 10 shows the
off-chip miss rates. In many cases, L2S performs sig-
nificantly worse than the other schemes, because L2
hit latency is a critical component of performance for
these codes. Table 3 summarizes the savings achieved
by L2VR over L2S. Nine out of the twelve benchmarks
achieved 15% or more savings, with six of them over
25%, and an average of 24%. L2VR is usually com-
parable or better than the L2P scheme, combining the
advantages of fast accesses to the local L2 slice with a
large on-chip backup cache.

Figure 11 shows the number of coherence message
per thousand instructions executed, weighed by the
number of hops each message traversed, for single-
threaded benchmarks. On average, L2VR reduces the
network traffic by 71% compared to L2S, and ap-
proaches the level of traffic generated by L2P.

5. Related Work

Earlier NUCA proposals [5, 6, 16] were briefly dis-
cussed in the introduction. The tiled CMP architec-
ture we introduce here has a much simpler and regular
structure yet provides similar benefits in avoiding worst-
case access latency to a distributed L2 cache, with repli-
cation to further reduce latency of frequently accessed
data. Huh et. al. discussed the design space for fu-
ture CMPs in [14], but only evaluated private L2 caches.
Oi and Ranganathan studied the effect of remote victim
caching [20], though the the size of the remote victim
cache is fixed and cannot dynamically adapt to individ-
ual benchmarks or the current phase of execution.

The cache and memory system of several academic
and commercial architectures also share similarity with
victim replication. The IBM Power4 architecture [25]
has a private non-inclusive L3 cache on each node (a
node may have 2-8 processors), where entries are al-
located either for local L3 misses or local L2 victims.
However, while L3s can be snooped by other nodes, lo-
cal L2 victims always overwrite the local L3, thus in
practice a shared working set larger than one L3 cannot
remain resident. In contrast, L2VR does not overwrite
shared global L2 lines to help maintain a large working
set on-chip. In addition, victim replication avoids global
snooping by allocating global L2 misses in a known
home node.

The Pirahna [4] architecture uses a shared L2 cache
among all processors. The L2 cache is non-inclusive
of the primary caches and essentially caches all of the
primary cache victims. However, Pirahna has a “dance-
hall” structure and coherence among primary caches is
kept by a snoopy bus protocol.

The MIT Raw architecture [24] is a tiled multipro-
cessor that resembles the CMP model presented in this
paper. It sports 16 simple RISC-like cores with 2 MB
total cache on-chip, distributed evenly among all tiles.
However, there is no hardware mechanism to keep the
caches coherent.

The L2VR scheme share some similarity with ear-
lier work on remote data caching in conventional CC-
NUMA and COMA architectures [8, 27], which also try
to retain local copies of data that would otherwise re-
quire a remote access. There are two major differences
in the CMP structure, however, that limit the applicabil-
ity of prior remote caching work. First, in CC-NUMAs,

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

all the local cache on a node is private so the alloca-
tion between local and remote data only affects the lo-
cal node. In the L2VR scheme, on-chip L2 capacity is
shared by all nodes, and so a local node’s replacement
policy affects cache performance of all nodes. Second,
in both CC-NUMA and COMA systems, remote data is
further away than local DRAM, thus it is beneficial to
use a large remote cache held in local DRAM. In addi-
tion, the cost of adding a remote cache is low and does
not diminish the performance of existing L2 caches. In
the CMP structure, the remote caches are closer to the
local node than any DRAM, and any replication reduces
the effective cache capacity for lines that will have to be
fetched from slow off-chip memory.

6. Conclusion

Tiled CMPs are an attractive evolution from existing
“dancehall” CMP structures, providing a simpler repli-
cated physical design. As CMP processor counts and
cache sizes grow, and cross-chip relative wire delay in-
creases, reducing data movement to off-chip memory
and across chip will become the dominant architectural
design challenge. In this paper, we have shown that
while distributed shared L2 caches usually reduce off-
chip traffic, they can do so at the cost of adding signifi-
cant on-chip communication delays. The victim replica-
tion scheme proposed in this paper helps reduce on-chip
communication delay by replicating cache lines within
the same level of the cache, local to processors actively
accessing the line. The result is a dynamically self-
tuning hybrid between private and shared caches.

7. Acknowledgments

We thank the anonymous reviewers and members
of the MIT SCALE group, especially Chris Batten
and Ronny Krashinsky, for their comments. Special
thanks to Ken Barr for the benchmarks used in the
paper. This work is partly funded by the DARPA
HPCS/IBM PERCS project and NSF CAREER Award
CCR-0093354.

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger.
Clock rate versus IPC: The end of the road for conven-
tional microarchitectures. In ISCA-27, May 2000.

[2] A. Alameldeen and D. Wood. Addressing workload vari-
ability in architectural simulations. In HPCA-9, 2003.

[3] K. Barr, H. Pan, M. Zhang, and K. Asanović. Accelerat-
ing multiprocessor simulation with a memory timestamp
record. In ISPASS-2005, March 2005.

[4] L. Barroso et al. Piranha: a scalable architecture based
on single-chip multiprocessing. In ISCA-27, May 2000.

[5] B. Beckmann and D. Wood. Managing wire delay in
large chip-multiprocessor caches. In MICRO-37, 2004.

[6] Z. Chishti, M. Powell, and T. Vijaykumar. Distance
associativity for high-performance energy-efficient non-
uniform cache architectures. In MICRO-36, December
2003.

[7] C. Corley. PowerPC benchmarking update. In Smart
Networks Developer Forum, April 2004.

[8] F. Dahlgren and J. Torrellas. Cache-only memory archi-
tectures. IEEE Computer, 32(6), 1999.

[9] Device Group at UC Berkeley. Predictive technology
model. Technical report, UC Berkeley, 2001.

[10] Supercomputing Technologies Group. Cilk 5.3.2.
http://supertech.lcs.mit.edu/cilk, June 2000.

[11] A. Hartstein and T. Puzak. Optimum power/performance
pipeline depth. In MICRO-36, 2003.

[12] R. Ho, K. Mai, and M. Horowitz. The future of wires.
Proceedings of IEEE, 89(4), April 2001.

[13] M. Hrishikesh et al. The optimal logic depth per pipeline
stage is 6 to 8 FO4 inverter delays. In ISCA-29, May
2002.

[14] J. Huh, D. Burger, and S. Keckler. Exploring the design
space of future CMPs. In PACT, September 2001.

[15] N. Jouppi. Improving direct-mapped cache performance
by the addition of a small fully-associative cache and
prefetch buffers. In ISCA-27, June 1990.

[16] C. Kim, D. Burger, and S. W. Keckler. An adaptive,
non-uniform cache structure for wire-delay dominated
on-chip caches. In ASPLOS-X, October 2002.

[17] K. Krewell. Intel’s PC roadmap sees double. Micropro-
cessor Report, 18(5):41–43, May 2004.

[18] K. Krewell. Sun’s Niagara pours on the cores. Micropro-
cessor Report, 18(9):11–13, September 2004.

[19] K. Lawton. Bochs. http://bochs.sourceforge.net.

[20] H. Oi and N. Ranganathan. Utilization of cache area in
on-chip multiprocessor. In HPC, 1999.

[21] K. Olukotun et al. The case for a single-chip multipro-
cessor. In ASPLOS-VII, Cambridge, MA, October 1996.

[22] E. Sprangle and D. Carmean. Increasing processor per-
formance by implementing deeper pipelines. In ISCA-29,
May 2002.

[23] V. Srinivasan et al. Optimizing pipelines for power and
performance. In MICRO-35, November 2002.

[24] M. B. Taylor et al. Evaluation of the Raw micropro-
cessor: An exposed-wire-delay architecture for ILP and
Streams. In ISCA-31, June 2004.

[25] J. Tendler et al. Power4 system microarchitecture. IBM
Journal of Research and Development, 46(1), 2002.

[26] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe.
SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling. In ISCA-30, June 2003.

[27] Z. Zhang and J. Torrellas. Reducing remote conflict
misses: NUMA with remote cache versus COMA. In
HPCA-3, January 1997.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

