Creating the Logical Sub-Block

The first step in defining the Logical sub-block is to create a new view for it. This will create a
new hierarchical level of design files and allow you to define the behavior of this sub-block with
one of the standard FPGA Advantage views: block-diagram, flowchart, state machine, truth
table, or VHDL Text.

For the Logical sub-block we will be creating a new block-diagram view. This is done by
positioning the pointer over the blue rectangle representing the block and right-clicking to bring
up the pop-up menu. From this menu, at the top, highlight the Open As item and from the sub-
menu select New View.... A window will appear asking you what type of view you want to
create. Select Block Diagram view from the list. Click the Next button and then click the Finish

button.

A new design window should appear resembling the figure shown below. Notice that there are
already input and output ports and busses placed on the design. This is because the design unit
symbol, the blue rectangle on the parent design, already has signals connected to it. These signals
connected to the outside of the symbol are automatically reflected by ports inside the design unit.

AlLU/Logical/struct * (Block Diagram)

File Edit Wiew HIL Dizgram Tasks Sipulate Add Options MWindow Help
B -« BHSE [BBlocAE 2LOL|L-AN - XWESBBEARG- 1 -L-%-=- 0055 &0
|%-% W -%-@-

I%|| structure Navigator al
£ Signal Table Y]
S} Generics Tahle e
=
El
% Declarations/Statements 5
H
H——1 =
Content |
| Mame | Instance
#= B (ftems: 3)
* B (ftems: 1)
® [F (tems: 2)
'
i
'
|
1
: £
~] El Content List
Feady

The logical unit will perform one of four operations: AND, OR, XOR, or NOR. Each of these
operations will be performed in parallel on the inputs and the output will be selected by a 32-bit
wide 4-1 multiplexor controlled by the ALUOp(1 downto 0) signals. The encodings for the
operations are specified in this table:

Operation | ALUOp(1) | ALUOp(0)
AND 0 0
OR 0 1
XOR 1 0
NOR 1 1

There are many different ways in which this functionality could be implemented. What we will
be doing is using embedded blocks to place fragments of VHDL code into the block diagram
which will perform the important logical operations.

First, select the embedded block tool from the toolbar by pressing the "B putton. Then position
the pointer over the block diagram between the input and output ports and left-click to place an
embedded block. The embedded block appears as a yellow rectangle. Place five embedded blocks
on the diagram in the same manner that you placed the sub-blocks in the top level block diagram.
Label the four columned blocks, from top to bottom: ANDBIlock, ORBlock, XORBlock, and
NORBIlock and the other embedded block Mux4Bus32. Your design area should now look like
the figure below:

AlU/Logical/struct* (Block Diagram)

File Edit Yiew HIL Diagram Tasks Ginulate Add Options Uindow Help
|- «2BHS8R ¢ BE|lo-AELL AL |- ANl s-MEBREEE L - %[~ -0|0F%e80
|9 -%-W-%- @
i 5 || Structure Navigator |
o e—————) L . L L S L L L L] signal Table a'T
| » B ool S} Generics Table &
awey ———) R - Declarations/Statements =
1 H
omBlock
z
L L L L L L L L = —
MuxdBus3z
5 Content -l
. o | Mame Instance
. o &] (tems: 5
. L o
i I - & (tems: 3)
I ||® = (tems: 1)
B (tems: 1)
HOEELock
a
. £
=] - Content List
Ready

It would be nice to have our ANDBIlock represented by a symbol which resembles an AND gate.
FPGA Advantage has a small number of alternative shapes for blocks. To change the shape,
right-click over the ANDBIlock block. At the bottom of the pop-up menu will be an option called
Object Properties. Select this option with a left-click. From the window which appears, click the
Block Appearance and select the desired shape from list box.

BD Object Properties - Edit Appearance

—Colar Style
Foregraun: I ;l Fill Style Ii;l
Backgroun: I ;l Line Style :Ll
Line Color -;l Line Width :;l
r—Change Shapes
[]
— User Declarations
— User Properties
Ok | Cancel | Apply | Help |
A

Click the OK button and your design should look like the figure below:

AlU/Logical/struct * (Block Diagram)

File Edit View HIL Diagran Tasks Simulate Add Options Uindow Help
8- +4BHER -t BRlo - AEAPLLL||L-AN s WEBRMAIG- L -L- -~ -0 0@ &80
|9 -% -7 -% -8
i o L L 5| Structure Navigator Al pl
2 p—0 . co co . co £ signal Table j?
O B Logican G} Generics Table g
=] 2
v p—) [Declarations/Statements 5
: p—0
OBBlock
z
L L L T
H— =
MuxTBus32
5 Content Al
| Name Instance
& 4] (tems: 5)
xoEBlock !
3 ®E (tems: 3)
|||# = qtems: 1)
B [E (tems: 1)
roEslock
a
= | = Content List
Ready T

Embedded blocks will place fragments of VHDL code at the top level of the architecture
description for the current block. Generally we will be using them to place what are called
Concurrent Assignmet Statments which will perform simple operations on data. Since the
embedded block VHDL code will be at the top level architecture for the view, all of the signals
in that view are automatically visible to the embedded block and it is not necessary to actually

connect signals to them.

For ease of reading, we will connect the input and output signals to the blocks. So, connect the A
and B busses to the left side of our ANDBIlock. You may also wish to resize the block to make it
a little bit smaller. Then create a new bus from the output (right) side of the ANDBIlock called
ANDR and connect it to the input side of the Mux4Bus32 block.

Finally, we must tell the embedded block what to do. The VHDL code which will Bitwise-AND
two std_logic_vectors of the same size together is: “ANDR <= A AND B;”. To enter this code for
the block, double-click the embedded block and make sure Text is selected in the Create
Embedded View windows. Then click the OK button.

‘.. = Create Embedded View

Create a new view for: Embedded Block: AMDBlock
Select type of wiew to create
+ State Diagram
+ Flow Chart
~ ASH
+ Truth Table

0K | Cancel |
g

An outlined box will appear anchored to the ANDBIlock embedded block. Highlight the text in
this box and replace it with the VHDL code “ANDR <= A AND B;” You can resize and
reposition the text as you like. Your block diagram should now resemble the figure below:

AlLU/Logical/struct * (Block Diagram)

File Edit Wiew HOL Diagram Tasks Simulate Add Options lWindow Help
B - «2BHSE -t BR--RAEFLLAL: AN ¥EBBRMAE- L - -=-|~ -0 0fEe
|%-% % -% -8

I5|| Structure Navigator A
£ signal Table Y
S} Generics Table
= 0
Declarations/Statements
{J{] Emhedded Diagrams

molg uuunu;u|||v

——————————— @ Logical® -

0RBlock
2

¥

H— =

32 . . . Content |
'sﬂ“ 1B E
| Mame Instance

& 4] (tems: 5

O R IFil REERRERRN | v
3
5B (tems: 1

)
)
)
)

& [E (tems: 1

NoRBlock |~
4

] - Content List

=
Ready

Now finish the block diagram by changing the shapes of the OR, XOR, and MUX blocks. There
is no NOR symbol, so we can just use an OR symbol with a bubble on the output. Do this by
right-clicking on the output port and turning Not > On. Complete this by giving them the
following embedded text:

Block Text
AND ANDR <= A AND B;
OR ORR <= A OR B;
XOR XORR <= A XOR B;
NOR NORR <= A NOR B;
LogicalR <= ANDR when ALUOp ="00" else
Mux4B32 ORR when ALUOp = "01" else
XORR when ALUOp = "10" else NORR;

Your final block diagram should appear as the figure below. Save this block and generate and
examine the VHDL code for it.

AlUrLogical/struct (Block Diagram)

File Edit Yiew HIL Disgran Tasks Sinulate fdd Options Window Help

8- «+»EREE8-1: 2R - uwPL oL h-AN < ¥EERMWMIE|L-L - =-cl0RB| &

|% -% %1 -4 -@ |
T o T . || _Structure Navigator £|=L|
| . P Lo L L L . . L L P L . L L . . L . P L . L . . ﬁg‘,.gna\ Tahle Y E
8} Generics Table 2
R F
S = ke 3
» Declarations/Staten g
01 Embedded Diagl | || £

= I

SN — -
Content
Zogisaln [Hame

® 1] (tems: 5

HE

B (tems: 1
(

= E

)
Items: 3)
)
)

Items: 1

TogicalR <= ANDR when RLUop = '00" &lse
ORE when ALV0p = 01" slse
XORF when ALVOp = "10" slse
HORE;

[~ I El Content List
[Desian "ALU/Logieal/struet” saved successfully. |

You have now completely specified the behavior of the Logical sub-block of the ALU. However,
we do not yet know if it works correctly. In the next tutorial, we will introduce the
ModelSimsimulator which checks our Logical sub-block design.

	Creating the Logical Sub-Block

