Post-Place-and-Route Simulation in Modelsim

Before FPGA verification of ALU design, we can simulate the placed and routed ALU design. A post-place-and-route simulation models interconnect delay, as well as gate delay. This type of simulation will most accurately match the behavior of the actual hardware. However, for large designs, it can take a significant amount of time to extract the interconnect delay values from the place-and-route information, and a significant amount of time to run the actual simulation.

In Design Manager highlight your ALU design, click the Tasks/Templates tab at the top right part of the window and double click the task FPGA Technology Setup from the My Tasks list.

In the FPGA Technology Setup dialog box change the settings for the Altera Cyclone II EP2C35F672C6 FPGA.

The next step is to setup the HDL Designer library mapping and compile options for simulation, access the related setup dialog box by pressing the Compile/Update button.
In the **FPGA Vendor Library Compilation** dialog box, unselect **Create Library Mapping in Shared Project**, select **Create Library Mappings Only** option, and set the compiled library path to “/usr/local/3rdparty/csce611/Altera_Sim_Lib”. Press the **Run** button to apply the options. Now these libraries are mapped as “downstream only” as they are used for simulation.

Switch to the **ALU** library view and highlight the **ALU** Component. Double click the task **Quartus II Synthesis** from the **My Tasks** list. After a moment, both a dialog box named **FPGA Synthesis Setup** and another one named **Log Window** pop up. Leave as default the settings in the **FPGA Synthesis Setup** dialog box and click the **OK** button.

Now the **Log Window** shows the various synthesis steps being performed by Quartus II. The error messages, if any, would be reported at the end of the synthesis process. Please exam the error messages carefully.

Updates

If the **Log Window** shows the similar error message “Error Node instance “U_0” instantiates undefined “add32” file /acct/s1/your_csce611_project_path/arithmetic_struct.vhd Line 111”, go
to Project tab in Design Explorer, select CSELib in the Protected Libraries, right click it and select Allow Analysis for Sim/Synth.

If synthesis is successful, Log Window shows the following message:

![Log Window Message]

Next double click the task Quartus Place and Route from the My Tasks list. In the pop-up dialogue box named Quartus Integrated Place & Route, unselect Produce Script File For Batch Run and select Run Place & Route in Batch Mode under Place & Route Run Mode. Then click the OK button.
After Place & Route process is finished, Log Window shows the timing requirements were not met. This means the delay from ALU inputs to outputs is larger than 10 ns (1 / 100 MHz). According to the Timing report, the critical timing path in the ALU is 16 ns, which would be the shortest possible clock period if our ALU was used in a synchronous design.

In Design Manager click the icon of the ALU Component and notice an overlay icon is added to a newly-generated flat VHDL entity and architecture for the ALU, showing a new view for the ALU that is described by gate level views.

To set the gate level view as the default view, highlight the Architecture view named structure and right click on it and choose set Default View.
Finally launch the Modelsim simulator for post-place-and-route simulation. In the Design Manager highlight the ALU_tb component and click the ModelSim design flow button.