iAN |:| =N Section Il. Hardware Abstraction Layer

This section describes the Nios® Il hardware abstraction layer (HAL). It includes the
following chapters:

m Chapter 5, Overview of the Hardware Abstraction Layer
m Chapter 6, Developing Programs Using the Hardware Abstraction Layer

m Chapter 7, Developing Device Drivers for the Hardware Abstraction Layer

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

-2 Section II: Hardware Abstraction Layer

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

= —— 5. Overview of the Hardware Abstraction
fAN IERA
® Layer

NI152003-10.0.0

Introduction

This chapter introduces the hardware abstraction layer (HAL) for the Nios® I
processor. This chapter contains the following sections:

m “Getting Started” on page 5-1
m “HAL Architecture” on page 5-2
m “Supported Peripherals” on page 54

The HAL is a lightweight runtime environment that provides a simple device driver
interface for programs to connect to the underlying hardware. The HAL application
program interface (API) is integrated with the ANSI C standard library. The HAL API
allows you to access devices and files using familiar C library functions, such as
printf(),fopen(),fwite(),etc

The HAL serves as a device driver package for Nios II processor systems, providing a
consistent interface to the peripherals in your system. Tight integration between
SOPC Builder and the Nios II software development tools automates the construction
of a HAL instance for your hardware. After SOPC Builder generates a hardware
system, the Nios II Software Build Tools (SBT) can generate a custom HAL board
support package (BSP) to match the hardware configuration. Changes in the
hardware configuration automatically propagate to the HAL device driver
configuration, preventing changes in the underlying hardware from creating bugs.

HAL device driver abstraction provides a clear distinction between application and
device driver software. This driver abstraction promotes reusable application code
that is resistant to changes in the underlying hardware. In addition, the HAL standard
makes it straightforward to write drivers for new hardware peripherals that are
consistent with existing peripheral drivers.

Getting Started

The easiest way to get started using the HAL is to create a software project. In the
process of creating a new project, you also create a HAL BSP. You need not create or
copy HAL files, and you need not edit any of the HAL source code. The Nios II SBT
generates the HAL BSP for you.

«o For an exercise in creating a simple Nios Il HAL software project, refer to “Getting
Started” in the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer’s Handbook.

In the Nios II SBT command line, you can create an example BSP based on the HAL

using one of the create-this-bsp scripts supplied with the Nios Il Embedded Design
Suite.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

5-2 Chapter 5: Overview of the Hardware Abstraction Layer
HAL Architecture

You must base the HAL on a specific SOPC Builder system. An SOPC Builder system
is a Nios II processor core integrated with peripherals and memory (which is
generated by SOPC Builder). If you do not have a custom SOPC Builder system, you
can base your project on an Altera-provided example hardware system. In fact, you
can first start developing projects targeting an Altera® development board, and later
re-target the project to a custom board. You can easily change the target SOPC Builder
system later.

«o For information about creating a new project with the Nios II SBT, refer to the Getting
Started with the Graphical User Interface chapter of the Nios 1I Software Developer’s
Handbook, or to the Getting Started from the Command Line chapter of the Nios II Software
Developer’s Handbook.

HAL Architecture

This section describes the fundamental elements of the HAL architecture.

Services
The HAL provides the following services:

m Integration with the newlib ANSI C standard library—Provides the familiar C
standard library functions

m Device drivers—Provides access to each device in the system

m The HAL API—Provides a consistent, standard interface to HAL services, such as
device access, interrupt handling, and alarm facilities

m System initialization—Performs initialization tasks for the processor and the
runtime environment before mai n()

m Device initialization—Instantiates and initializes each device in the system before
mai n() runs

Figure 5-1 shows the layers of a HAL-based system, from the hardware level up to a
user program.

Figure 5-1. The Layers of a HAL-Based System

User Program

C Standard Library

HAL API

Device Device Device
Driver Driver e Driver

Nios Il Processor System Hardware

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 5: Overview of the Hardware Abstraction Layer 5-3

HAL Architecture

Applications versus Drivers

Application developers are responsible for writing the system’s mai n() routine,
among other routines. Applications interact with system resources either through the
C standard library, or through the HAL API. Device driver developers are responsible
for making device resources available to application developers. Device drivers
communicate directly with hardware through low-level hardware access macros.

For further details about the HAL, refer to the following chapters:

m The Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook describes how to take advantage of the HAL to write
programs without considering the underlying hardware.

m The Developing Device Drivers for the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook describes how to communicate directly with
hardware and how to make hardware resources available with the HAL APL

Generic Device Models

The HAL provides generic device models for classes of peripherals found in
embedded systems, such as timers, Ethernet MAC/PHY chips, and I/O peripherals
that transmit character data. The generic device models are at the core of the HAL’s
power. The generic device models allow you to write programs using a consistent
API, regardless of the underlying hardware.

Device Model Classes

The HAL provides models for the following classes of devices:

m Character-mode devices—Hardware peripherals that send and/or receive
characters serially, such as a UART.

m Timer devices—Hardware peripherals that count clock ticks and can generate
periodic interrupt requests.

m File subsystems—A mechanism for accessing files stored in physical device(s).
Depending on the internal implementation, the file subsystem driver might access
the underlying device(s) directly or use a separate device driver. For example, you
can write a flash file subsystem driver that accesses flash using the HAL API for
flash memory devices.

m Ethernet devices—Devices that provide access to an Ethernet connection for a
networking stack such as the Altera-provided NicheStack® TCP/IP Stack - Nios II
Edition. You need a networking stack to use an ethernet device.

m Direct memory access (DMA) devices—Peripherals that perform bulk data
transactions from a data source to a destination. Sources and destinations can be
memory or another device, such as an Ethernet connection.

m Flash memory devices—Nonvolatile memory devices that use a special
programming protocol to store data.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

5-4 Chapter 5: Overview of the Hardware Abstraction Layer
Supported Hardware

Benefits to Application Developers

The HAL defines a set of functions that you use to initialize and access each class of
device. The APl is consistent, regardless of the underlying implementation of the
device hardware. For example, to access character-mode devices and file subsystems,
you can use the C standard library functions, such as pri ntf () and f open() . For
application developers, you need not write low-level routines just to establish basic
communication with the hardware for these classes of peripherals.

Benefits to Device Driver Developers

Each device model defines a set of driver functions necessary to manipulate the
particular class of device. If you are writing drivers for a new peripheral, you need
only provide this set of driver functions. As a result, your driver development task is
predefined and well documented. In addition, you can use existing HAL functions
and applications to access the device, which saves software development effort. The
HAL calls driver functions to access hardware. Application programmers call the
ANSI C or HAL API to access hardware, rather than calling your driver routines
directly. Therefore, the usage of your driver is already documented as part of the HAL
APL

C Standard Library—Newlib

The HAL integrates the ANSI C standard library in its runtime environment. The
HAL uses newlib, an open-source implementation of the C standard library. newlib is
a C library for use on embedded systems, making it a perfect match for the HAL and
the Nios II processor. newlib licensing does not require you to release your source
code or pay royalties for projects based on newlib.

The ANSI C standard library is well documented. Perhaps the most well-known
reference is The C Programming Language by B. Kernighan and D. Ritchie, published by
Prentice Hall and available in over 20 languages. Redhat also provides online
documentation for newlib at http://sources.redhat.com/newlib.

Supported Hardware

This section summarizes Nios Il HAL support for Nios Il hardware.

Nios Il Processor Core Support

The Nios I HAL supports all available Nios II processor core implementations.

Supported Peripherals

Altera provides many peripherals for use in Nios II processor systems. Most Altera
peripherals provide HAL device drivers that allow you to access the hardware with
the HAL APIL The following Altera peripherals provide full HAL support:

B Character mode devices
m UART core
m JTAG UART core
m LCD 16207 display controller

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 5: Overview of the Hardware Abstraction Layer 5-5

Supported Hardware

m Flash memory devices
m Common flash interface compliant flash chips

m Altera’s erasable programmable configurable serial (EPCS) serial configuration
device controller

m File subsystems
m Altera host based file system
m Altera read-only zip file system
m Timer devices
m Timer core
m DMA devices
m DMA controller core
m Scatter-gather DMA controller core
m Ethernet devices
m Triple Speed Ethernet MegaCore® function
m LANO91C111 Ethernet MAC/PHY Controller

The LAN91C111 and Triple Speed Ethernet components require the MicroC/OS-I1
runtime environment.

For more information, refer to the Ethernet and the NicheStack TCP/IP Stack - Nios II
Edition chapter of the Nios II Software Developer’s Handbook. Third-party vendors offer
additional peripherals not listed here. For a list of other peripherals available for the
Nios II processor, visit the Embedded Software page of the Altera website.

All peripherals (both from Altera and third party vendors) must provide a header file
that defines the peripheral’s low-level interface to hardware. Therefore, all
peripherals support the HAL to some extent. However, some peripherals might not
provide device drivers. If drivers are not available, use only the definitions provided
in the header files to access the hardware. Do not use unnamed constants, such as
hard-coded addresses, to access a peripheral.

Inevitably, certain peripherals have hardware-specific features with usage
requirements that do not map well to a general-purpose APL. The HAL handles
hardware-specific requirements by providing the UNIX-style i oct | () function.
Because the hardware features depend on the peripheral, the i oct | () options are
documented in the description for each peripheral.

Some peripherals provide dedicated accessor functions that are not based on the HAL
generic device models. For example, Altera provides a general-purpose parallel I/O
(PIO) core for use with the Nios II processor system. The PIO peripheral does not fit in
any class of generic device models provided by the HAL, and so it provides a header
file and a few dedicated accessor functions only.

For complete details regarding software support for a peripheral, refer to the
peripheral’s description. For further details about Altera-provided peripherals, refer
to the Embedded Peripherals IP User Guide.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html
http://www.altera.com/literature/ug/ug_embedded_ip.pdf

5-6

Chapter 5: Overview of the Hardware Abstraction Layer
Referenced Documents

MPU Support

MMU Support

The HAL does not include explicit support for the optional memory protection unit
(MPU) hardware. However, it does support an advanced exception handling system
that can handle Nios II MPU exceptions.

For details about handling MPU and other advanced exceptions, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook. For details about the
MPU hardware implementation, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

The HAL does not support the optional memory management unit (MMU) hardware.
To use the MMU, you need to implement a full-featured operating system.

For details about the Nios Il MMU, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.

Referenced Documents

This chapter references the following documents:

m Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook

m Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook

m Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

m Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

m Exception Handling chapter of the Nios II Software Developer’s Handbook

m Ethernet and the NicheStack TCP/IP Stack - Nios 11 Edition chapter of the Nios II
Software Developer’s Handbook

m Programming Model chapter of the Nios II Processor Reference Handbook
m Embedded Peripherals IP User Guide
m The Embedded Software page of the Altera website

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html
http://www.altera.com/literature/ug/ug_embedded_ip.pdf

Chapter 5: Overview of the Hardware Abstraction Layer
Document Revision History

5-7

Document Revision History

Table 5-1 shows the revision history for this document.

Tahle 5-1. Document Revision History

Date &
Document
Version Changes Made Summary of Changes

July 2010 Maintenance release

v10.0.0

November 2009 | Maintenance release

v9.1.0

March 2009 m Reorganized and updated information and terminology to clarify role

v9.0.0 of Nios Il Software Build Tools.
m Corrected minor typographical errors.

May 2008 Maintenance release

v8.0.0

October 2007 Maintenance release

v7.2.0

May 2007 m Scatter-gather DMA core m Scatter-gather DMA core

v7.1.0 m Triple-speed Ethernet MAC m Triple-speed Ethernet MAC
m Refer to HAL generation with Nios 1l Software Build Tools. m Nios Il Software Build Tools
m Added table of contents to “Introduction” section.
m Added Referenced Documents section.

March 2007 Maintenance release

v7.0.0

November 2006 | NicheStack TCP/IP Stack - Nios Il Edition

v6.1.0

May 2006 Maintenance release

v6.0.0

October 2005 Maintenance release

v5.1.0

May 2005 Maintenance release

v5.0.0

May 2004 Initial release

v1.0

© July 2010 Altera Corporation

Nios Il Software Developer’s Handbook

5-8 Chapter 5: Overview of the Hardware Abstraction Layer
Document Revision History

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

fAEI IERA 6. Developing Programs Using the
— @ Hardware Abstraction Layer

NII52004-10.0.0

Introduction
This chapter discusses how to develop programs for the Nios® II processor based on
the Altera® hardware abstraction layer (HAL). This chapter contains the following
sections:
m “The Nios II Project Structure” on page 6-2
m “The system.h System Description File” on page 6—4
m “Data Widths and the HAL Type Definitions” on page 6-5
m “UNIX-Style Interface” on page 6-5
m “File System” on page 6—6
m “Using Character-Mode Devices” on page 6-8
m “Using File Subsystems” on page 6-15
m “Using Timer Devices” on page 6-16
m “Using Flash Devices” on page 6-19
m “Using DMA Devices” on page 6-25
m “Using Interrupt Controllers” on page 6-30
m “Reducing Code Footprint” on page 6-30
m “Boot Sequence and Entry Point” on page 6-37
m “Memory Usage” on page 6-39
m “Working with HAL Source Files” on page 644
The application program interface (API) for HAL-based systems is readily accessible
to software developers who are new to the Nios II processor. Programs based on the
HAL use the ANSI C standard library functions and runtime environment, and access
hardware resources with the HAL API’s generic device models. The HAL API largely
conforms to the familiar ANSI C standard library functions, though the ANSI C
standard library is separate from the HAL. The close integration of the ANSI C
standard library and the HAL makes it possible to develop useful programs that
never call the HAL functions directly. For example, you can manipulate character
mode devices and files using the ANSI C standard library I/O functions, such as
printf() andscanf ().

e

«® This document does not cover the ANSI C standard library. An excellent reference is
The C Programming Language, Second Edition, by Brian Kernighan and Dennis M.
Ritchie (Prentice-Hall).

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-2

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
The Nios Il Project Structure

Nios Il Development Flows

=

The Nios II Embedded Design Suite (EDS) provides two distinct development flows
for creating Nios II programs. You can you can use the Nios II Software Build Tools
(SBT), or work in the Nios Il integrated development environment (IDE). These two
approaches use the HAL in the same way.

In most cases, you should create new projects using either the Nios II SBT for
Eclipse™ or the SBT command line. IDE support is for the following situations:
m Working with pre-existing Nios II IDE software projects

m Creating new projects for the Nios II C2H compiler

m Debugging with the FS2 console

HAL BSP Settings

==
&

Every Nios II board support package (BSP) has settings that determine the BSP’s
characteristics. For example, HAL BSPs have settings to identify the hardware
components associated with standard devices such as st dout . Defining and
manipulating BSP settings is an important part of Nios II project creation. You
manipulate BSP settings with the Nios II BSP Editor, with command-line options, or
with Tel scripts.

For details about how to control BSP settings, refer to one or more of the following
documents:

m For the Nios II SBT for Eclipse, refer to the Getting Started with the Graphical User
Interface chapter of the Nios II Software Developer’s Handbook.

m For the Nios II SBT command line, refer to the Nios II Software Build Tools chapter of
the Nios II Software Developer’s Handbook.

For detailed descriptions of available BSP settings, refer to the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

Many HAL settings are reflected in the system.h file, which provides a helpful
reference for details about your BSP. For information about system.h, refer to “The

system.h System Description File” on page 6—4.

Do not edit system.h. The Nios II EDS provides tools to manipulate system settings.

The Nios Il Project Structure

The creation and management of software projects based on the HAL is integrated
tightly with the Nios II SBT. This section discusses the Nios II projects as a basis for
understanding the HAL.

Figure 6-1 shows the blocks of a Nios II program with emphasis on how the HAL BSP
fits in. The label for each block describes what or who generated that block, and an
arrow points to each block’s dependency.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-3
The Nios Il Project Structure

Figure 6-1. The Nios Il HAL Project Structure

Nios Il Program
Based on HAL

Also known as: Your program, or user project
Defined by: .c, .h, .S, .sfiles
Created by: You

Application Project

\/

Defined by: Nios Il BSP settings

HAL BSP Project Created by: Nios Il IDE or Nios Il command line tools

Also known as: Nios Il processor system, or the hardware
SOPC Builder System Defined by: .sopcinfo file
Created by: SOPC Builder

Every HAL-based Nios II program consists of two Nios II projects, as shown in
Figure 6-1. Your application-specific code is contained in one project (the user
application project), and it depends on a separate BSP project (the HAL BSP).

The application project contains all the code you develop. The executable image for
your program ultimately results from building both projects.

With the Nios II SBT for Eclipse, the tools create the HAL BSP project when you create
your application project. In the Nios II SBT command line flow, you create the BSP
using nios2-bsp or a related tool.

The HAL BSP project contains all information needed to interface your program to the
hardware. The HAL drivers relevant to your SOPC Builder system are incorporated in
the BSP project.

The BSP project depends on the SOPC Builder system, defined by a SOPC
Information File (.sopcinfo). The Nios Il SBT can keep your BSP up-to-date with the
SOPC Builder system. This project dependency structure isolates your program from
changes to the underlying hardware, and you can develop and debug code without
concern about whether your program matches the target hardware.

You can use the Nios II SBT to update your BSP to match updated hardware. You
control whether and when these updates occur.

<o For details about how the SBT keeps your BSP up-to-date with your hardware system,
refer to “Revising Your BSP” in the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook.

In summary, when your program is based on a HAL BSP, you can always keep it
synchronized with the target hardware with a few simple SBT commands.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
The system.h System Description File

The system.h System Description File

The system.h file provides a complete software description of the Nios II system
hardware. Not all information in system.h is useful to you as a programmer, and it is
rarely necessary to include it explicitly in your C source files. Nonetheless, system.h
holds the answer to the question, “What hardware is present in this system?”

The system.h file describes each peripheral in the system and provides the following
details:

m The hardware configuration of the peripheral

m The base address

m Interrupt request (IRQ) information (if any)

B A symbolic name for the peripheral

The Nios II SBT generates the system.h file for HAL BSP projects. The contents of
system.h depend on both the hardware configuration and the HAL BSP properties.

Do not edit system.h. The SBT provides facilities to manipulate system settings.

For details about how to control BSP settings, refer to “HAL BSP Settings” on
page 6-2.

The code in Example 6-1 from a system.h file shows some of the hardware
configuration options this file defines.

Example 6-1. Excerpts from a system.h File

/*
* sys_clk_tinmer configuration

*

*/

#define SYS_CLK_TI MER_NAME "/dev/sys_cl k_timer"
#define SYS_CLK TIMER_TYPE "al tera_aval on_tiner"
#defi ne SYS_CLK_TI MER_BASE 0x00920800

#define SYS CLK_ TIMER IRQ O

#defi ne SYS_CLK_TI MER_ALWAYS_RUN 0

#defi ne SYS_CLK _TI MER_FI XED_PERI OD 0

/*
* jtag_uart configuration
*

*/

#define JTAG UART_NAME "/dev/jtag_uart"

#define JTAG UART_TYPE "altera_avalon_jtag uart"
#defi ne JTAG UART_BASE 0x00920820

#define JTAG UART IRQ 1

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-5
Data Widths and the HAL Type Definitions

Data Widths and the HAL Type Definitions

For embedded processors such as the Nios II processor, it is often important to know
the exact width and precision of data. Because the ANSI C data types do not explicitly
define data width, the HAL uses a set of standard type definitions instead. The ANSI
C types are supported, but their data widths are dependent on the compiler’s
convention.

The header file alt_types.h defines the HAL type definitions; Table 6-1 shows the

HAL type definitions.
Table 6-1. The HAL Type Definitions
Type Meaning
alt 8 Signed 8-bit integer.
alt_u8 Unsigned 8-bit integer.
alt 16 Signed 16-bit integer.
alt_ul6 Unsigned 16-bit integer.
alt_32 Signed 32-bit integer.
alt _u32 Unsigned 32-bit integer.
alt_64 Signed 64-bit integer.
alt_u64 Unsigned 64-bit integer.

Table 6-2 shows the data widths that the Altera-provided GNU toolchain uses.

Table 6—2. GNU Toolchain Data Widths

Type Meaning
char 8 bits.
short 16 bits.
| ong 32 bits.
i nt 32 bits.

UNIX-Style Interface

The HAL API provides a number of UNIX-style functions. The UNIX-style functions
provide a familiar development environment for new Nios II programmers, and can
ease the task of porting existing code to run in the HAL environment. The HAL uses
these functions primarily to provide the system interface for the ANSI C standard
library. For example, the functions perform device access required by the C library
functions defined in stdio.h.

The following list contains all of the available UNIX-style functions:
mo_exit()

m close()

m fstat()

m getpid()

m gettinmeofday()

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-6

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
File System

File System

Nios Il Software Developer’s Handbook

m ioctl()

m isatty()

m kill()

m | seek()

m open()

m read()

m shrk()

m settineof day()
m stat()

m usl eep()

B wait()

m wite()

The most commonly used functions are those that relate to file I/O. Refer to “File

System” on page 6-6.

For details about the use of these functions, refer to the HAL API Reference chapter of
the Nios 1I Software Developer’s Handbook.

The HAL provides infrastructure for UNIX-style file access. You can use this
infrastructure to build a file system on any storage devices available in your
hardware.

For an example, refer to the Read-Only Zip File System chapter of the Nios II Software
Developer’s Handbook.

You can access files in a HAL-based file system by using either the C standard library
file I/O functions in the newlib C library (for example f open(), f cl ose(), and
fread()), or using the UNIX-style file I/ O provided by the HAL.

The HAL provides the following UNIX-style functions for file manipulation:
m close()

m fstat()

m ioctl()

m isatty()

m | seek()

m open()

m read()

m stat()

B wite()

© July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-7
File System

“®.e For more information about these functions, refer to the HAL API Reference chapter of

the Nios II Software Developer’s Handbook.

The HAL registers a file subsystem as a mount point in the global HAL file system.
Attempts to access files below that mount point are directed to the file subsystem. For
example, if a read-only zip file subsystem (zipfs) is mounted as /mount/zipfs0, the
zipfs file subsystem handles calls to f open() for /mount/zipfs0/myfile.

There is no concept of a current directory. Software must access all files using absolute
paths.

The HAL file infrastructure also allows you to manipulate character mode devices
with UNIX-style path names. The HAL registers character mode devices as nodes in
the HAL file system. By convention, system.h defines the name of a device node as
the prefix /dev/ plus the name assigned to the hardware component in SOPC builder.
For example, a UART peripheral uartl in SOPC builder is /dev/uartl in system.h.

The code in Example 62 reads characters from a read-only zip file subsystem rozipfs
that is registered as a node in the HAL file system. The standard header files
stdi 0. h,stddef. h,and st dl i b. h are installed with the HAL.

Example 6-2. Reading Characters from a File Subsystem

#i ncl ude <stdio. h>

#i ncl ude <stddef. h>
#i ncl ude <stdlib. h>
#defi ne BUF_SI ZE (10)

int main(void)

{
FI LE* fp;
char buffer[BUF_SI ZE] ;
fp = fopen ("/mount/rozipfs/test”, "r"); if (fp == NULL)
{
printf ("Cannot open file.\n");
exit (1);
fread (buffer, BUF_SIZE, 1, fp);
fclose (fp);
return O;
}

«o For more information about the use of these functions, refer to the newlib C library
documentation installed with the Nios II EDS. On the Windows Start menu, click
Programs > Altera > Nios II > Nios II Documentation.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

6-8

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices

Using Character-Mode Devices

A character-mode device is a hardware peripheral that sends and/or receives
characters serially. A common example is the UART. Character mode devices are
registered as nodes in the HAL file system. In general, a program associates a file
descriptor to a device’s name, and then writes and reads characters to or from the file
using the ANSI C file operations defined in file.h. The HAL also supports the concept
of standard input, standard output, and standard error, allowing programs to call the
stdio.h I/O functions.

Standard Input, Standard Output and Standard Error

Using standard input (st di n), standard output (st dout), and standard error

(st der r) is the easiest way to implement simple console I/O. The HAL manages
stdi n, st dout, and st derr behind the scenes, which allows you to send and
receive characters through these channels without explicitly managing file
descriptors. For example, the HAL directs the output of pri nt f () to standard out,
and perror () tostandard error. You associate each channel to a specific hardware
device by manipulating BSP settings.

The code in Example 6-3 shows the classic Hello World program. This program sends
characters to whatever device is associated with st dout when the program is
compiled.

Example 6-3. Hello World

#i ncl ude <stdi o. h>
int main ()

printf ("Hello world!");
return O;

}

When using the UNIX-style AP, you can use the file descriptors st di n, st dout , and
st derr, defined in unistd.h, to access, respectively, the standard in, standard out,
and standard error character I/O streams. unistd.h is installed with the Nios II EDS as
part of the newlib C library package.

General Access to Character Mode Devices

Accessing a character-mode device other than st di n, st dout , or st derr is as easy
as opening and writing to a file. The code in Example 6—4 writes a message to a UART
called uart 1.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-9
Using Character-Mode Devices

C++ Streams

[dev/null

Example 6-4. Writing Characters to a UART

#i ncl ude <stdio. h>
#i ncl ude <string. h>

int main (void)

{
char* nsg = "hello world";
FI LE* fp;
fp = fopen ("/dev/uartl", "w');
if (fp!=NULL)
{
fprintf(fp, "%", nsg);
fclose (fp);
return O;
}

HAL-based systems can use the C++ streams API for manipulating files from C++.

All systems include the device /dev/null. Writing to /dev/null has no effect, and all
data is discarded. /dev/null is used for safe I/O redirection during system startup.
This device can also be useful for applications that wish to sink unwanted data.

This device is purely a software construct. It does not relate to any physical hardware
device in the system.

Lightweight Character-Mode 1/0

The HAL offers several methods of reducing the code footprint of character-mode
device drivers. For details, refer to “Reducing Code Footprint” on page 6-30.

Altera Logging Functions

The Altera logging functions provide a separate channel for sending logging and
debugging information to a character-mode device, supplementing st dout and

st der r. The Altera logging information can be printed in response to several
conditions. Altera logging can be enabled and disabled independently of any normal
st di o output, making it a powerful debugging tool.

When Altera logging is enabled, your software can print extra messages to a specified
port with HAL function calls. The logging port, specified in the BSP, can be a UART or
a JTAG UART device. In its default configuration, Altera logging prints out boot
messages, which trace each step of the boot process.

Avoid setting the Altera logging device to the device used for st dout or st derr. If
Altera logging output is sent to st dout or st derr, the logging output might appear
interleaved with the st dout or st der r output

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-10

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices

Several logging options are available, controlled by C preprocessor symbols. You can
also choose to add custom logging messages.

Altera logging changes system behavior. The logging implementation is designed to
be as simple as possible, loading characters directly to the transmit register. It can
have a negative impact on software performance.

Altera logging functions are conditionally compiled. When logging is disabled, it has
no impact on code footprint or performance.

The Altera reduced device drivers do not support Altera logging.

Enabling Altera Logging

The Nios I SBT has a setting to enable Altera logging. The setting is called
hal.log_port. It is similar to hal.stdout, hal.stdin, and hal.stderr. To enable Altera
logging, you set hal.log_port to a JTAG UART or a UART device. The setting allows
the HAL to send log messages to the specified device when a logging macro is
invoked.

When Altera logging is enabled, the Nios II SBT defines ALT_LOG_ENABLE in
public.mk to enable log messages. The build tools also set the ALT_LOG_PORT_TYPE
and ALT_LOG_PORT_BASE values in system.h to point to the specified device.

When Altera logging is enabled without special options, the HAL prints out boot
messages to the selected port. For typical software that uses the standard alt_main.c
(such as the Hello World software example), the messages appear as in Example 6-5.

Example 6-5. Default Boot Logging Output

[crt0.S] Inst & Data Cache Initialized.
[crt0.S] Setting up stack and gl obal pointers.
[crt0.S] dearing BSS

[crt0.S] Calling alt_nmain.

[alt_main.c] Entering alt_main, calling alt_irq_init.
[alt_main.c] Done alt_irqg_init, calling alt_os_init.
[alt _main.c] Done OGS Init, calling alt_semcreate.
[alt_main.c] Calling alt_sys_init.

[alt_main.c] Done alt_sys_init. Redirecting IO

[alt _main.c] Calling C++ constructors.

[alt_main.c] Calling main.

[alt_exit.c] Entering _exit() function.
[alt_exit.c] Exit code frommain was O.
[alt_exit.c] Calling ALT_OS STOP().
[alt_exit.c] Calling ALT_SI M HALT().
[alt_exit.c] Spinning forever.

A write operation to the Altera logging device stalls in ALT_LOG_PRI NTF() until the
characters are read from the Altera logging device’s output buffer. To ensure that the
Nios II application completes initialization, run the nios2-terminal command from
the Nios Il Command Shell to accept the Altera logging output.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer

Using Character-Mode Devices

6-11

Extra Logging Options

In addition to the default boot messages, logging options are incorporated in Altera
logging. Each option is controlled by a C preprocessor symbol. The details of each
option are outlined in Table 6-3.

Table 6-3. Altera Logging Options (Part 1 of 2)

Name Description
System clock log Purpose Prints out a message from the system clock interrupt handler at a specified interval.
This indicates that the system is still running. The default interval is every 1 second.
Preprocessor | ALT_LOG SYS CLK _ON FLAG SETTI NG
symbol
Modifiers The system clock log has two modifiers, providing two different ways to specify the
logging interval.
m ALT_LOG SYS CLK I NTERVAL—Specifies the logging interval in system
clock ticks. The default is <clock ticks per second>, that is, one second.
m ALT_LOG SYS CLK | NTERVAL_MULTI PLI ER—Specifies the logging
interval in seconds. The default is 1. When you modify
ALT_LOG SYS_CLK_ | NTERVAL_MULTI PLI ER,
ALT_LOG SYS _CLK | NTERVAL is recalculated.
Sample Output | System Cl ock On 0O
System Clock On 1
Write echo Purpose Everytimeal t _wri t e() is called (normally, whenever characters are sent to
st dout), the first <n> characters are echoed to a logging message. The message
starts with the string "W it e Echo: ". <n>is specified with
ALT LOG WRI TE_ECHO LEN. The default is 15 characters.
Preprocessor | ALT_LOG WRI TE_ON_FLAG_SETTI NG
symbol
Modifiers ALT_LOG WRI TE_ECHO LEN—Number of characters to echo. Default is 15.
Sample Output | Wite Echo: Hello from N o
JTAG startup log Purpose At JTAG UART driver initialization, print out a line with the number of characters in
the software transmit buffer followed by the JTAG UART control register contents.
The number of characters, prefaced by the string " SW Ci r Buf ", might be
negative, because it is computed as (<tail_pointer> — <head_pointer>) on a circular
buffer.
For more information about the JTAG UART control register fields, refer to the
Off-Chip Interface Peripherals section in the Embedded Peripherals IP User Guide.
Preprocessor | ALT_LOG JTAG UART_STARTUP_| NFO ON_FLAG SETTI NG
symbol
Modifiers None
Sample Output | JTAG Startup Info: SWC rBuf = 0, HWFI FO wspace=64

AC=0 W=0 RI=0 WE=0 RE=1

© July 2010 Altera Corporation

Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3_01.pdf

6-12

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices

Table 6-3. Altera Logging Options (Part 2 of 2)

Name Description
JTAG interval log Purpose Creates an alarm object to print out the same JTAG UART information as the JTAG
startup log, but at a repeated interval. Default interval is 0.1 second, or 10 messages
a second.
Preprocessor | ALT_LOG JTAG UART_ALARM ON FLAG SETTI NG
symbol
Modifiers The JTAG interval log has two modifiers, providing two different ways to specify the
logging interval.
m ALT LOG JTAG UART_TI CKS—Logging interval in ticks. Default is
<ticks_per_second>/10.
m ALT_LOG JTAG UART_TI CKS_DI VI SOR—Specifies the number of logs
per second. The default is 10. When you modify
ALT_LOG JTAG UART_TI CKS DI VI SOR
ALT_LOG JTAG UART_TI CKSis recalculated.
Sample Output | JTAG Alarm SWCirBuf = 0, HWFI FO wspace=45 AC=0 W =0
Rl =0 WE=0 RE=1
JTAG interrupt Purpose Prints out a message every time the JTAG UART near-empty interrupt triggers.
service routine Message contains the same JTAG UART information as in the JTAG startup log.
(ISR) log Preprocessor | ALT_LOG JTAG UART | SR ON_FLAG SETTI NG
symbol
Modifiers None
Sample Output | JTAG IRQ SWCGirBuf = -20, HWFIFO wspace=64 AC=0 W=1
Rl =0 WE=1 RE=1
Boot log Purpose Prints out messages tracing the software boot process. The boot log is turned on by
default when Altera logging is enabled.
Preprocessor | ALT_LOG BOOT_ON_FLAG SETTI NG
symbol
Modifiers None
Sample Output | Refer to “Enabling Altera Logging” on page 6-10.

Nios Il Software Developer’s Handbook

Setting a preprocessor flag to 1 enables the corresponding option. Any value other
than 1 disables the option.

Several options have modifiers, which are additional preprocessor symbols
controlling details of how the options work. For example, the system clock log’s
modifiers control the logging interval. Option modifiers are also listed in Table 6-3.
An option’s modifiers are meaningful only when the option is enabled.

Logging Levels

An additional preprocessor symbol, ALT_LOG_FLAGS, can be set to provide some
grouping for the extra logging options. ALT_LOG_FLAGS implements logging levels
based on performance impact. With higher logging levels, the Altera logging options
take more processor time. ALT_LOG_FLAGS levels are defined in Table 6—4.

© July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-13
Using Character-Mode Devices

Table 6-4. Altera Logging Levels

Logging Level Logging
0 Boot log (default)
1 Level 0 plus system clock log and JTAG startup log
2 Level 1 plus JTAG interval log and write echo
3 Level 2 plus JTAG ISR log
-1 Silent mode—No Altera logging

Note to Table 6-4:

(1) You can use logging level -1 to turn off logging without changing the program footprint. The logging code is still
present in your executable image, as determined by other logging options chosen. This is useful when you wish
to switch the log output on or off without disturbing the memory map.

Because each logging option is controlled by an independent preprocessor symbol,
individual options in the logging levels can be overridden.

Example: Creating a BSP with Logging

Example 6-6 creates a HAL BSP with Altera logging enabled and the following
options in addition to the default boot log:

m System clock log
m JTAG startup log
m JTAG interval log, logging twice a second

m No write echo

Example 6-6. BSP With Logging

ni os2-bsp hal ny_bsp ../ny_hardware. sopcinfo \
--set hal.log_port uartl \
--set hal . nake. bsp_cfl ags_user_flags \
- DALT_LOG FLAGS=2 \
-DALT_LOG WRI TE_ON_FLAG _SETTI NG=0 \
- DALT_LOG JTAG UART_TI CKS_DI VI SOR=2+

The - DALT_LOG_FLAGS=2 argument adds - DALT_LOG FLAGS=2 to the
ALT_CPP_FLAGS make variable in public.mk.

Custom Logging Messages

You can add custom messages that are sent to the Altera logging device. To define a
custom message, include the header file alt_log_printf.h in your C source file as
follows:

#include "sys/alt_log_printf.h"
Then use the following macro function:

ALT_LOG PRI NTF(const char *format, ...)

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-14

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices

This C preprocessor macro is a pared-down version of pri nt f () . The f or mat
argument supports most pri nt f () options. It supports %, %6 % % % % %,

and %X, as well as some precision and spacing modifiers, such as % 9. 30. It does not
support floating point formats, such as %4 or %g. This function is not compiled if
Altera logging is not enabled.

If you want your custom logging message be controlled by Altera logging
preprocessor options, use the appropriate Altera logging option preprocessor flags
from Table 64, or Table 6-3 on page 6—11. Example 6-7 illustrates two ways to
implement logging options with custom logging messages.

Example 6-7. Using Preprocessor Flags

/* The follow ng exanple prints "Level 2 |ogging nessage" if
logging is set to level 2 or higher */

#if (ALT_LOG FLAGS >= 2)
ALT_LOG PRI NTF ("Level 2 |ogging nessage");

#endi f

/* The follow ng exanple prints "Boot |ogging message" if boot | ogging
is turned on */

#if (ALT_LOG BOOT_ON FLAG SETTI NG == 1)
ALT_LOG PRI NTF ("Boot |oggi ng message");

#endi f

Altera Logging Files
Table 6-5 lists HAL source files which implement Altera logging functions.

Table 6-5. HAL Implementation Files for Altera Logging

Location (1) File Name
components/altera_hal/HAL/inc/sys/ alt_log_printf.h
components/altera_hal/HAL/src/ alt_log_printf.c
components/altera_nios2/HAL/src/ alt_log_macro.S

Note to Table 6-5:
(1) Allfile locations are relative to <Nios /I EDS install path>.

Table 6-6 lists HAL source files which use Altera logging functions. These files
implement the logging options listed in table Table 6-3 on page 6-11. They also serve
as examples of logging usage.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-15
Using File Subsystems

Tahle 6-6. HAL Example Files for Altera Logging

Location (7) File Name
components/altera_avalon_jtag_uart/HAL/src/ altera_avalon_jtag_uart.c
components/altera_avalon_timer/HAL/src/ altera_avalon_timer_sc.c
components/altera_hal/HAL/src/ alt_exit.c
components/altera_hal/HAL/src/ alt_main.c
components/altera_hal/HAL/src/ alt_write.c
components/altera_nios2/HAL/src/ crt0.S

Note to Table 6-6:
(1) Allfile locations are relative to <Nios /I EDS install path>.

Using File Subsystems

The HAL generic device model for file subsystems allows access to data stored in an
associated storage device using the C standard library file I/O functions. For example,
the Altera read-only zip file system provides read-only access to a file system stored
in flash memory.

A file subsystem is responsible for managing all file I/ O access beneath a given mount
point. For example, if a file subsystem is registered with the mount point /mnt/
rozipfs, all file access beneath this directory, such as f open("/ mt/rozi pfs/
nyfile", "r"),isdirected to that file subsystem.

As with character mode devices, you can manipulate files in a file subsystem using
the C file I/O functions defined in file.h, such as f open() and fread().

<o For more information about the use of file I/O functions, refer to the newlib C library
documentation installed with the Nios II EDS. On the Windows Start menu, click
Programs > Altera > Nios II <version> > Nios Il EDS <version> Documentation.

Host-Based File System

The host-based file system enables programs executing on a target board to read and
write files stored on the host computer. The Nios II SBT for Eclipse transmits file data
over the Altera download cable. Your program accesses the host based file system
using the ANSI C standard library I/O functions, such as f open() and fread().
The host-based file system is a software package which you add to your BSP.

The following features and restrictions apply to the host based file system:

m The host-based file system makes the Nios II C/C++ application project directory
and its subdirectories available to the HAL file system on the target hardware.

m The target processor can access any file in the project directory. Be careful not to
corrupt project source files.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-16 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Timer Devices

m The host-based file system only operates while debugging a project. It cannot be
used for run sessions.

m Host file data travels between host and target serially through the Altera
download cable, and therefore file access time is relatively slow. Depending on
your host and target system configurations, it can take several milliseconds per
call to the host. For higher performance, use buffered I/O function such as
fread() andfwrite(), and increase the buffer size for large files.

You configure the host-based file system using the Nios II BSP Editor. The host-based
file system has one setting: the mount point, which specifies the mount point within
the HAL file system. For example, if you name the mount point /mnt/host and the
project directory on you host computer is /software/projectl, in a HAL-based
program, the following code opens the file /software/projectl/datafile.dat.:

fopen("/mt/host/datafile.dat”, "r");

Using Timer Devices

Timer devices are hardware peripherals that count clock ticks and can generate
periodic interrupt requests. You can use a timer device to provide a number of
time-related facilities, such as the HAL system clock, alarms, the time-of-day, and
time measurement. To use the timer facilities, the Nios II processor system must
include a timer peripheral in hardware.

The HAL API provides two types of timer device drivers:
m System clock driver—Supports alarms, such as you would use in a scheduler.
m Timestamp driver—Supports high-resolution time measurement.

An individual timer peripheral can behave as either a system clock or a timestamp,
but not both.

«® The HAL-specific API functions for accessing timer devices are defined in sys/
alt_alarm.h and sys/alt_timestamp.h.

System Clock Driver

The HAL system clock driver provides a periodic heartbeat, causing the system clock
to increment on each beat. Software can use the system clock facilities to execute
functions at specified times, and to obtain timing information. You select a specific
hardware timer peripheral as the system clock device by manipulating BSP settings.

For details about how to control BSP settings, refer to “HAL BSP Settings” on
page 6-2.

The HAL provides implementations of the following standard UNIX functions:
getti meof day(),settineofday(),andtinmes(). The times returned by these
functions are based on the HAL system clock.

The system clock measures time in clock ticks. For embedded engineers who deal
with both hardware and software, do not confuse the HAL system clock with the
clock signal driving the Nios II processor hardware. The period of a HAL system
clock tick is generally much longer than the hardware system clock. system.h defines
the clock tick frequency.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-17
Using Timer Devices

At runtime, you can obtain the current value of the system clock by calling the

al t _nticks() function. This function returns the elapsed time in system clock ticks
since reset. You can get the system clock rate, in ticks per second, by calling the
function al t _ti cks_per_second() . The HAL timer driver initializes the tick
frequency when it creates the instance of the system clock.

The standard UNIX function get t i neof day() is available to obtain the current
time. You must first calibrate the time of day by calling set t i meof day() . In
addition, you can use the t i mes() function to obtain information about the number
of elapsed ticks. The prototypes for these functions appear in times.h.

«o For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

Alarms

You can register functions to be executed at a specified time using the HAL alarm
facility. A software program registers an alarm by calling the function
alt _alarmstart():

int alt_alarmstart (alt_alarnt alarm

alt_u32 nticks,

alt_u32 (*cal | back) (void* context),

voi d* context);
The function cal | back() is called after nti cks have elapsed. The input argument
cont ext is passed as the input argument to cal | back() when the call occurs. The
HAL does not use the cont ext parameter. It is only used as a parameter to the
cal I back() function.

Your code must allocate the al t _al ar mstructure, pointed to by the input argument
al ar m This data structure must have a lifetime that is at least as long as that of the
alarm. The best way to allocate this structure is to declare it as a static or global.

alt _alarmstart() initializes *al arm

The callback function can reset the alarm. The return value of the registered callback
function is the number of ticks until the next call to cal | back. A return value of zero
indicates that the alarm should be stopped. You can manually cancel an alarm by
calling al t _al arm st op() .

One alarm is created for each call to al t _al ar m st art () . Multiple alarms can run
simultaneously.

Alarm callback functions execute in an exception context. This imposes functional
restrictions which you must observe when writing an alarm callback.

<o For more information about the use of these functions, refer to the Exception Handling
chapter of the Nios II Software Developer’s Handbook.

The code fragment in Example 6-8 demonstrates registering an alarm for a periodic
callback every second.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

6-18

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Timer Devices

Example 6-8. Using a Periodic Alarm Callback Function

#i ncl ude <stddef. h>

#i ncl ude <stdi o. h>

#i nclude "sys/alt_alarmh"
#include "alt_types.h"

/*
* The cal | back function.
*/

alt_u32 ny_al arm cal | back (voi d* context)

/* This function is called once per second */
return alt_ticks_per_second();

}

/* The alt_alarmnust persist for the duration of the alarm */
static alt_alarmalarm

if (alt_alarmstart (&l arm
alt_ticks_per_second(),
my_al arm cal | back,
NULL) < 0)

{

printf ("No system cl ock avail abl e\n");

Timestamp Driver

Sometimes you want to measure time intervals with a degree of accuracy greater than
that provided by HAL system clock ticks. The HAL provides high resolution timing
functions using a timestamp driver. A timestamp driver provides a monotonically
increasing counter that you can sample to obtain timing information. The HAL only
supports one timestamp driver in the system.

You specify a hardware timer peripheral as the timestamp device by manipulating
BSP settings. The Altera-provided timestamp driver uses the timer that you specify.

If a timestamp driver is present, the following functions are available:
m alt_tinestanp_start()
m alt _tinestanmp()

Calling al t _ti mestanp_start () starts the counter running. Subsequent calls to
alt _ti mestanp() return the current value of the timestamp counter. Calling
alt_tinestanp_start () again resets the counter to zero. The behavior of the
timestamp driver is undefined when the counter reaches (232 - 1).

You can obtain the rate at which the timestamp counter increments by calling the
function al t _ti mest anp_f r eq() . This rate is typically the hardware frequency of
the Nios II processor system—usually millions of cycles per second. The timestamp
drivers are defined in the alt_timestamp.h header file.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-19
Using Flash Devices

“®.e For more information about the use of these functions, refer to the HAL API Reference

chapter of the Nios II Software Developer’s Handbook.

The code fragment in Example 6-9 shows how you can use the timestamp facility to
measure code execution time.

Example 6-9. Using the Timestamp to Measure Code Execution Time

#i ncl ude <stdi o. h>
#i nclude "sys/alt_timestanp. h"
#include "alt_types.h"

int main (void)

alt_u32 tinel;
alt_u32 tine2;
alt_u32 tine3;

if (alt_tinestanp_start() < 0)
printf ("No tinestanp device avail able\n");

el se

{
timel = alt_tinmestanp();
funcl(); /* first function to monitor */
time2 = alt_tinmestanp();
func2(); /* second function to nonitor */
time3 = alt_tinmestanp();

printf ("time in funcl = % ticks\n",
(unsigned int) (tine2 - tinmel));

printf ("time in func2 = % ticks\n",
(unsigned int) (tine3 - time2));

printf ("Nunber of ticks per second = %\n",
(unsigned int)alt_tinmestanp_freq());

return O;

}

Using Flash Devices

The HAL provides a generic device model for nonvolatile flash memory devices.
Flash memories use special programming protocols to store data. The HAL API
provides functions to write data to flash memory. For example, you can use these
functions to implement a flash-based file subsystem.

The HAL API also provides functions to read flash, although it is generally not
necessary. For most flash devices, programs can treat the flash memory space as
simple memory when reading, and do not need to call special HAL API functions. If
the flash device has a special protocol for reading data, such as the Altera erasable
programmable configurable serial (EPCS) configuration device, you must use the
HAL API to both read and write data.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

6-20

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Flash Devices

This section describes the HAL API for the flash device model. The following two
APIs provide two different levels of access to the flash:

m Simple flash access—Functions that write buffers to flash and read them back at
the block level. In writing, if the buffer is less than a full block, these functions
erase preexisting flash data above and below the newly written data.

m Fine-grained flash access—Functions that write buffers to flash and read them
back at the buffer level. In writing, if the buffer is less than a full block, these
functions preserve preexisting flash data above and below the newly written data.
This functionality is generally required for managing a file subsystem.

The API functions for accessing flash devices are defined in sys/alt_flash.h.

For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook. You can get details about the
Common Flash Interface, including the organization of common flash interface (CFI)
erase regions and blocks, from JEDEC (www.jedec.org). You can find the CFI standard
by searching for document JESD68.

Simple Flash Access

This interface consists of the functionsal t _fl ash_open_dev(),

alt wite flash(),alt _read flash(),andalt_flash_cl ose_dev().The
code “Using the Simple Flash API Functions” on page 6-22 shows the use of all of
these functions in one code example. You open a flash device by calling

alt _flash_open_dev(), which returns a file handle to a flash device. This
function takes a single argument that is the name of the flash device, as defined in
system.h.

After you obtain a handle, you can use theal t _wri te_fl ash() function to write
data to the flash device. The prototype is:

int alt_ wite flash(alt_flash_fd* fd,

i nt of f set,
const voi d* src_addr,
i nt I ength)

A call to this function writes to the flash device identified by the handle f d. The driver
writes the data starting at of f set bytes from the base of the flash device. The data
written comes from the address pointed to by sr c_addr, and the amount of data
written is | engt h.

Thereisalsoanal t _read_f | ash() function to read data from the flash device. The
prototype is:

int alt _read flash(alt_flash_fd* fd,

i nt of f set,
voi d* dest _addr,
i nt | ength)

Acalltoal t _read_fl ash() reads from the flash device with the handle f d,

of f set bytes from the beginning of the flash device. The function writes the data to

location pointed to by dest _addr, and the amount of data read is | engt h. For most
flash devices, you can access the contents as standard memory, making it unnecessary
tousealt _read flash().

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
www.jedec.org

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-21
Using Flash Devices

The function al t _fl ash_cl ose_dev() takes a file handle and closes the device.
The prototype for this function is:

void alt_flash_close_dev(alt_flash_fd* fd)

The code in Example 6-10 shows the use of simple flash API functions to access a
flash device named /dev/ext_flash, as defined in system.h.

Block Erasure or Corruption

Generally, flash memory is divided into blocks. al t _wri t e_f | ash() might need to
erase the contents of a block before it can write data to it. In this case, it makes no
attempt to preserve the existing contents of the block. This action can lead to
unexpected data corruption (erasure), if you are performing writes that do not fall on
block boundaries. If you wish to preserve existing flash memory contents, use the
fine-grained flash functions. These are discussed in the following section.

Table 6-7 on page 6-23 shows how you can cause unexpected data corruption by
writing using the simple flash access functions. Table 6-7 shows the example of an
8-kilobyte (KB) flash memory comprising two 4-KB blocks. First write 5 KB of all
0xAA to flash memory at address 0x0000, and then write 2 KB of all 0xBB to address
0x1400. After the first write succeeds (at time t(2)), the flash memory contains 5 KB
of OXAA, and the rest is empty (that is, 0OXFF). Then the second write begins, but
before writing to the second block, the block is erased. At this point, t(3), the flash
contains 4 KB of 0XAA and 4 KB of OxFF. After the second write finishes, at time t(4),
the 2 KB of OxFF at address 0x1000 is corrupted.

Fine-Grained Flash Access

Three additional functions provide complete control for writing flash contents at the
highest granularity:

m alt _get flash_info()
m alt_erase_flash_bl ock()
m alt_wite_flash_bl ock()

By the nature of flash memory, you cannot erase a single address in a block. You must
erase (that is, set to all ones) an entire block at a time. Writing to flash memory can
only change bits from 1 to 0; to change any bit from 0 to 1, you must erase the entire
block along with it.

Therefore, to alter a specific location in a block while leaving the surrounding contents
unchanged, you must read out the entire contents of the block to a buffer, alter the
value(s) in the buffer, erase the flash block, and finally write the whole block-sized
buffer back to flash memory. The fine-grained flash access functions automate this
process at the flash block level.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-22 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Flash Devices

Example 6-10. Using the Simple Flash API Functions

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i nclude "sys/alt_flash.h"
#defi ne BUF_SI ZE 1024

int main ()
alt_flash_fd* fd;
int ret _code;
char sour ce[BUF_SI ZE] ;
char dest [BUF_SI ZE] ;

/* Initialize the source buffer to all OxAA */
nmenset (source, O0xAA, BUF_SI ZE);

fd = alt_flash_open_dev("/dev/ext_flash");

if (fd!=NULL)

{
ret_code = alt_wite_flash(fd, 0, source, BUF_SIZE);
if (ret_code==0)

ret_code = alt_read_flash(fd, 0, dest, BUF_SIZE);
if (ret_code==0)
{

/
Success.

At this point, the flash is all OxAA and we
have read that all back to dest
/

L I

}

alt_flash_cl ose_dev(fd);

}

el se

{

printf("Cannot open flash device\n");

}

return O;

al t_get _flash_info() gets the number of erase regions, the number of erase
blocks in each region, and the size of each erase block. The function prototype is as
follows:

int alt_get flash_info (
alt_flash_fd* fd,
flash_regi on** info,
int* nunber _of _regi ons)

If the call is successful, on return the address pointed to by nurrber _of _r egi ons
contains the number of erase regions in the flash memory, and *i nf o points to an
array of f | ash_r egi on structures. This array is part of the file descriptor.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-23
Using Flash Devices

Table 6-7. Example of Writing Flash and Causing Unexpected Data Corruption

Time t(0) Time (1) Time {(2) Time {(3) Time t(4)
First Write Second Write
After After
Before After Erasing Writing After Erasing Writing
Address Block | First Write Block(s) Data1 Block(s) Data 2
0x0000 1 ?? FF AA AA AA
0x0400 1 ?? FF AA AA AA
0x0800 1 ?? FF AA AA AA
0x0C00 1 ?7? FF AA AA AA
0x1000 2 ?? FF AA FF FF (1)
0x1400 2 ?7? FF FF FF BB
0x1800 2 ?? FF FF FF BB
0x1C00 2 ?2? FF FF FF FF

Note to Table 6-7:
(1) Unintentionally cleared to FF during erasure for second write.

The f | ash_r egi on structure is defined in sys/alt_flash_types.h. The data structure
is defined as follows:

typedef struct flash_region

int offset; /* Offset of this region fromstart of the flash */
int region_size; /* Size of this erase region */

int nunber _of bl ocks; /* Nunber of blocks in this region */

int block_size; /* Size of each block in this erase region */

}flash_region;

With the information obtained by calling al t _get _fl ash_i nfo(), youareina
position to erase or program individual blocks of the flash device.

al t _erase_fl ash() erases a single block in the flash memory. The function
prototype is as follows:

int alt_erase_flash_block (alt_flash_fd* fd, int offset, int length)

The flash memory is identified by the handle f d. The block is identified as being
of f set bytes from the beginning of the flash memory, and the block size is passed in

| engt h.
alt_wite_flash_bl ock() writes to a single block in the flash memory. The
prototype is:
int alt_wite_flash_block(alt_flash_fd* fd,
i nt bl ock_of f set,
i nt dat a_of f set,
const void *dat a,
i nt | engt h)

This function writes to the flash memory identified by the handle f d. It writes to the
block located bl ock_of f set bytes from the start of the flash device. The function
writes | engt h bytes of data from the location pointed to by dat a to the location
dat a_of f set bytes from the start of the flash device.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-24 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Flash Devices

'~ These program and erase functions do not perform address checking, and do not
verify whether a write operation spans into the next block. You must pass in valid
information about the blocks to program or erase.

The code in Example 6-11 on page 6-24 demonstrates the use of the fine-grained flash
access functions.

Example 6-11. Using the Fine-Grained Flash Access API Functions

#i ncl ude <string. h>

#i nclude "sys/alt_flash.h"

#i ncl ude "stdtypes. h"

#i ncl ude "system h"#defi ne BUF_SI ZE 100

int main (void)

{
fl ash_regi on* regions;
alt _flash_fd* fd;
int nunber _of _regi ons;
int ret _code;
char write_data[BUF_SI ZF] ;
/* Set wite_data to all Oxa */
menset (wite_data, OxA, BUF_SIZE);
fd = alt_flash_open_dev(EXT_FLASH _NAME) ;
if (fd)
{
ret_code = alt_get_flash_info(fd, & egions, &iunber_of_regions);
i f (nunber_of _regions && (regions->offset == 0))
/* Erase the first block */
ret_code = alt_erase_flash_bl ock(fd,
regi ons->of f set,
r egi ons->bl ock_si ze) ;
if (ret_code == 0) {
/*
* Wite BUF_SIZE bytes fromwite_data 100 bytes to
* the first block of the flash
*/
ret_code = alt_wite_flash_block (
fd,
r egi ons->of f set,
r egi ons- >of f set +0x100,
wite_data,
BUF_SI ZE);
}
}
return O;
}

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-25

Using DMA Devices

Using DMA Devices

The HAL provides a device abstraction model for direct memory access (DMA)
devices. These are peripherals that perform bulk data transactions from a data source
to a destination. Sources and destinations can be memory or another device, such as
an Ethernet connection.

In the HAL DMA device model, there are two categories of DMA transactions:
transmit and receive. The HAL provides two device drivers to implement transmit
channels and receive channels. A transmit channel takes data in a source buffer and
transmits it to a destination device. A receive channel receives data from a device and
deposits it in a destination buffer. Depending on the implementation of the
underlying hardware, software might have access to only one of these two endpoints.

Figure 6-2 shows the three basic types of DMA transactions. Copying data from
memory to memory involves both receive and transmit DMA channels
simultaneously.

Figure 6-2. Three Basic Types of DMA Transactions

1. Receiving Data DMA
from a Peripheral Peripheral Receive Memory
Channel
o DMA
2. Transm|t_t|ng Data Memory Transmit Peripheral
to a Peripheral Channel
3. Transferring Data DMA DMA
from Memory to Memory Transmit Receive Memory
Memory Channel Channel

The API for access to DMA devices is defined in sys/alt_dma.h.

For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

DMA devices operate on the contents of physical memory, therefore when reading
and writing data you must consider cache interactions.

For more information about cache memory, refer to the Cache and Tightly-Coupled
Memory chapter of the Nios II Software Developer’s Handbook.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

6-26 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using DMA Devices

DMA Transmit Channels

DMA transmit requests are queued using a DMA transmit device handle. To obtained
a handle, use the function al t _dma_t xchan_open() . This function takes a single
argument, the name of a device to use, as defined in system.h.

The code in Example 6-12 shows how to obtain a handle for a DMA transmit device
dma_0.

Example 6-12. Obtaining a File Handle for a DMA Device

#i ncl ude <stddef. h>
#i ncl ude "sys/alt_dnma. h"

int main (void)
alt _dma_t xchan tx;

tx = alt_dma_t xchan_open ("/dev/dma_0");
if (tx == NULL)

/[* Error */
}
el se

/* Success */

return O;

You can use this handle to post a transmit request using al t _dma_t xchan_send() .
The prototype is:

typedef void (alt_txchan_done)(voi d* handl e);

int alt_dma_txchan_send (alt_dma_t xchan dna,

const voi d* from
alt_u32 | engt h,
al t _txchan_done* done,
voi d* handl e) ;

Calling al t _dma_t xchan_send() posts a transmit request to channel drra.
Argument | engt h specifies the number of bytes of data to transmit, and argument
f r omspecifies the source address. The function returns before the full DMA
transaction completes. The return value indicates whether the request is successfully
queued. A negative return value indicates that the request failed. When the
transaction completes, the user-supplied function done is called with argument
handl e to provide notification.

Two additional functions are provided for manipulating DMA transmit channels:
alt _dma_t xchan_space(),and al t _dma_t xchan_i oct! (). The

al t _dma_t xchan_space() function returns the number of additional transmit
requests that can be queued to the device. The al t _dma_t xchan_i oct | () function
performs device-specific manipulation of the transmit device.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-27
Using DMA Devices

[L=~ 1If you are using the Avalon Memory-Mapped® (Avalon-MM) DMA device to transmit
to hardware (not memory-to-memory transfer), call the
al t _dma_t xchan_i oct | () function with the request argument set to
ALT_DNVA TX ONLY_ON.

- For further information, refer to the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

DMA Receive Channels

DMA receive channels operate similarly to DMA transmit channels. Software can
obtain a handle for a DMA receive channel using the al t _dma_r xchan_open()
function. You can then use the al t _dma_r xchan_pr epar e() function to post
receive requests. The prototype for al t _dma_r xchan_prepare() is:

t ypedef void (alt_rxchan_done)(voi d* handl e, void* data);

int alt_dnma_rxchan_prepare (alt_dma_rxchan dna,

voi d* dat a,
alt_u32 | engt h,
alt _rxchan_done* done,
voi d* handl e) ;

A call to this function posts a receive request to channel dna, for up to | engt h bytes
of data to be placed at address dat a. This function returns before the DMA
transaction completes. The return value indicates whether the request is successfully
queued. A negative return value indicates that the request failed. When the
transaction completes, the user-supplied function done() is called with argument
handl e to provide notification and a pointer to the receive data.

Certain errors can prevent the DMA transfer from completing. Typically this is caused
by a catastrophic hardware failure; for example, if a component involved in the
transfer fails to respond to a read or write request. If the DMA transfer does not
complete (that is, less than | engt h bytes are transferred), function done() is never
called.

Two additional functions are provided for manipulating DMA receive channels:
alt_dma_rxchan_depth() andalt_dnma_rxchan_ioctl ().

If you are using the Avalon-MM DMA device to receive from hardware (not
memory-to-memory transfer), call the al t _dma_r xchan_i oct | () function with
the request argument set to ALT_DMA_RX_ONLY_ON.

al t _dma_r xchan_dept h() returns the maximum number of receive requests that
can be queued to the device. al t _dma_r xchan_i oct | () performs device-specific

manipulation of the receive device.

“®.e For further details, refer to the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

The code in Example 6-13 shows a complete example application that posts a DMA
receive request, and blocks in mai n() until the transaction completes.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

6-28

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using DMA Devices

Example 6-13. A DMA Transaction on a Receive Channel

#i ncl ude <stdio. h>

#i ncl ude <stddef. h>

#i nclude <stdlib. h>

#i ncl ude "sys/alt_dma. h"
#include "alt_types.h"

/* flag used to indicate the transaction is conplete */
volatile int dma_conplete = 0;

/* function that is called when the transaction conpletes */
voi d dnma_done (voi d* handl e, void* data)

{
drma_conpl ete = 1;
}

int main (void)

alt_u8 buffer[1024];
alt _dma_rxchan rx;

/* Obtain a handle for the device */

if ((rx = alt_dma_rxchan_open ("/dev/dma_0")) == NULL)
printf ("Error: failed to open device\n");
exit (1);
el se
{ .
/* Post the receive request */
if (alt_dma_rxchan_prepare (rx, buffer, 1024, dna_done, NULL) < 0)
printf ("Error: failed to post receive request\n");
exit (1);
/* Wait for the transaction to conplete */
while (!dma_conpl ete);
printf ("Transaction conplete\n");
al t _dma_r xchan_cl ose (rx);
return O;

}

Memory-to-Memory DMA Transactions

Copying data from one memory buffer to another buffer involves both receive and
transmit DMA drivers. The code in Example 6-14 shows the process of queuing up a
receive request followed by a transmit request to achieve a memory-to-memory DMA
transaction.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-29
Using DMA Devices

Example 6-14. Copying Data from Memory to Memory (Part 1 of 2)

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#i ncl ude "sys/alt_dma. h"
#i ncl ude "system h"

static volatile int rx_done = 0;

/*

* Cal | back function that obtains notification that the data
* is received.

*/

static void done (void* handl e, void* data)

{

rx_done++;

}
/*

*

*/

int min (int argc, char* argv[], char* envp[])

{

int rc;

alt _dma_t xchan t xchan;
alt _dma_rxchan rxchan;

voi d* tx_data = (void*) 0x901000; /* pointer to data to send */
voi d* rx_buffer = (void*) 0x902000; /* pointer to rx buffer */

/* Create the transnmit channel */

if ((txchan = alt_dnma_t xchan_open("/dev/dnma_0")) == NULL)
{

printf ("Failed to open transnmit channel\n");

exit (1);

/* Create the receive channel */
if ((rxchan = alt_dma_rxchan_open("/dev/dma_0")) == NULL)
printf ("Failed to open receive channel\n");

exit (1);
}

/* Post the transmt request */

if ((rc = alt_dma_txchan_send (txchan,

tx_data,

128,

NULL,

NULL)) < 0)
printf ("Failed to post transnit request, reason = %\n", rc);
exit (1);
}

/* Continued... */

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-30

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Interrupt Controllers

Example 6-14. Copying Data from Memory to Memory (Part 2 of 2)

/* Post the receive request */
if ((rc = alt_dma_rxchan_prepare (rxchan,
rx_buffer,
128,
done,
NULL)) < 0)
printf ("Failed to post read request, reason = %\n", rc);
exit (1);
/* wait for transfer to conplete */
while (!rx_done);

printf ("Transfer successful!\n");

return O;

Using Interrupt Controllers

The HAL supports two types of interrupt controllers:
m The Nios Il internal interrupt controller
®m An external interrupt controller component

For information about working with interrupt controllers, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

Reducing Code Footprint

Code size is always a concern for embedded systems developers, because there is a
cost associated with the memory device that stores code. The ability to control and
reduce code size is important in controlling this cost.

The HAL environment is designed to include only those features that you request,
minimizing the total code footprint. If your Nios II hardware system contains exactly
the peripherals used by your program, the HAL contains only the drivers necessary to
control the hardware.

The following sections describe options to consider when you need to further reduce
code size. The hello_world_small example project demonstrates the use of some of
these options to reduce code size to the absolute minimum.

Implementing the options in the following sections entails making changes to BSP
settings. For detailed information about manipulating BSP settings, refer to “HAL
BSP Settings” on page 6-2.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-31

Reducing Code Footprint

Enable Compiler Optimizations

I =

To enable compiler optimizations, use the - O3 compiler optimization level for the
nios2-elf-gcc compiler. You can specify this command-line option through a BSP
setting.

With this option turned on, the Nios II compiler compiles code with the maximum
optimization available, for both size and speed.

You must set this option for both the BSP and the application project.

Use Reduced Device Drivers

Some devices provide two driver variants, a fast variant and a small variant. The
feature sets provided by these two variants are device specific. The fast variant is
full-featured, and the small variant provides a reduced code footprint.

By default the HAL always uses the fast driver variants. You can select the reduced
device driver for all hardware components, or for an individual component, through
HAL BSP settings.

Table 6-8 lists the Altera Nios II peripherals that currently provide small footprint
drivers. The small footprint option might also affect other peripherals. Refer to each
peripheral’s data sheet for complete details of its driver’s small footprint behavior.

Table 6-8. Altera Peripherals Offering Small Footprint Drivers

Peripheral Small Footprint Behavior
UART Polled operation, rather than IRQ-driven
JTAG UART Polled operation, rather than IRQ-driven
Common flash interface Driver excluded in small footprint mode
controller
LCD module controller Driver excluded in small footprint mode
EPCS serial configuration device | Driver excluded in small footprint mode

Reduce the File Descriptor Pool

Use /dev/null

The file descriptors that access character mode devices and files are allocated from a
file descriptor pool. You can change the size of the file descriptor pool through a BSP
setting. The default is 32.

At boot time, standard input, standard output, and standard error are all directed
towards the null device, that is, /dev/null. This direction ensures that calls to

printf () during driver initialization do nothing and therefore are harmless. After
all drivers are installed, these streams are redirected to the channels configured in the
HAL. The footprint of the code that performs this redirection is small, but you can
eliminate it entirely by selecting nul | for st di n,st dout, and st der r. This selection
assumes that you want to discard all data transmitted on standard out or standard
error, and your program never receives input through st di n. You can control the
assignment of st di n, st dout , and st der r channels by manipulating BSP settings.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-32 Chapter 6: Developing Programs Using the Hardware Abstraction Layer

Reducing Code Footprint

Use a Smaller File 1/0 Library

Use the Small newlib C Library

The full newlib ANSI C standard library is often unnecessary for embedded systems.
The GNU Compiler Collection (GCC) provides a reduced implementation of the
newlib ANSI C standard library, omitting features of newlib that are often
superfluous for embedded systems. The small newlib implementation requires a
smaller code footprint. When you use nios2-elf-gcc at the command line, the

- msmal | ¢ command-line option enables the small C library.

You can select the small newlib library through BSP settings. Table 6-9 summarizes

the limitations of the Nios II small newlib C library implementation.

Table 6-9. Limitations of the Nios Il Small newlib C Library (Part 1 of 2)

Limitation

Functions Affected

No floating-point support for pri nt f () family of routines. The functions
listed are implemented, but %6 and %g options are not supported. (7)

asprintf()
fiprintf()
fprintf()
iprintf()
printf()
siprintf()
snprintf()
sprintf()

No floating-point support for vpri nt f () family of routines. The functions
listed are implemented, but % and %g options are not supported.

vasprintf()
viiprintf()
viprintf()
vprintf()
vsnprintf()
vsprintf()

No support for scanf () family of routines. The functions listed are not
supported.

fscanf ()
scanf ()
sscanf ()
vfscanf ()
vscanf ()
vsscanf ()

No support for seeking. The functions listed are not supported.

f seek()
ftell()

No support for opening/closing FI LE *. Only pre-opened st dout , st derr,
and st di n are available. The functions listed are not supported.

f open()
fclose()

f dopen()
fcloseall ()
fileno()

Nios Il Software Developer’s Handbook

© July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Reducing Code Footprint

6-33

Table 6-9. Limitations of the Nios Il Small newlib C Library (Part 2 of 2)

Limitation

Functions Affected

No buffering of stdio.h output routines.

functions supported with no buffering:

fiprintf()
fputc()

f puts()
perror ()
putc()

put char ()

puts()
printf()

functions not supported:

set buf ()
set vbuf ()

No stdio.h input routines. The functions listed are not supported.

fgetc()
gets()
fscanf ()
getc()
get char ()
gets()
get w()

scanf ()

No support for locale.

setl ocal e()
| ocal econv()

No support for C++, because the functions listed in this table are not supported.

Note to Table 6-9:

(1) These functions are a Nios Il extension. GCC does not implement them in the small newlib C library.

L=~ The small newlib C library does not support MicroC/OS-IL.

«o For details about the GCC small newlib C library, refer to the newlib documentation

installed with the Nios II EDS. On the Windows Start menu, click Programs > Altera

> Nios II > Nios II Documentation.

Table 6-9 provides details about the differences.

Use UNIX-Style File 1/0

If you need to reduce the code footprint further, you can omit the newlib C library,

'~ The Nios Il implementation of the small newlib C library differs slightly from GCC.

and use the UNIX-style APIL. For details, refer to “UNIX-Style Interface” on page 6-5.

© July 2010 Altera Corporation

Nios Il Software Developer’s Handbook

6-34 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Reducing Code Footprint

The Nios II EDS provides ANSI C file I/O, in the newlib C library, because there is a
per-access performance overhead associated with accessing devices and files using
the UNIX-style file I/O functions. The ANSI C file I/O provides buffered access,
thereby reducing the total number of hardware I/O accesses performed. Also the
ANSI C API is more flexible and therefore easier to use. However, these benefits are
gained at the expense of code footprint.

Emulate ANSI C Functions

If you choose to omit the full implementation of newlib, but you need a limited
number of ANSI-style functions, you can implement them easily using UNIX-style
functions. The code in Example 6-15 shows a simple, unbuffered implementation of
get char ().

Example 6-15. Unbuffered getchar()

/* getchar: unbuffered single character input */
int getchar (void)

char c;
return (read (O, &, 1) == 1) ? (unsigned char) c : EOF;
}

«® This example is from The C Programming Language, Second Edition, by Brian W.
Kernighan and Dennis M. Ritchie. This standard textbook contains many other useful
functions.

Use the Lightweight Device Driver API

The lightweight device driver API allows you to minimize the overhead of accessing
device drivers. It has no direct effect on the size of the drivers themselves, but lets you
eliminate driver API features which you might not need, reducing the overall size of
the HAL code.

The lightweight device driver APl is available for character-mode devices. The
following device drivers support the lightweight device driver APL

m JTAG UART
m UART
m Optrex 16207 LCD

For these devices, the lightweight device driver API conserves code space by
eliminating the dynamic file descriptor table and replacing it with three static file
descriptors, corresponding to st di n, st dout , and st der r. Library functions related
to opening, closing, and manipulating file descriptors are unavailable, but all other
library functionality is available. You can refer to st di n, st dout ,and st derr as you
would to any other file descriptor. You can also refer to the following predefined file
numbers:

#define STDIN O
#defi ne STDOUT 1
#defi ne STDERR 2

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-35
Reducing Code Footprint

This option is appropriate if your program has a limited need for file I/O. The Altera
host-based file system and the Altera read-only zip file system are not available with
the reduced device driver APL You can select the reduced device drivers through BSP
settings.

By default, the lightweight device driver APl is disabled.

- For further details about the lightweight device driver API, refer to the Developing
Device Drivers for the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

Use the Minimal Character-Mode API

If you can limit your use of character-mode I/O to very simple features, you can
reduce code footprint by using the minimal character-mode APL This API includes
the following functions:

m oalt_printf()
m alt_putchar()
m alt_putstr()
m alt_getchar()

These functions are appropriate if your program only needs to accept command
strings and send simple text messages. Some of them are helpful only in conjunction
with the lightweight device driver API, discussed in “Use the Lightweight Device
Driver API” on page 6-34.

To use the minimal character-mode API, include the header file sys/alt_stdio.h.

The following sections outline the effects of the functions on code footprint.

alt_printf()

This function is similar to pri nt f () , but supports only the % %s, %x, and %%
substitution strings. al t _pri ntf () takes up substantially less code space than
printf (), regardless whether you select the lightweight device driver APL

alt _printf() occupies less than 1 KBKB with compiler optimization level - C2.

alt_putchar()

Equivalent to put char () . In conjunction with the lightweight device driver AP, this
function further reduces code footprint. In the absence of the lightweight API, it calls
put char ().

alt_putstr()

Similar to put s(), except that it does not append a newline character to the string. In
conjunction with the lightweight device driver AP], this function further reduces code
footprint. In the absence of the lightweight AP, it calls put s() .

alt_getchar()

Equivalent to get char () . In conjunction with the lightweight device driver AP, this
function further reduces code footprint. In the absence of the lightweight AP, it calls
getchar ().

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

6-36

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Reducing Code Footprint

For further details about the minimal character-mode functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

Eliminate Unused Device Drivers

If a hardware device is present in the system, by default the Nios II development
flows assume the device needs drivers, and configure the HAL BSP accordingly. If the
HAL can find an appropriate driver, it creates an instance of this driver. If your
program never actually accesses the device, resources are being used unnecessarily to
initialize the device driver.

If the hardware includes a device that your program never uses, consider removing
the device from the hardware. This reduces both code footprint and FPGA resource
usage.

However, there are cases when a device must be present, but runtime software does
not require a driver. The most common example is flash memory. The user program
might boot from flash, but not use it at runtime; thus, it does not need a flash driver.

You can selectively omit any individual driver, select a specific driver version, or
substitute your own driver.

For further information about controlling driver configurations, refer to the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Another way to control the device driver initialization process is to use the
free-standing environment. For details, refer to “Boot Sequence and Entry Point” on
page 6-37.

Eliminate Unneeded Exit Code

The HAL calls the exi t () function at system shutdown to provide a clean exit from
the program. exi t () flushes all of the C library internal I/O buffers and calls any
C++ functions registered with at exi t () . In particular, exi t () is called on return
from mai n() . Two HAL options allow you to minimize or eliminate this exit code.

Eliminate Clean Exit

To avoid the overhead associated with providing a clean exit, your program can use
the function _exi t () in place of exi t () . This function does not require you to
change source code. You can select the _exi t () function through a BSP setting.

Eliminate All Exit Code

Many embedded systems never exit at all. In such cases, exit code is unnecessary. You
can eliminate all exit code through a BSP setting.

[l=" If you enable this option, ensure that your mai n() function (or al t _nai n()
function) does not return.
Turn off C++ Support

By default, the HAL provides support for C++ programs, including default
constructors and destructors. You can disable C++ support through a BSP setting.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-37
Boot Sequence and Entry Point

Boot Sequence and Entry Point

Normally, your program’s entry point is the function mai n() . There is an alternate
entry point, al t _mai n(), that you can use to gain greater control of the boot
sequence. The difference between entering at mai n() and entering atal t _mai n() is
the difference between hosted and free-standing applications.

Hosted versus Free-Standing Applications

The ANSI C standard defines a hosted application as one that calls mai n() to begin
execution. At the start of mai n() , a hosted application presumes the runtime
environment and all system services are initialized and ready to use. This is true in the
HAL environment. If you are new to Nios Il programming, the HAL's hosted
environment helps you come up to speed more easily, because you need not consider
what devices exist in the system or how to initialize each one. The HAL initializes the
whole system.

The ANSI C standard also provides for an alternate entry point that avoids automatic
initialization, and assumes that the Nios II programmer initializes any needed
hardware explicitly. The al t _mai n() function provides a free-standing
environment, giving you complete control over the initialization of the system. The
free-standing environment places on the programmer the responsibility to initialize
any system features used in the program. For example, calls to pri ntf () do not
function correctly in the free-standing environment, unless al t _mai n() first
instantiates a character-mode device driver, and redirects st dout to the device.

L=~ Using the free-standing environment increases the complexity of writing Nios I
programs, because you assume responsibility for initializing the system. If your main
interest is to reduce code footprint, use the suggestions described in “Reducing Code
Footprint” on page 6-30. It is easier to reduce the HAL BSP footprint by using BSP
settings, than to use the free-standing mode.

The Nios II EDS provides examples of both free-standing and hosted programs.

Boot Sequence for HAL-Based Programs

The HAL provides system initialization code in the C runtime library (crt0.S). This
code performs the following boot sequence:

m Flushes the instruction and data cache.
m Configures the stack pointer.
m Configures the global pointer register.

m Initializes the block started by symbol (BSS) region to zeroes using the
linker-supplied symbols __bss_start and __bss_end. These are pointers to the
beginning and the end of the BSS region.

m If there is no boot loader present in the system, copies to RAM any linker section
whose run address is in RAM, such as .r wdat a, .r odat a, and .excepti ons.
Refer to “Global Pointer Register” on page 6-42.

m Callsalt_main().

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

6-38

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Boot Sequence and Entry Point

The HAL provides a default implementation of the al t _mai n() function, which
performs the following steps:

m Callstheal t _irqg_init() function,located in alt_sys_init.c.al t _irq_init()
initializes the hardware interrupt controller. The Nios II development flow
creates the file alt_sys_init.c for each HAL BSP.

m CallsALT_OS_I NI T() to perform any necessary operating system specific
initialization. For a system that does not include an operating system (OS)
scheduler, this macro has no effect.

m If you are using the HAL with an operating system, initializes the
alt_fd_list_| ock semaphore, which controls access to the HAL file systems.

m Enables interrupts.

m Callstheal t _sys_init () function, also located in alt_sys_init.c.
al t_sys_init() initializes all device drivers and software packages in the
system.

B Redirects the C standard 1/0O channels (st di n, st dout , and st der r) to use the
appropriate devices.

m Calls the C++ constructors, using the _do_ct or s() function.
m Registers the C++ destructors to be called at system shutdown.
m Calls mai n().

m Calls exi t (), passing the return code of mai n() as the input argument for
exit().

alt_main.c, installed with the Nios II EDS, provides this default implementation. The
SBT copies alt_main.c to your BSP directory.

Customizing the Boot Sequence

You can provide your own implementation of the start-up sequence by simply
defining al t _mai n() in your Nios II project. This gives you complete control of the
boot sequence, and allows you to selectively enable HAL services. If your application
requires an al t _mai n() entry point, you can copy the default implementation as a
starting point and customize it to your needs.

Function al t _mai n() calls function mai n() . After mai n() returns, the default
al t _mai n() enters an infinite loop. Alternatively, your custom al t _mai n() might
terminate by calling exi t () . Do not use a r et ur n statement.

The prototype for al t _mai n() is:
void alt_main (void)

The HAL build environment includes mechanisms to override default HAL BSP code.
This lets you override boot loaders, as well as default device drivers and other system
code, with your own implementation.

alt_sys_init.c is a generated file, which you must not modify. However, the

Nios II SBT enables you to control the generated contents of alt_sys_init.c. To specify
the initialization sequence in alt_sys_init.c, you manipulate the aut o_i ni ti al i ze
and al t_sys_i nit_priority properties of each driver, using the

set _sw_property Tcl command.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-39
Memory Usage

“®.e For more information about generated files and how to control the contents of

alt_sys_init.c, refer to the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook. For general information about alt_sys_init.c, refer to the
Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook. For details about the set _sw_property Tcl
command, refer to the Nios II Software Build Tools Reference chapter of the Nios 11
Software Developer’s Handbook.

Memory Usage

This section describes how the HAL uses memory and arranges code, data, stack, and
other logical memory sections, in physical memory.

Memory Sections

By default, HAL-based systems are linked using a generated linker script that is
created by the Nios II SBT. This linker script controls the mapping of code and data to
the available memory sections. The autogenerated linker script creates standard code
and data sections (. t ext, .r odat a, .r wdat a, and .bss), plus a section for each
physical memory device in the system. For example, if a memory component named
sdr amis defined in the system.h file, there is a memory section named .sdr am
Figure 6-3 shows the organization of a typical HAL link map.

The memory devices that contain the Nios II processor’s reset and exception
addresses are a special case. The Nios II tools construct the 32-byte .ent r y section
starting at the reset address. This section is reserved exclusively for the use of the reset
handler. Similarly, the tools construct a .except i ons section, starting at the
exception address.

In a memory device containing the reset or exception address, the linker creates a
normal (nonreserved) memory section above the .ent ry or.excepti ons section. If
there is a region of memory below the .ent ry or.except i ons section, it is
unavailable to the Nios II software. Figure 6-3 illustrates an unavailable memory
region below the .except i ons section.

Assigning Code and Data to Memory Partitions

This section describes how to control the placement of program code and data in
specific memory sections. In general, the Nios II development flow specifies a sensible
default partitioning. However, you might wish to change the partitioning in special
situations.

For example, to enhance performance, it is a common technique to place
performance-critical code and data in RAM with fast access time. It is also common
during the debug phase to reset (that is, boot) the processor from a location in RAM,
but then boot from flash memory in the released version of the software. In these
cases, you must specify manually which code belongs in which section.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

6-40 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Memory Usage

Figure 6-3. Sample HAL Link Map

Physical HAL Memory
Memory Sections
.entry
ext_flash .ext_flash
. L]
; .
(unused)
sdram
.exceptions
text
.rodata
.'wdata
.bss
.sdram
L] L]
; .
ext_ram .ext_ram
; g
epcs_controller .epcs_controller

Simple Placement Options

The reset handler code is always placed at the base of the .r eset partition. The
general exception funnel code is always the first code in the section that contains the
exception address. By default, the remaining code and data are divided into the
following output sections:

m . text—All remaining code
m . rodat a—The read-only data
m . rwdat a—Read-write data
B . bss—Zero-initialized data

You can control the placement of .t ext, .r odat a, .r wdat a, and all other memory
partitions by manipulating BSP settings. For details about how to control BSP settings,
refer to “HAL BSP Settings” on page 6-2.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-41

Memory Usage

The Nios II BSP Editor is a very convenient way to manipulate the linker’s memory
map. The BSP Editor displays memory section and region assignments graphically,
allowing you to see overlapping or unused sections of memory. The BSP Editor is
available either through the Nios II SBT for Eclipse, or at the command line of the
Nios II SBT.

For details, refer to the Getting Started from the Command Line chapter of the Nios II
Software Developer’s Handbook.

Advanced Placement Options

In your program source code, you can specify a target memory section for each piece
of code. In C or C++, you can use the sect i on attribute. This attribute must be
placed in a function prototype; you cannot place it in the function declaration itself.
The code in Example 616 places a variable f 00 in the memory named ext _r am and
the function bar () in the memory named sdr am

Example 6-16. Manually Assigning C Code to a Specific Memory Section

/* data should be initialized when using the section attribute */
int foo __attribute__ ((section (".ext_ramrwdata"))) = 0;

void bar (void) __attribute__ ((section (".sdramtxt")));

voi d bar (void)

{

foo++;

}

In assembly you do this using the .sect i on directive. For example, all code after the
following line is placed in the memory device named ext _r am

.section .ext_ramtxt

The section names ext _r amand sdr amare examples. You need to use section names
corresponding to your hardware. When creating section names, use the following
extensions:

m . txt for code: for example, .sdr am t xt
m . rodat a for read-only data: for example, . cfi _fl ash. rodata

m . rwdat a for read-write data: for example, .ext _r am r wdat a

For details about the use of these features, refer to the GNU compiler and assembler
documentation. This documentation is installed with the Nios II EDS. To find it, open
the Nios II EDS documentation launchpad, scroll down to Software Development,
and click Using the GNU Compiler Collection (GCC).

A powerful way to manipulate the linker memory map is by using the Nios II BSP
Editor. With the BSP Editor, you can assign linker sections to specific physical regions,
and then review a graphical representation of memory showing unused or
overlapping regions. You start the BSP Editor from the Nios II Command Shell. For
details about using the BSP Editor, refer to the editor’s tool tips.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Memory Usage

Placement of the Heap and Stack

By default, the heap and stack are placed in the same memory partition as

the .r wdat a section. The stack grows downwards (toward lower addresses) from the
end of the section. The heap grows upwards from the last used memory in

the .r wdat a section. You can control the placement of the heap and stack by
manipulating BSP settings.

By default, the HAL performs no stack or heap checking. This makes function calls
and memory allocation faster, but it means that mal | oc() (in C) and new(in C++) are
unable to detect heap exhaustion. You can enable run-time stack checking by
manipulating BSP settings. With stack checking on, mal | oc() and new() can detect
heap exhaustion.

To specify the heap size limit, set the preprocessor symbol ALT_MAX_HEAP_BYTES to
the maximum heap size in decimal. For example, the preprocessor argument

- DALT_MAX_HEAP_SI ZE=1048576 sets the heap size limit to 0x100000. You can
specify this command-line option through a BSP setting. For more information about
manipulating BSP settings, refer to “HAL BSP Settings” on page 6-2.

Stack checking has performance costs. If you choose to leave stack checking turned
off, you must code your program so as to ensure that it operates within the limits of
available heap and stack memory.

Refer to the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook for details about selecting stack and heap placement, and setting up stack
checking.

For details about how to control BSP settings, refer to “HAL BSP Settings” on
page 6-2.

Global Pointer Register

The global pointer register enables fast access to global data structures in Nios II
programs. The Nios II compiler implements the global pointer, and determines which
data structures to access with it. You do not need to do anything unless you want to
change the default compiler behavior.

The global pointer register can access a single contiguous region of 64 KB. To avoid
overflowing this region, the compiler only uses the global pointer with small global
data structures. A data structure is considered “small” if its size is less than a specified
threshold. By default, this threshold is 8 bytes.

The small data structures are allocated to the small global data sections, .sdat a,

. sdat a2, .sbss, and .sbss2. The small global data sections are subsections of

the .rwdat a and .bss sections. They are located together, as shown in Figure 64, to
enable the global pointer to access them.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6-43

Memory Usage

Figure 6-4. Small Global Data sections

RAM

.sdata > .rwdata

.Shss2 > bss

If the total size of the small global data structures is more than 64 KB, these data
structures overflow the global pointer region. The linker produces an error message
saying " Unabl e to reach <variable name> ... from the gl obal

pointer ... because the offset ... is out of the allowed range,
-32678 to 32767."

You can fix this with the - Gcompiler option. This option sets the threshold size. For
example, - G 4 restricts global pointer usage to data structures 4 bytes long or smaller.
Reducing the global pointer threshold reduces the size of the small global data
sections.

The - Goption’s numeric argument is in decimal. You can specify this compiler option
through a project setting. For information about manipulating project settings, refer to
“HAL BSP Settings” on page 6-2.

You must set this option to the same value for both the BSP and the application
project.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Working with HAL Source Files

Boot Modes

The processor’s boot memory is the memory that contains the reset vector. This device
might be an external flash or an Altera EPCS serial configuration device, or it might be
an on-chip RAM. Regardless of the nature of the boot memory, HAL-based systems
are constructed so that all program and data sections are initially stored in it. The
HAL provides a small boot loader program that copies these sections to their run time
locations at boot time. You can specify run time locations for program and data
memory by manipulating BSP settings.

If the runtime location of the .t ext section is outside of the boot memory, the Altera
flash programmer places a boot loader at the reset address. This boot loader is
responsible for loading all program and data sections before the call to _st ar t . When
booting from an EPCS device, this loader function is provided by the hardware.

However, if the runtime location of the .t ext section is in the boot memory, the
system does not need a separate loader. Instead the _r eset entry point in the HAL
executable program is called directly. The function _r eset initializes the instruction
cache and then calls _st ar t . This initialization sequence lets you develop
applications that boot and execute directly from flash memory.

When running in this mode, the HAL executable program must take responsibility for
loading any sections that require loading to RAM. The .r wdat a, .r odat a, and

. except i ons sections are loaded before the call to al t _mai n(), as required. This
loading is performed by the function al t _| oad() . To load any additional sections,
use theal t _| oad_secti on() function.

For more information about al t _| oad_secti on(), refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

Working with HAL Source Files

You might wish to view files in the HAL, especially header files, for reference. This
section describes how to find and use HAL source files.

Finding HAL Files

You determine the location of HAL source files when you create the BSP. HAL source
files (and other BSP files) are copied to the BSP directory.

For details, refer to the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

Overriding HAL Functions

HAL source files are copied to your BSP directory when you create your BSP. If you
regenerate a BSP, any HAL source files that differ from the installation files are copied.
Avoid modifying BSP files. To override default HAL code, use BSP settings, or custom
device drivers or software packages.

For information about what happens when you regenerate a BSP, refer to “Revising
your BSP” in the Nios II Software Build Tools chapter of the Nios I Software Developer’s
Handbook.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Referenced Documents

6-45

1=

Avoid modifying HAL source files. If you modify a HAL source file, you cannot

regenerate the BSP without losing your changes. This makes it difficult to keep the

BSP coordinated with changes to the underlying SOPC Builder system.

For more information, refer to “Nios Il Software Projects” in the Nios II Software Build

Tools chapter of the Nios II Software Developer’s Handbook.

Referenced Documents

This chapter references the following documents:

m Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook

m Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook

m Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook

m Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II

Software Developer’s Handbook
m Exception Handling chapter of the Nios II Software Developer’s Handbook

m Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer’s
Handbook

m Read-Only Zip File System chapter of the Nios II Software Developer’s Handbook
m HAL API Reference chapter of the Nios 1I Software Developer’s Handbook

m Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook

m Off-Chip Interface Peripherals section in the Embedded Peripherals IP User Guide

m The C Programming Language, Second Edition, by Brian Kernighan and Dennis M.

Ritchie (Prentice-Hall)

m GNU documentation on the Nios II EDS documentation launchpad

Document Revision History

Table 6-10 shows the revision history for this document.

Table 6-10. Document Revision History (Part 1 of 2)

Date &
Document
Version

Changes Made Summary of Changes

July 2010
v10.0.0

Maintenance release

November 2009
v9.1.0

Inserted host-based file system description
Removed IDE-specific information
Updated information about overriding HAL functions

Described al t _i rq_i ni t () function m Introduced external

interrupt controller

behavior changed

m BSP generation file-copy

© July 2010 Altera Corporation

Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3_01.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer

Document Revision History

Table 6-10. Document Revision History (Part 2 of 2)

Date &
Document
Version Changes Made Summary of Changes
March 2009 m Reorganized and updated information and terminology to clarify role | Altera logging
v9.0.0 of Nios Il Software Build Tools.
m Add documentation for Altera logging.
m Corrected minor typographical errors.
May 2008 Maintenance release
v8.0.0
October 2007 m Added documentation for HAL program development with the Nios Il —
v7.2.0 Software Build Tools.
m Additional documentation of alarms functions
m Correctal t _erase_flash_bl ock() example
May 2007 m Added table of contents to “Introduction” section. —
v7.1.0 m Added Referenced Documents section.
March 2007 Maintenance release
v7.0.0
November 2006 | m Program never exits system library option
v6.1.0 m Support C++ system library option
m Lightweight device driver API system library option
m Minimal character-mode API
May 2006 m Revised text on instruction emulation.
v6.0.0 m Added section on global pointers.
October 2005 m Added al t _64 andal t _u64 types to Table 6-1 on page 6-5.
v5.1.0 m Made changes to section “Placement of the Heap and Stack”.
May 2005 Added al t _| oad_sect i on() function information.
v5.0.0
December 2004 | m Added boot modes information.
vi.2 m Amended compiler optimizations.
m Updated Reducing Code Footprint section.
September Corrected DMA receive channels example code.
2004
viA
May 2004 Initial release
v1.0

Nios Il Software Developer’s Handbook

© July 2010 Altera Corporation

fAhl ERA 7. Developing Device Drivers for the

NI152005-10.0.0

® Hardware Abstraction Layer

Introduction

Il

Embedded systems typically have application-specific hardware features that require
custom device drivers. This chapter describes how to develop device drivers and
integrate them with the hardware abstraction layer (HAL).

This chapter also describes how to develop software packages for use with HAL
board support packages (BSPs). The process of integrating a software package with
the HAL is nearly identical with the process for integrating a device driver.

This chapter contains the following sections:

m “Development Flow for Creating Device Drivers” on page 7-2
m “SOPC Builder Concepts” on page 7-3

B “Accessing Hardware” on page 7-3

m “Creating Drivers for HAL Device Classes” on page 7-5

m “Creating a Custom Device Driver for the HAL” on page 7-16
m “Integrating a Device Driver in the HAL” on page 7-17

m “Reducing Code Footprint” on page 7-29

m “Namespace Allocation” on page 7-31

m “Overriding the Default Device Drivers” on page 7-32

Confine direct interaction with the hardware to device driver code. In general, the
best practice is to keep most of your program code free of low-level access to the
hardware. Wherever possible, use the high-level HAL application program interface
(API) functions to access hardware. This makes your code more consistent and more
portable to other Nios® II systems that might have different hardware configurations.

When you create a new driver, you can integrate the driver with the HAL framework
at one of the following two levels:

m Integration in the HAL API
m Peripheral-specific API

As an alternative to creating a driver, you can compile the device-specific code as a
user library, and link it with the application. This approach is workable if the
device-specific code is independent of the BSP, and does not require any of the extra
services offered by the BSP, such as the ability to add definitions to the system.h file.

Integration in the HAL API

Integration in the HAL APl is the preferred option for a peripheral that belongs to one
of the HAL generic device model classes, such as character-mode or direct memory
access (DMA) devices.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

7-2

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Development Flow for Creating Device Drivers

For descriptions of the HAL generic device model classes, refer to the Overview of the
Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

For integration in the HAL API, you write device access functions as specified in this
chapter, and the device becomes accessible to software through the standard HAL
API. For example, if you have a new LCD screen device that displays ASCII
characters, you write a character-mode device driver. With this driver in place,
programs can call the familiar pri nt f () function to stream characters to the LCD
screen.

Peripheral-Specific API

If the peripheral does not belong to one of the HAL generic device model classes, you
need to provide a device driver with an interface that is specific to the hardware
implementation. In this case, the API to the device is separate from the HAL API.
Programs access the hardware by calling the functions you provide, not the HAL APL

The up-front effort to implement integration in the HAL API is higher, but you gain
the benefit of the HAL and C standard library API to manipulate devices.

For details about integration in the HAL API, refer to “Integrating a Device Driver in
the HAL” on page 7-17.

All the other sections in this chapter apply to integrating drivers in the HAL API and
creating drivers with a peripheral-specific API.

Although C++ is supported for programs based on the HAL, HAL drivers can not be
written in C++. Restrict your driver code to either C or assembly language. C is
preferred for portability.

Before You Begin

This chapter assumes that you are familiar with C programming for the HAL.

Refer to the Developing Programs Using the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook for information you need before reading this
chapter.

This chapter uses the variable <Altera installation> to represent the location where the
Altera® Complete Design Suite is installed. On a Windows system, by default, that
location is c:/altera/<version number>.

Development Flow for Creating Device Drivers

The steps to develop a new driver for the HAL depend on your device details.
However, the following generic steps apply to all device classes.

1. Create the device header file that describes the registers. This header file might be
the only interface required.

2. Implement the driver functionality.

3. Test from mai n() .

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-3

SOPC Builder Concepts

4. Proceed to the final integration of the driver in the HAL environment.

5. Integrate the device driver in the HAL framework.

SOPC Builder Concepts

This section discusses basic concepts of the Altera SOPC Builder hardware design tool
that enhance your understanding of the driver development process. You can develop
Nios II device drivers without using SOPC Builder.

The Relationship hetween system.h and SOPC Builder

The system.h header file provides a complete software description of the Nios II
system hardware, and is a fundamental part of developing drivers. Because drivers
interact with hardware at the lowest level, it is worth mentioning the relationship
between system.h and SOPC Builder that generates the Nios II processor system
hardware. Hardware designers use SOPC Builder to specify the architecture of the
Nios II processor system and integrate the necessary peripherals and memory.
Therefore, the definitions in system.h, such as the name and configuration of each
peripheral, are a direct reflection of design choices made in SOPC Builder.

For more information about the system.h header file, refer to the Developing Programs
Using the Hardware Abstraction Layer chapter of the Nios II Software Developer’s
Handbook.

Using SOPC Builder for Optimal Hardware Configuration

If you find less-than-optimal definitions in system.h, remember that you can modify
the contents of system.h by changing the underlying hardware with SOPC Builder.
Before you write a device driver to accommodate imperfect hardware, it is worth
considering whether the hardware can be improved easily with SOPC Builder.

Components, Devices, and Peripherals

SOPC Builder uses the term “component” to describe hardware modules included in
the system. In the context of Nios II software development, SOPC Builder
components are devices, such as peripherals or memories. In the following sections,
“component” is used interchangeably with “device” and “peripheral” when the
context is closely related to SOPC Builder.

Accessing Hardware

Software accesses the hardware with macros that abstract the memory-mapped
interface to the device. This section describes the macros that define the hardware
interface for each device.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

-4

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Accessing Hardware

All SOPC Builder components provide a directory that defines the device hardware
and software. For example, each component provided in the Quartus® II software has
its own directory in the <Altera installation>/ip/altera/sopc_builder_ip directory.
Many components provide a header file that defines their hardware interface. The
header file is named <component name>_regs.h, included in the inc subdirectory for
the specific component. For example, the Altera-provided JTAG UART component
defines its hardware interface in the file <Altera installation>/ip/altera/
sopc_builder_ip/altera_avalon_jtag_uart/inc/altera_avalon_jtag_uart_regs.h.

The _regs.h header file defines the following access macros for the component:

m Register access macros that provide a read and/or write macro for each register in

the component that supports the operation. The macros are:

m | ORD <conponent name>_<regi ster nanme>
(<component base address>)

m | OAR_<conponent name>_<regi ster nanme>
(<conponent base address>, <data>)

For example, altera_avalon_jtag_uart_regs.h defines the following macros:
m | ORD_ALTERA _AVALON JTAG UART_DATA()

= | OAR ALTERA AVALON JTAG UART DATA()

= | ORD ALTERA AVALON JTAG UART_CONTROL()

= | OAR ALTERA AVALON JTAG UART_CONTROL()

Register address macros that return the physical address for each register in a
component. The address register returned is the component’s base address + the
specified register offset value. These macros are named

IOADDR _<component name>_<register name> (<component base address>).

For example, altera_avalon_jtag_uart_regs.h defines the following macros:
m | OADDR_ALTERA AVALON JTAG_UART_DATA()
m | OADDR ALTERA AVALON JTAG_UART_CONTROL()

Use these macros only as parameters to a function that requires the specific
address of a data source or destination. For example, a routine that reads a stream
of data from a particular source register in a component might require the physical
address of the register as a parameter.

Bit-field masks and offsets that provide access to individual bit-fields in a register.
These macros have the following names:

m <component name>_<register name>_<name of field>_NSK—A bit-mask of the
field

m <component name>_<register name>_<name of field>_OFST—The bit offset of the
start of the field

For example, ALTERA_AVALON_UART_STATUS_PE_MsK and
ALTERA _AVALON_UART_STATUS_PE_OFST access the pe field of the status
register.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-5
Creating Drivers for HAL Device Classes

Access a device’s registers only with the macros defined in the _regs.h file. You must
use the register access functions to ensure that the processor bypasses the data cache
when reading and or writing the device. Do not use hard-coded constants, because
they make your software susceptible to changes in the underlying hardware.

If you are writing the driver for a completely new hardware device, you must prepare
the _regs.h header file.

For detailed information about developing device drivers for HAL BSPs, refer to

AN 459: Guidelines for Developing a Nios II HAL Device Driver. For a complete example
of the _regs.h file, refer to the component directory for any of the Altera-supplied
SOPC Builder components, such as <Altera installation>/ip/sopc_builder_ip/
altera_avalon_jtag_uart/inc. For more information about the effects of cache
management and device access, refer to the Cache and Tightly-Coupled Memory chapter
of the Nios II Software Developer’s Handbook.

Creating Drivers for HAL Device Classes

The HAL supports a number of generic device model classes. By writing a device
driver as described in this section, you describe to the HAL an instance of a specific
device that falls into one of its known device classes. This section defines a consistent
interface for driver functions so that the HAL can access the driver functions
uniformly.

Generic device model classes are defined in the Overview of the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

The following sections define the API for the following classes of devices:

m Character-mode devices

m File subsystems

m DMA devices

m Timer devices used as system clock

m Timer devices used as timestamp clock

m Flash memory devices

m Ethernet devices

The following sections describe how to implement device drivers for each class of
device, and how to register them for use in HAL-based systems.

Character-Mode Device Drivers

This section describes how to create a device instance and register a character device.

Create a Device Instance

For a device to be made available as a character mode device, it must provide an
instance of the al t _dev structure. The code in Example 7-1 defines the al t _dev
structure.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf

7-6 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes

The al t _dev structure, defined in <Nios II EDS install path>/components/altera_hal/
HAL/inc/sys/alt_dev.h, is essentially a collection of function pointers. These functions
are called in response to application accesses to the HAL file system. For example, if
you call the function open() with a file name that corresponds to this device, the
result is a call to the open() function provided in this structure.

Example 7-1. alt_dev Structure

typedef struct {
alt_Ilist I1ist; /* for internal use */
const char* nane;
int (*open) (alt_fd* fd, const char* name, int flags, int node);
int (*close) (alt_fd* fd);
int (*read) (alt_fd* fd, char* ptr, int len);
int (*wite) (alt_fd* fd, const char* ptr, int len);
int (*Iseek) (alt_fd* fd, int ptr, int dir);
int (*fstat) (alt_fd* fd, struct stat* buf);
int (*ioctl) (alt_fd* fd, int req, void* arg);
} alt_dev;

<o For more information about open(),cl ose(),read(),wite(),lseek(),
fstat(),andioctl (), refer to the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

None of these functions directly modifies the global error status, er r no. Instead, the
return value is the negation of the appropriate error code provided in errno.h.

For example, thei oct | () function returns - ENOTTY if it cannot handle a request
rather than set er r no to ENOTTY directly. The HAL system routines that call these
functions ensure that er r no is set accordingly.

The function prototypes for these functions differ from their application level
counterparts in that they each take an input file descriptor argument of type al t _f d*
rather than i nt .

A new al t _f d structure is created on a call to open() . This structure instance is then
passed as an input argument to all function calls made for the associated file
descriptor.

The following code defines the al t _f d structure:

t ypedef struct

alt _dev* dev;

voi d* priv;

int fd_fl ags;
} alt_fd;
where:

m dev is a pointer to the device structure for the device being used.

m fd_flags isthe value of f | ags passed to open() .

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-7
Creating Drivers for HAL Device Classes

m privisareserved, implementation-dependent argument, defined by the driver. If
the driver requires any special, non-HAL-defined values to be maintained for each
file or stream, you can store them in a data structure, and use pr i v maintains a
pointer to the structure. The HAL ignores pri v.

Allocate storage for the data structure in your open() function (pointed to by the
al t _dev structure). Free the storage in your cl ose() function.

"=~ To avoid memory leaks, ensure that the cl ose() function is called when
the file or stream is no longer needed.

A driver is not required to provide all of the functions in the al t _dev structure. If a
given function pointer is set to NULL, a default action is used instead. Table 7-1 shows
the default actions for each of the available functions.

Table 7-1. Default Behavior for Functions Defined in alt_dev

Function Default Behavior

open Calls to open() for this device succeed, unless the device was previously locked by a
calltoi octl () withreqg = TI OCEXCL.

cl ose Calls to cl ose() foravalid file descriptor for this device always succeed.
read Calls to r ead() for this device always fail.

wite Callstowri t e() for this device always fail.

| seek Calls to | seek() for this device always fail.

fstat The device identifies itself as a character mode device.

i octl i oct | () requests that cannot be handled without reference to the device fail.

In addition to the function pointers, the al t _dev structure contains two other fields:
I'I'i st and name. | | i st is for internal use, and must always be set to the value
ALT_LLI ST_ENTRY. narne is the location of the device in the HAL file system and is
the name of the device as defined in system.h.

Register a Character Device

After you create an instance of the al t _dev structure, the device must be made
available to the system by registering it with the HAL and by calling the following
function:

int alt_dev_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register.
The return value is zero upon success. A negative return value indicates that the
device cannot be registered.

After a device is registered with the HAL file system, you can access it through the
HAL API and the ANSI C standard library. The node name for the device is the name
specified in the al t _dev structure.

For more information, refer to the Developing Programs Using the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

7-8 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes

File Subsystem Drivers

A file subsystem device driver is responsible for handling file accesses beneath a
specified mount point in the global HAL file system.

Create a Device Instance

Creating and registering a file system is very similar to creating and registering a
character-mode device. To make a file system available, create an instance of the

al t _dev structure (refer to “Character-Mode Device Drivers” on page 7-5). The only
distinction is that the nane field of the device represents the mount point for the file
subsystem. Of course, you must also provide any necessary functions to access the file
subsystem, such asread() and wri t e(), similar to the case of the character-mode
device.

L=~ If you do not provide an implementation of f st at () , the default behavior returns
the value for a character-mode device, which is incorrect behavior for a file
subsystem.

Register a File Subsystem Device
You can register a file subsystem using the following function:
int alt _fs reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register.
A negative return value indicates that the file system cannot be registered.

After a file subsystem is registered with the HAL file system, you can access it
through the HAL API and the ANSI C standard library. The mount point for the file
subsystem is the narme specified in the al t _dev structure.

«® For more information, refer to the Developing Programs Using the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

Timer Device Drivers

This section describes the system clock and timestamp drivers.

System Clock Driver

A system clock device model requires a driver to generate the periodic clock tick.
There can be only one system clock driver in a system. You implement a system clock
driver as an interrupt service routine (ISR) for a timer peripheral that generates a
periodic interrupt. The driver must provide periodic calls to the following function:

void alt_tick (void)

The expectation is that al t _t i ck() is called in exception context.

To register the presence of a system clock driver, call the following function:
int alt_sysclk_init (alt_u32 nticks)

The input argument nt i cks is the number of system clock ticks per second, which is
determined by your system clock driver. The return value of this function is zero on
success, and nonzero otherwise.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer

Creating Drivers for HAL Device Classes

For more information about writing interrupt service routines, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

Timestamp Driver
A timestamp driver provides implementations for the three timestamp functions:

alt_tinmestanp_start(),alt_timestanp(),andalt_timestanmp_freq().
The system can only have one timestamp driver.

For more information about using these functions, refer to the Developing Programs
Using the Hardware Abstraction Layer and HAL API Reference chapters of the Nios II
Software Developer’s Handbook.

Flash Device Drivers

This section describes how to create a flash driver and register a flash device.

Create a Flash Driver

Flash device drivers must provide an instance of the al t _f | ash_dev structure,
defined in sys/alt_flash_dev.h. The following code shows the structure:

struct alt_flash_dev
{
alt_Ilist Ilist; // internal use only
const char* nane;
alt_flash_open open;
alt_flash_cl ose cl ose;
alt flash wite write;
alt _flash_read r ead;
alt _flash_get_flash_info get_info;

alt _flash_erase bl ock
alt _flash_write_block

erase_bl ock;
write_block;

voi d* base_addr;
int | engt h;
int nunber _of _r egi ons;
flash_region regi on_i nf o[ALT_MAX_NUMBER_OF_FLASH REQ ONS] ;
b
The first parameter | | i st is for internal use, and must always be set to the value

ALT_LLIST_ENTRY. nane is the location of the device in the HAL file system and is
the name of the device as defined in system.h.

The seven fields open towr i t e_bl ock are function pointers that implement the
functionality behind the application API calls to the following functions:

m alt_flash_open_dev()

m alt_flash_close_dev()

m alt_wite_flash()

m alt _read flash()

m alt_get_flash_info()

m alt _erase_flash_block()

m alt wite flash_block()

© July 2010 Altera Corporation

Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

7-10 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes

where:

m the base_addr parameter is the base address of the flash memory
m | engt h is the size of the flash in bytes

m nunber _of _r egi ons is the number of erase regions in the flash

m region_i nf o contains information about the location and size of the blocks in
the flash device

<o For more information about the format of the f | ash_r egi on structure, refer to
“Using Flash Devices” in the Developing Programs Using the Hardware Abstraction Layer
chapter of the Nios II Software Developer’s Handbook.

Some flash devices, such as common flash interface (CFI)-compliant devices, allow
you to read out the number of regions and their configuration at run time. For all
other flash devices, these two fields must be defined at compile time.

Register a Flash Device

After creating an instance of the al t _f | ash_dev structure, you must make the
device available to the HAL system by calling the following function:

int alt_flash_device register(alt_flash_fd* fd)

This function takes a single input argument, which is the device structure to register.
The return value is zero upon success. A negative return value indicates that the
device cannot be registered.

DMA Device Drivers

The HAL models a DMA transaction as being controlled by two endpoint devices: a
receive channel and a transmit channel. This section describes the drivers for each
type of DMA channel separately.

«o For a complete description of the HAL DMA device model, refer to “Using DMA
Devices” the Developing Programs Using the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook.

The DMA device driver interface is defined in sys/alt_dma_dev.h.

DMA Transmit Channel

A DMA transmit channel is constructed by creating an instance of the
al t _dma_t xchan structure, shown in Example 7-2.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-1

Creating Drivers for HAL Device Classes

Example 7-2. alt_dma_txchan Structure

typedef struct alt_dnma_txchan_dev_s alt_dma_t xchan_dev;
struct alt_dma_txchan_dev_s

alt _Ilist Ilist;
const char* nane;

int
int

int

}s

(*space) (alt_dma_txchan dms);
(*send) (alt_dnma_txchan dna,

const voi d* from
alt_u32 | en,

alt _txchan_done* done,
voi d* handl e) ;

(*ioctl) (alt_dma_txchan dma, int req, void* arg);

Table 7-2 shows the available fields and their functions.

Both the space and send functions need to be defined. If the i oct | field is set to
null, callsto al t _dma_t xchan_i oct| () return - ENOTTY for this device.

After creating an instance of the al t _dma_t xchan structure, you must register the
device with the HAL system to make it available by calling the following function:

int alt_dnma_txchan_reg (alt_dna_txchan_dev* dev)

Table 7-2. Fields in the alt_dma_txchan Structure

Field

Function

I1ist

This field is for internal use, and must always be set to the value ALT_LLIST_ENTRY.

nane

The name that refers to this channel in callstoal t _dnma_t xchan_open() .
nane is the name of the device as defined in system.h.

space

A pointer to a function that returns the number of additional transmit requests that
can be queued to the device. The input argument is a pointer to the
al t _dma_t xchan_dev structure.

send

A pointer to a function that is called as a result of a call to the application API function
alt _dma_t xchan_send() . This function posts a transmit request to the DMA
device. The parameters passed to al t _t xchan_send() are passed directly to
send() . For a description of parameters and return values, refer to the HAL AP/
Reference chapter of the Nios I Software Developer’s Handbook.

ioctl

This function provides device specific I/0 control. Refer to sys/alt_dma_dev.h for a
list of the generic options that you might want your device to support.

The input argument dev is the device to register. The return value is zero on success,
or negative if the device cannot be registered.

© July 2010 Altera Corporation

Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

7-12 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes

DMA Receive Channel

A DMA receive channel is constructed by creating an instance of the
al t _dma_r xchan structure, shown in Example 7-3.

Example 7-3. alt_dma_rxchan Structure

typedef alt_dnma_rxchan_dev_s alt_dma_rxchan;
struct alt_dma_rxchan_dev_s

{
alt Ilist list;
const char* nane;
alt_u32 dept h;
int (*prepare) (alt_dnma_rxchan drra,
voi d* dat a,
alt_u32 | en,
alt _rxchan_done* done,
voi d* handl e) ;
int (*ioctl) (alt_dma_rxchan dma, int req, void* arg);
s

Table 7-3 shows the available fields and their functions.

The pr epar e() function must be defined. If the i oct | field is set to null, calls to
alt _dma_rxchan_i oct!| () return - ENOTTY for this device.

After creating an instance of the al t _dma_r xchan structure, you must register the
device driver with the HAL system to make it available by calling the following
function:

int alt_dma_rxchan_reg (alt_dna_rxchan_dev* dev)
The input argument dev is the device to register. The return value is zero on success,

or negative if the device cannot be registered.

Table 7-3. Fields in the alt_dma_rxchan Structure

Field Function
I'list This function is for internal use and must always be set to the value
ALT_LLI ST_ENTRY.
name The name that refers to this channelin callstoal t _dma_r xchan_open() . nane

is the name of the device as defined in system.h.

dept h The total number of receive requests that can be outstanding at any given time.

pr epar e | A pointer to a function that is called as a result of a call to the application API function
alt _dma_rxchan_prepar e() . This function posts a receive request to the
DMA device. The parameters passed to al t _dma_r xchan_prepare() are
passed directly to pr epar e() . For a description of parameters and return values,
refer to the HAL API Reference chapter of the Nios Il Software Developer’s Handbook.

i octl This is a function that provides device specific I/0 control. Refer to sys/
alt_dma_dev.h for a list of the generic options that a device might wish to support.

Ethernet Device Drivers

The HAL generic device model for Ethernet devices provides access to the
NicheStack® TCP/IP Stack - Nios II Edition running on the MicroC/OS-II operating
system. You can provide support for a new Ethernet device by supplying the driver
functions that this section defines.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-13
Creating Drivers for HAL Device Classes

Before you consider writing a device driver for a new Ethernet device, you need a
basic understanding of the Altera implementation of the NicheStack TCP/IP Stack
and its usages.

For more information, refer to the Ethernet and the NicheStack TCP/IP Stack - Nios II
Edition chapter of the Nios II Software Developer’s Handbook.

The easiest way to write a new Ethernet device driver is to start with Altera’s
implementation for the SMSC lan91c111 device, and modify it to suit your Ethernet
media access controller (MAC). This section assumes you take this approach. Starting
from a known working example makes it easier for you to learn the most important
details of the NicheStack TCP/IP Stack implementation.

The source code for the lan91c111 driver is provided with the Quartus II software in
<Altera installation>/ip/altera/sopc_builder_ip/altera_avalon_lan91c111/UCOSII. For
the sake of brevity, this section refers to this directory as <SMSC path>. The source
files are in the <SMSC path>/src/iniche and <SMSC path>/inc/iniche directories.

A number of useful NicheStack TCP/IP Stack files are installed with the Nios II
Embedded Design Suite (EDS), under the <Nios II EDS install path>/components/
altera_iniche/UCOSII directory. For the sake of brevity, this chapter refers to this
directory as <iniche path>.

For more information about the NicheStack TCP/IP Stack implementation, refer to
the NicheStack Technical Reference Manual, available on the Literature: Nios II Processor
page of the Altera website.

You need not edit the NicheStack TCP/IP Stack source code to implement a
NicheStack-compatible driver. Nevertheless, Altera provides the source code for your
reference. The files are installed with the Nios II EDS in the <iniche path> directory.
The Ethernet device driver interface is defined in <iniche path>/inc/alt_iniche_dev.h.

The following sections describe how to provide a driver for a new Ethernet device.

Provide the NicheStack Hardware Interface Routines

The NicheStack TCP/IP Stack architecture requires several network hardware
interface routines:

m Initialize hardware
m Send packet

m Receive packet

m Close

® Dump statistics

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/ug/NicheStackRef.zip
http://www.altera.com/literature/lit-nio2.jsp

7-14

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer

Creating Drivers for HAL Device Classes

These routines are fully documented in the Porting Engineer Provided Functions chapter
of the NicheStack Technical Reference. The corresponding functions in the SMSC
lan91c111 device driver are shown in Table 7—4.

Table 7-4. SMSC lan91c111 Hardware Interface Routines

Prototype
function lan91¢111 function File Notes
n_init() s91_init() smsc91x.c The initialization routine can install an ISR if applicable
pkt _send() |[s91_pkt_send() smsc91x.c
Packet receive | s91_isr() smsc91x.c Packet receive includes three key actions:
mechanism s91_rcv() smsc91x.c m pk_al | oc()—Allocate a net buf structure
s91 dma_rx_done() smsc_mem.c | m put q()—Place net buf structure onrcvdq
m Si gnal Pkt Derux () —Notify the Internet
protocol (IP) layer that it can demux the packet
n_cl ose() s91 cl ose() smsc91x.c
n_stats() s91 stats() smsc91x.c

Nios Il Software Developer’s Handbook

The NicheStack TCP/IP Stack system code uses the net structure internally to define
its interface to device drivers. The net structure is defined in net.h, in <iniche path>/
src/downloads/30src/h. Among other things, the net structure contains the following
things:

m A field for the IP address of the interface
m A function pointer to a low-level function to initialize the MAC device
m Function pointers to low-level functions to send packets

Typical NicheStack code refers to type NET, which is defined as * net .

Provide *INSTANCE and *INIT Macros

To enable the HAL to use your driver, you must provide two HAL macros. The names
of these macros are based on the name of your network interface component,
according to the following templates:

m <conponent nanme>_| NSTANCE
m <conponent name>_|INT

For examples, refer to ALTERA_AVALON _LAN91C111_| NSTANCE and
ALTERA_AVALON LAN91C111_I NI T in <SMSC path>/inc/iniche/
altera_avalon_lan91c111_iniche.h, which is included in <iniche path>/inc/
altera_avalon_lan91c¢111.h.

You can copy altera_avalon_lan91c111_iniche.h and modify it for your own driver.
The HAL expects to find the *I NI T and * | NSTANCE macros in <component name>.h,
as discussed in “Header Files and alt_sys_init.c” on page 7-16. You can accomplish
this with a #i ncl ude directive as in altera_avalon_lan91c111.h, or you can define the
macros directly in <component name>.h.

© July 2010 Altera Corporation

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-15
Creating Drivers for HAL Device Classes

Your * I NSTANCE macro declares data structures required by an instance of the MAC.
These data structures must include an al t _i ni che_dev structure. The * | NSTANCE
macro must initialize the first three fields of the al t _i ni che_dev structure, as
follows:

m The first field, | | i st is for internal use, and must always be set to the value
ALT_LLI ST_ENTRY.

m The second field, nanme, must be set to the device name as defined in system.h. For
example, altera_avalon_lan91c111_iniche.h uses the C preprocessor’s ##
(concatenation) operator to reference the LAN91C111_NAME symbol defined in
system.h.

m The third field, i ni t _f unc, must point to your software initialization function, as
described in “Provide a Software Initialization Function”. For example,
altera_avalon_lan91c111_iniche.h inserts a pointer to
alt_avalon_lan91cl111 init().

Your * I NI T macro initializes the driver software. Initialization must include a call to
theal t _i ni che_dev_reg() macro, defined in alt_iniche_dev.h. This macro
registers the device with the HAL by adding the driver instance to
alt_iniche_dev_list.

When your driver is included in a Nios II BSP project, the HAL automatically
initializes your driver by invoking the * | NSTANCE and * | NI T macros from its
alt_sys_init() function. Refer to “Header Files and alt_sys_init.c” on page 7-16
for further detail about the * | NSTANCE and * | NI T macros.

Provide a Software Initialization Function

The * | NSTANCE() macro inserts a pointer to your initialization function in the

al t _i ni che_dev structure, as described in “Provide *INSTANCE and *INIT
Macros” on page 7-14. Your software initialization function must perform at least the
following three tasks:

m Initialize the hardware and verify its readiness

m Finish initializing the al t _i ni che_dev structure

m Callget _nmac_addr ()

The initialization function must perform any other initialization your driver needs,

such as creation and initialization of custom data structures and ISRs.

<o For details about the get _nmac_addr () function, refer to the Ethernet and the
NicheStack TCP/IP Stack - Nios 11 Edition chapter of the Nios II Software Developer’s
Handbook.

For an example of a software initialization function, refer to
alt _aval on_l an91c111_i ni t () in <SMSC path>/src/iniche/smsc91x.c.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

7-16

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating a Custom Device Driver for the HAL

Creating a Custom Device Driver for the HAL

This section describes how to provide appropriate files to integrate your device driver
in the HAL. The “Integrating a Device Driver in the HAL” section on page 7-17
describes the correct locations for the files.

Header Files and alt_sys_init.c

At the heart of the HAL is the autogenerated source file, alt_sys_init.c. This file
contains the source code that the HAL uses to initialize the device drivers for all
supported devices in the system. In particular, this file defines the al t _sys_i ni t ()
function, which is called before mai n() to initialize device drivers software packages,
and make them available to the program.

When you create the driver or software package, you specify in a Tcl script whether
you want the al t _sys_i ni t () function to invoke your | NSTANCEand | NI T
macros. Refer to “Enabling Software Initialization” on page 7-24 for details.

Example 7—4 shows excerpts from an alt_sys_init.c file.

The remainder of this section assumes that you are using the al t _sys_i ni t () HAL
initialization mechanism.

The Software Build Tools (SBT) creates alt_sys_init.c based on the header files
associated with each device driver and software package. For a device driver, the
header file must define the macros <conponent nane>_| NSTANCE and
<conponent name> INT.

Like a device driver, a software package provides an | NSTANCE macro, which
al t _sys_init() invokes once. A software package header file can optionally
provide an | NI T macro.

Example 7-4. Excerpt from an alt_sys_init.c File Performing Driver Initialization

#i ncl ude "system h"
#include "sys/alt_sys_init.h"

/*

* devi ce headers

*/

#include "altera_aval on_tiner. h"
#i nclude "altera_aval on_uart. h"

/*

* Allocate the device storage

*/

ALTERA AVALON UART_I NSTANCE(UART1, uartl);
ALTERA_AVALON TI MER | NSTANCE(SYSCLK, sysclk);

/*
* Initialize the devices
*/
void alt_sys_init(void)

ALTERA AVALON UART | NI T(UART1, uartl);
ALTERA AVALON TI MER | NI T(SYSCLK, sysclk);

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-17
Integrating a Device Driver in the HAL

For example, altera_avalon_jtag_uart.h must define the macros
ALTERA_AVALON_JTAG_UART_I NSTANCE and
ALTERA_AVALON_JTAG UART_I NI T. The purpose of these macros is as follows:

m The*_I NSTANCE macro performs any required static memory allocation. For
drivers, * _| NSTANCE is invoked once per device instance, so that memory can be
initialized on a per-device basis. For software packages, * _| NSTANCE is invoked
once.

m The *_I NI T macro performs runtime initialization of the device driver or
software package.

In the case of a device driver, both macros take two input arguments:
m The first argument, nane, is the capitalized name of the device instance.

m The second argument, dev, is the lower case version of the device name. dev is the
name given to the component in SOPC Builder at system generation time.

You can use these input parameters to extract device-specific configuration
information from the system.h file.

The name of the header file must be as follows:

m Device driver: <hardware component class>.h. For example, if your driver targets the
altera_avalon_uart component, the file name is altera_avalon_uart.h.

m Software packages <package name>.h. For example, if you create the software
package with the following command:

create_sw _package my_sw_package

the header file is called my_sw_package.h.

<o Foracomplete example, refer to any of the Altera-supplied device drivers, such as the
JTAG UART driver in <Altera installation>/ip/sopc_builder_ip/
altera_avalon_jtag_uart.

Il For optimal project rebuild time, do not include the peripheral header in system.h. It
is included in alt_sys_init.c.

Device Driver Source Code

In addition to the header file, the component driver might need to provide compilable
source code, to be incorporated in the BSP. This source code is specific to the hardware
component, and resides in one or more C files (or assembly language files).

Integrating a Device Driver in the HAL

The Nios II SBT can incorporate device drivers and software packages supplied by
Altera, supplied by other third-party developers, or created by you. This section
describes how to prepare device drivers and software packages so the BSP generator
recognizes and adds them to a generated BSP.

You can take advantage of this service, whether you created a device driver for one of
the HAL generic device models, or you created a peripheral-specific device driver.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

7-18 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL

L=~ The process required to integrate a device driver is nearly identical to that required to
develop a software package. The following sections describe the process for both.
Certain steps are not needed for software packages, as noted in the text.

Overview
To publish a device driver or a software package, you provide the following items:
m A header file defining the package or driver interface
m A Tcl script specifying how to add the package or driver to a BSP

The header file and Tcl script are described in the following sections.

Assumptions and Requirements

This section assumes that you are developing a device driver or software package for
eventual incorporation in a BSP. The driver or package is to be incorporated in the BSP
by an end user who has limited knowledge of the driver or package internal
implementation. To add your driver or package to a BSP, the end user must rely on the
driver or package settings that you create with the tools described in this section.

For a device driver or software package to work with the Nios II SBT, it must meet the
following criteria:

m It must have a defining Tcl script. The Tcl script for each driver or software
package provides the Nios II SBT with a complete description of the driver or
software. This description includes the following information:

m Name—A unique name identifying the driver or software package

m Source files—The location, name, and type of each C/C++ or assembly
language source or header file

m Associated hardware class (device drivers only)—The name of the hardware
peripheral class the driver supports

m Version and compatibility information—The driver or package version, and
(for drivers) information about what device core versions it supports.

m BSP type(s)—The supported operating system(s)

m Settings—The visible parameters controlling software build and runtime
configuration

m The Tcl script resides in the driver or software package root directory.
m The Tcl script’s file name ends with _sw.tcl. Example: custom_ip_block_sw.tcl.

m The root directory of the driver or software package is in one of the following
places:

m In any directory included in the SOPC_BUI LDER_PATH environment variable,
or in any directory located one level beneath such a directory. This approach is
recommended if your driver or software packages are installed in a
distribution you create.

m Ina directory named ip, one level beneath the Quartus II project directory
containing the design your BSP targets. This approach is recommended if your
driver or software package is used only once, in a specific hardware project.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-19
Integrating a Device Driver in the HAL

m File names and directory structures conform to certain conventions, described in
“File Names and Locations” on page 7-20.

m If your driver or software package uses the HAL autoinitialization mechanism
(al t _sys_init()), certain macros must be defined in a header file. For details
about this header file, refer to “Header Files and alt_sys_init.c” on page 7-16.

“ . For details about integrating a HAL device driver, refer to AN 459: Guidelines for
Developing a Nios 1l HAL Device Driver. For details of the commands you can use in a
driver Tcl script, refer to the Nios II Software Build Tools Reference chapter of the Nios 11
Software Developer’s Handbook.

The Nios Il BSP Generator

This section describes the process by which the Nios II BSP generator adds device
drivers and software packages to your BSP. The Nios II BSP generator, a subset of the
Nios II SBT, is a combination of command utilities and scripts that enable you to
create and manage BSPs and their settings.

<o For an overview of the Nios II SBT, refer to the Overview and Getting Started from the
Command Line chapters of the Nios II Software Developer’s Handbook.

Component Discovery

When you run any BSP generator utility, a library of available drivers and software
packages is populated.

The BSP generator locates software packages and drivers by inspecting a list of
known locations determined by the Altera Nios II EDS, Quartus II software, and
MegaCore® IP Library installers, as well as searching locations specified in certain
system environment variables.

The Nios II BSP tools identify drivers and software packages by locating and sourcing
Tcl scripts with file names ending in _sw.tcl in these locations.

L=~ For run-time efficiency, the BSP generator only looks at driver files that conform to the
criteria listed in this section.

After locating each driver and software package, the Nios II SBT searches for a
suitable driver for each hardware module in the SOPC Builder system (mastered by
the Nios II processor that the BSP is generated for), as well as software packages that
the BSP creator requested.

Device Driver Versions

In the case of device drivers, the highest version of driver that is compatible with the
associated hardware peripheral is added to the BSP, unless specified otherwise by the
device driver management commands.

- For further information, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/an/an459.pdf

7-20 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL

Device Driver and Software Package Inclusion

The BSP generator adds software packages to the BSP if they are specifically
requested during BSP generation, with the enabl e_sw_package command.

«o For further details, refer to “Tcl Commands” in the Nios II Software Build Tools Reference
chapter of the Nios 1I Software Developer’s Handbook.

If no specific device driver is requested, and no compatible device driver is located for
a particular hardware module, the BSP generator issues an informative message
visible in either the debug or ver bose generation output. This behavior is normal for
many types of hardware in the SOPC Builder system, such as memory devices, that
do not have device drivers. If a software package or specific driver is requested and
cannot be located, an error is generated and BSP generation or settings update halts.

Creating a Tcl script allows you to add extra definitions in the system.h file, enable
automatic driver initialization through the alt_sys_init.c structure, and enable the
Nios II SBT to control any extra parameters that might exist.

With the Tcl software definition files in place, the SBT reads in the Tcl file and
populate the makefiles and other support files accordingly.

When the Nios II SBT adds each driver or software package to the system, it uses the
data in the Tcl script defining the driver or software package to control each file
copied in to the BSP. This rule also affects generated BSP files such as the BSP
Makefile, public.mk, system.h, and the BSP settings and summary HTML files.

When you create a new software project, the Nios II SBT generates the contents of
alt_sys_init.c to match the specific hardware contents of the SOPC Builder system.

File Names and Locations

As described in “The Nios II BSP Generator” on page 7-19, the Nios II build tools find
a device driver or software package by locating a Tcl script with the file name ending
in _sw.tcl, and sourcing it.

Each peripheral in a Nios II system is associated with a specific SOPC Builder
component directory. This directory contains a file defining the software interface to
the peripheral. Refer to “Accessing Hardware” on page 7-3.

To enable the SBT to find your component device driver, place the Tcl script in a
directory named ip under your hardware project directory.

Figure 7-1 illustrates a file hierarchy suitable for the Nios II SBT. This file hierarchy is
located in the <Altera installation>/ip/altera/sopc_builder_ip directory. This example
assumes a device driver supporting a hardware component named

cust om conponent .

Source Code Discovery

You use Tcl scripts to specify the location of driver source files. For further details,
refer to “The Nios II BSP Generator” on page 7-19.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-21
Integrating a Device Driver in the HAL

Driver and Software Package Tcl Script Creation

This section discusses writing a Tcl script to describe your software package or driver.
The exact contents of the Tcl script depends on the structure and complexity of your
driver or software. For many simple device drivers, you need only include a few
commands. For more complex software, the Nios Il SBT provides powerful features
that give the BSP end user control of your software or driver’s operation.

«® The Tcl command and argument descriptions in this section are not exhaustive. For a
detailed explanation of each command and all arguments, refer to the Nios II Software
Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

For a reference in creating your own driver or software Tcl files, you can also view the
driver and software package Tcl scripts included with the Nios II EDS and the
MegaCore IP library. These scripts are in the <Nios II EDS install path>/components
and <MegaCore IP library install path>/sopc_builder_ip folders, respectively.

Figure 7-1. Example Device Driver File Hierarchy and Naming

custom_component

SOPC Builder generation files

custom_component_sw.tcl

inc
Contains header file(s) that define the device's hardware interfaces. Contents in
this directory are not HAL-specific, and apply to a driver, regardless of whether
it is based on the HAL, MicroC/OS-Il, or any other RTOS environment.

custom_component_regs.h

HAL
Contains software files required to integrate the device with the Nios Il hardware
abstraction layer. Files in this directory pertain specifically to the HAL.

aal

BN iR

custom_component.h

Additional header files

™.

component.mk

driver_source_file.c

Additional source files

UEy 99

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7-22

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL

Tcl Command Walkthrough for a Typical Driver or Software Package

The Tel script excerpts in this section describe a typical device driver or software
package.

The example in this section creates a device driver for a hardware peripheral whose
SOPC Builder component class name is my_cust om _conponent . The driver
supports both HAL and MicroC/OS-II BSP types. It has a single C source file (.c) and
two C header files (.h), organized as in the example in Figure 7-1.

Creating and Naming the Driver or Package

The first command in any driver or software package Tcl script must be the
create_driver orcreate_sw _package command. The remaining commands
can be in any order. Use the appropriate create command only once per Tcl file.
Choose a unique driver or package name. For drivers, Altera recommends appending
_driver to the associated hardware class name. The following example illustrates
this convention.

create _driver nmy_custom conponent driver

Identifying the Hardware Component Class

Each driver must identify the hardware component class the driver is associated with
in the set _sw_pr operty command’s hw_cl ass_nanme argument. The following
example associates the driver with a hardware class called ny_cust om conponent :

set _sw _property hw cl ass_name ny_cust om conponent

The set _sw_pr oper t y command accepts several argument types. Each call to
set _sw_property sets or overwrites a property to the value specified in the second
argument.

For further information about the set _sw_pr operty command, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

The hw_cl ass_nare argument does not apply to software packages.

If you are creating your own driver to use in place of an existing one (for example, a
custom UART driver for the al t er a_aval on_uart component), specify a driver
name different from the standard driver. The Nios II SBT uses your driver only if you
specify it explicitly.

For further details, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Choose a name for your driver or software package that does not conflict with other
Altera-supplied software or IP, or any third-party software or IP installed on your
host system. The BSP generator uses the name you specify to look up the software
package or driver during BSP creation. If the Nios II SBT finds multiple compatible
drivers or software packages with the same name, it might pick any of them.

If you intend to distribute your driver or software package, Altera recommends
prefixing all names with your organization’s name.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-23
Integrating a Device Driver in the HAL

Setting the BSP Type

You must specify each operating system (or BSP type) that your driver or software
package supports. Use the add_sw_pr operty command’s support ed_bsp_t ype
argument to specify each compatible operating system. In most cases, a driver or
software package supports both Altera HAL (hal) and Micrium MicroC/OS-1I
(ucosi i) BSP types, as in the following example:

add_sw _property supported_bsp_type hal
add_sw_property supported_bsp_type ucosii

The add_sw_pr oper t y command accepts several argument types. Each call to
add_sw_pr operty adds the final argument to the property specified in the second
argument.

Support for additional operating system and BSP types is not present in this release of
the Nios II SBT.

Specifying an Operating System

Many drivers and software packages do not require any particular operating system.
However, you can structure your software to provide different source files depending
on the operating system used.

If your driver or software has different source files, paths, or settings that depend on
the operating system used, write a Tcl script for each variant of the driver or software
package. Each script must specify the same software package or driver name in the
create_driver orcreate_sw package command, and same hw_cl ass_nane
in the case of device drivers. Each script must specify only the files, paths, and other
settings that pertain to that operating system. During BSP generation, only drivers or
software packages that specify compatibility with the selected operating system (OS)
type are eligible to add to the BSP.

Specifying Source Files

Using the Tcl command interface, you must specify each source file in your driver or
software package that you want in the generated BSP. The commands discussed in
this section add driver source files and specify their location in the file system and
generated BSP.

The add_sw_pr operty command’s c_sour ce and asm sour ce arguments add a
single .c or Nios II assembly language source file (.s or.S) to your driver or software
package. You must express path information to the source relative to the driver root
(the location of the Tcl file). add_sw_pr oper t y copies source files to BSPs that
incorporate the driver, using the path information specified, and adds them to source
file list in the generated BSP makefile. When you build the BSP using make, the driver
source files are compiled as follows:

add_sw property c_source HAL/src/ny_driver.c

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

7-24

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL

The add_sw_pr operty command’s i ncl ude_sour ce argument adds a single
header file in the path specified to the driver. The paths are relative to the driver root.
add_sw_pr operty copies header files to the BSP during generation, using the path
information specified at generation time. It does not include header files in the
makefile.

add_sw_property include_source inc/ny_custom conponent_regs. h
add_sw_property include_source HAL/i nc/ ny_cust om conponent. h

Specifying a Subdirectory

You can optionally specify a subdirectory in the generated BSP for your driver or
software package files using the bsp_subdi r ect or y argument to

set _sw_property. All driver source and header files are copied to this directory,
along with any path or hierarchy information specified with each source or header
file. If no bsp_subdi r ect ory is specified, your driver or software package is placed
under the drivers folder of the generated BSP. Set the subdirectory as follows:

set _sw property bsp_subdirectory mny_driver

If the path begins with the BSP type (e.g HAL or UCCSI 1), the BSP type is removed
and replaced with the value of the bsp_subdi r ect ory property.

Enabling Software Initialization

If your driver or software package uses the HAL autoinitialization mechanism, your
source code includes | NSTANCE and | NI T macros, to create storage for each driver
instance, and to call any initialization routines. The generated alt_sys_init.c file
invokes these macros, which must be defined in a header file named

<hardware component class>.h.

For further details, refer to “Provide *INSTANCE and *INIT Macros” on page 7-14.

To support this functionality in Nios II BSPs, you must set the set _sw_pr operty
command’s aut o_i ni ti al i ze argument to t r ue using the following Tcl command:

set _sw property auto_initialize true

If you do not turn on this attribute, alt_sys_init.c does not invoke the | NI T and
| NSTANCE macros.

Adding Include Paths

By default, the generated BSP Makefile and public.mk add include paths to find
header files in /inc or <BSP type>/inc folders.

You might need to set up a header file directory hierarchy to logically organize your
code. You can add additional include paths to your driver or software package using
the add_sw_pr operty command’s i ncl ude_di r ect or y argument as follows:

add_sw_property include_directory UCCSII/inc/protocol/h

If the path begins with the BSP type (e.g HAL or UCOSI |), the BSP type is removed
and replaced with the value of the bsp_subdi r ect ory property.

Additional include paths are added to the preprocessor flags in the BSP public.mk
file. These preprocessor flags allow BSP source files, as well as application and user
library source files that reference the BSP, to find the include path while each source
file is compiled.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-25
Integrating a Device Driver in the HAL

1=

Adding additional include paths is not required if your source code includes header
files with explicit path names. You can also specify the location of the header files with
a #i ncl ude directive similar to the following:

#i ncl ude "protocol/h/<fil ename>"

Version Compatibility

Your device driver or software package can optionally specify versioning information
through the Tcl command interface. The driver and software package Tcl commands
specifying versioning information allow the following functionality:

B You can request a specific version of your driver or software package with BSP
settings.

B You can make updates to your device driver and specify that the driver is still
compatible with a minimum hardware class version, or specific hardware class
versions. This facility is especially useful in situations in which a hardware design
is stable and you foresee making software updates over time.

The <version> argument in each of the following versioning-related commands can be
a string containing numbers and characters. Examples of version strings are 8. 0,
5.1.1,6.1,and 6. 1spl. The. character is a separator. The BSP generator compares
versions against each other to determine if one is more recent than the other, or if two
are equal, by successively comparing the strings between each separator. Thus, 2. 1 is
greater than 2. 0, and 2. 1sp1l is greater than 2. 1. Two versions are equal if their
version assignment strings are identical.

Use the ver si on argument of set _sw_pr oper ty to assign a version to your driver
or software package. If you do not assign a version to your software or device driver,
the version of the Nios II EDS installation (containing the Nios II BSP commands
being executed) is set for your driver or software package:

set _sw property version 7.1

Device drivers (but not software packages) can use the
m n_conpati bl e_hw versi onandspecific_conpatibl e _hw version
arguments to establish compatibility with their associated hardware class, as follows:

set _sw property m n_conpati bl e_hw version 5.0.1ladd_sw property

speci fic_conpati bl e_hw version 6. 1spl

You can add multiple specific compatible versions. This functionality allows you to
roll out a new version of a device driver that tracks changes supporting a hardware
peripheral change.

For device drivers, if no compatible version information is specified, the version of the
device driver must be equal to the associated hardware class. Thus, if you do not wish
to use this feature, Altera recommends setting the mi n_conpat i bl e_hw_ver si on
of your driver to the lowest version of the associated hardware class your driver is
compatible with.

Creating Settings for Device Drivers and Software Packages

The BSP generator allows you to publish settings for individual device drivers and
software packages. These settings are visible and can be modified by the BSP user, if
the BSP includes your driver or software package. Use the Tcl command interface to
create settings.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

7-26

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL

The Tcl command that publishes settings is especially useful if your driver or software
package has build or runtime options that are normally specified with #def i ne
statements or makefile definitions at software build time. Settings can also add
custom variable declarations to the BSP Makefile.

Settings affect the generated BSP in several ways:

m Settings are added either to the BSP system.h or public.mk, or to the BSP makefile
as a variable.

m Settings are stored in the BSP settings file, named with hierarchy information to
prevent namespace collision.

m A default value of your choice is assigned to the setting so that the end user of the
driver or package does not need to explicitly specify the setting when creating or
updating a BSP.

m Settings are displayed in the BSP summary.html document, along with description
text of your choice.

Use the add_sw_set t i ng Tcl command to add a setting. To specify the details,
add_sw_set ti ng requires each of the following arguments, in the order shown:

1. t ype—The data type, which controls formatting of the setting’s value assignment
in the appropriate generated file.

2. desti nat i on—The destination file in the BSP.

3. di spl ayName—The name that is used to identify the setting when changing BSP
settings or viewing the BSP summary.html document

4. identifier—Conceptually, this argument is the macro defined in a C language
definition (the text immediately following #def i ne), or the name of a variable in
a makefile.

5. val ue—A default value assigned to the setting if the BSP user does not manually
change it

6. descri pti on—Descriptive text, shown in the BSP summary.html document.

Data Types

Several setting data types are available, controlled by the t ype argument to
add_sw_set ti ng. They correspond to the data types you can express as #def i ne
statements or values concatenated to makefile variables. The specific setting type
depends on your software’s structure or BSP build needs. The available data types,
and their typical uses, are shown in Table 7-5.

Table 7-5. Data Type Settings (Part 1 of 2)

Data Type Setting Value Notes

Boolean definition boolean_define_only | A definition that is generated when true, and
absent when false. Use a boolean definition in your
C source files with the #i f def

<setting> ... #endif construct.

Boolean assignment | boolean A definition assigned to 1 when true, 0 when false.
Use a boolean assignment in your C source files
withthe#i f <setting> ... #else ...
construct.

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer

Integrating a Device Driver in the HAL

7-27

Table 7-5. Data Type Settings (Part 2 of 2)

Data Type

Setting Value

Notes

Character

character

A definition with one character surrounded by
single quotation marks (')

Decimal number

decimal_number

A definition with an unquoted, unformatted
decimal number, such as 123. Useful for defining
values in software that, for example, might have a
configurable buffer size, such as

int buffer[SlZE];

Double precision double A definition with a double-precision floating point

number number such as 123.4

Floating point number | float A definition with a single-precision floating point
number such as 234.5

Hexadecimal number | hex_number A definition with a number prefixed with 0x, such

as 0x1000. Useful for specifying memory
addresses or bit masks

Quoted string

quoted_string

A definition with a string in quotes, such as
"Buffer”

Unquoted string

unquoted_string

A definition with a string not in quotes, such as
BUFFER

Setting Destination Files

The dest i nat i on argument of add_sw_set t i ng specifies settings and their
assigned values. This argument controls the file to which the setting is saved in the
BSP. The BSP generator formats the setting’s assigned value based on the definition
file and type of setting. Table 7-6 shows possible values of the dest i nat i on

argument.

Tahle 7-6. Destination File Settings

Destination File

Setting Value

Notes

system.h

system_h_define

This destination file is recommended in most cases. Your
source code must use a #i ncl ude <system h>
statement to make the setting definitions available.
Settings appear as #def i ne statements in system.h.

public.mk

public_mk_define

Definitions appear as - D statements in public.mk, in the
C preprocessor flags assembly. This setting type is
passed directly to the compiler during build and is visible
during compilation of application and libraries
referencing the BSP.

BSP makefile

makefile_variable

Settings appear as makefile variable assignments in the
BSP makefile.

Certain setting types are not compatible with the public.mk or Makefile destination

file types.

For detailed information, refer to the Nios II Software Build Tools Reference chapter of
the Nios II Software Developer’s Handbook.

© July 2010 Altera Corporation

Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7-28

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL

Setting Display Name

The setting di spl ayNane controls what the end user of the driver or package (the
BSP developer) types to control the setting in their BSP. BSPs append the

di spl ayNane text after a . (dot) separator to your driver or software package’s name
(as defined in the cr eat e_dri ver or creat e_sw_package command). For
example, if your driver is named my_per i pher al _dri ver and your setting’s

di spl ayNanme is smal | _dri ver, BSPs with your driver have a setting

ny_peri pheral _driver.smal | _dri ver. Thus each driver and software package
has its own settings namespace.

Setting Generation Name

The setting gener at i onNanme of add_sw_set t i ng controls the physical name of
the setting in the generated BSP files. The physical name corresponds to the definition
being created in public.mk and system.h, or the make variable created in the BSP
Makefile. The gener at i onName is commonly the text that your software uses in
conditionally-compiled code. For example, suppose your software creates a buffer as
follows:

unsi gned int driver_buffer[My_DRl VER BUFFER S| ZE] ;

You can enter the exact text, MYy_DRI VER_BUFFER_SI ZE, in the gener at i onName
argument.

Setting Default Value

The val ue argument of add_sw_set t i ng holds the default value of your setting.
This value propagates to the generated BSP unless the end user of the driver or
package (the BSP developer) changes the setting’s assignment before BSP generation.

The value assigned to any setting, whether it is the default value in the driver or
software package Tcl script, or entered by the user configuring the BSP, must be
compatible with the selected setting.

For details, refer to the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

Setting Description

The descri pti on argument of add_sw_set ti ng contains a brief description of the
setting. The descri pt i on argument is required. Place quotation marks (" ") around
the text of the description. The description text appears in the generated BSP
summary.html document.

Setting Creation Example

Example 7-5 implements a setting for a driver that has two variants of a function, one
implementing a small driver (minimal code footprint) and the other a fast driver
(efficient execution).

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-29
Reducing Code Footprint

Example 7-5. Supporting Driver Settings

#i ncl ude "system h"
#i f def My_CUSTOM DRI VER_SMALL
int send_data(<args>)

/1 Small inplenmentation
}

#el se

int send_data(<args>)
{

/1 fast inplenmentation

#endi f

In Example 7-5, a simple Boolean definition setting is added to your driver Tcl file.
This feature allows BSP users to control your driver through the BSP settings
interface. When users set the setting to t r ue or 1, the BSP defines

MY_CUSTOM DRI VER_SMALL in either system.h or the BSP public.mk file. When the
user compiles the BSP, your driver is compiled with the appropriate routine
incorporated in the object file. When a user disables the setting,

My_CUSTOM DRI VER _SMALL is not defined.

You add the MY_CUSTOM DRI VER_SMALL setting to your driver as follows using the
add_sw setting Tcl command:

add_sw _setting bool ean_define_only systemh_define small _driver
My_CUSTOM DRI VER_SMALL fal se
"Enabl e the small inplenentation of the driver for my_peripheral™

"=~ Each Tcl command must reside on a single line of the Tcl file. This example is wrapped
due to space constraints.

-o Each argument has several variants. For detailed usage and restrictions, refer to the
Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.

Reducing Code Footprint

The HAL provides several options for reducing the size, or footprint, of the BSP code.
Some of these options require explicit support from device drivers. If you need to
minimize the size of your software, consider using one or both of the following
techniques in your custom device driver:

m Provide reduced footprint drivers. This technique usually reduces driver
functionality.

m Support the lightweight device driver API. This technique reduces driver
overhead. It need not reduce functionality, but it might restrict your flexibility in
using the driver.

These techniques are discussed in the following sections.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7-30

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Reducing Code Footprint

Provide Reduced Footprint Drivers

The HAL defines a C preprocessor macro named ALT_USE_SMALL_DRI VERS that
you can use in driver source code to provide alternate behavior for systems that
require a minimal code footprint. If ALT_USE_SMALL_DRI VERSis not defined, driver
source code implements a fully featured version of the driver. If the macro is defined,
the source code might provide a driver with restricted functionality. For example a

driver might implement interrupt-driven operation by default, but polled (and
presumable smaller) operation if ALT_USE_SMALL_DRI VERS is defined.

When writing a device driver, if you choose to ignore the value of
ALT_USE_SMALL_DRI VERS, the same version of the driver is used regardless of the
definition of this macro.

You can enable ALT_USE_SMALL DRI VERS in a BSP with the
hal . enabl e_reduced_devi ce_dri vers BSP setting.

For further information, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Support the Lightweight Device Driver API

The lightweight device driver API allows you to minimize the overhead of
character-mode device drivers. It does this by removing the need for the al t _f d file
descriptor table, and the al t _dev data structure required by each driver instance.

If you want to support the lightweight device driver API on a character-mode device,
you need to write at least one of the lightweight character-mode functions listed in
Table 7-7. Implement the functions needed by your software. For example, if you only
use the device for st dout, you only need to implement the

<conponent class> wite() function.

To support the lightweight device driver API, name your driver functions based on
the component class name, as shown in Table 7-7.

Table 7-7. Driver Functions for Lightweight Device Driver API

Function Purpose Example (7)

<conponent cl ass>_read() Implements character-mode | al tera_aval on_jtag_uart_read()

read functions

<conponent class> write() |Implementscharacter-mode |altera_avalon_jtag uart_wite()

write functions

<conponent class>_ioctl () |Implements altera_avalon_jtag_ uart _ioctl ()

device-dependent functions

(1) Based on component altera_avalon_jtag_uart

When you build your BSP with ALT_USE_DI RECT_DRI VERS enabled, instead of
using file descriptors, the HAL accesses your drivers with the following macros:

m ALT DRI VER READ(i nstance, buffer, len, flags)
m ALT DRI VER WRI TE(i nstance, buffer, len, flags)
m ALT DRI VER | OCTL(i nstance, req, arg)

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7-31

Namespace Allocation

These macros are defined in <Nios II EDS install path>/components/altera_hal/HAL/
inc/sys/alt_driver.h.

These macros, together with the system-specific macros that the Nios II SBT creates in
system.h, generate calls to your driver functions. For example, with lightweight
drivers turned on, pri nt f () calls the HALw i t e() function, which directly calls
your driver’s <conponent cl ass>_write() function, bypassing file descriptors.

You can enable ALT _USE DI RECT_DRI VERS in a BSP with the
hal . enabl e_I| i ght wei ght _devi ce_dri ver _api BSP setting.

For further information, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

You can also take advantage of the lightweight device driver API by invoking
ALT_DRI VER_READ(), ALT_DRI VER WRI TE() and ALT_DRI VER | OCTL() in
your application software. To use these macros, include the header file sys/
alt_driver.h. Replace the i nst ance argument with the device instance name macro
from system.h; or if you are confident that the device instance name will never
change, you can use a literal string, for example cust om uart _0.

Another way to use your driver functions is to call them directly, without macros. If
your driver includes functions other than <conponent cl ass>_read(),
<conponent class>_wite() and <conponent class>_i octl (), youmust
call those functions directly from your application.

Namespace Allocation

To avoid conflicting names for symbols defined by devices in the SOPC Builder
system, all global symbols need a defined prefix. Global symbols include global
variable and function names. For device drivers, the prefix is the name of the SOPC
Builder component followed by an underscore. Because this naming can result in long
strings, an alternate short form is also permitted. This short form is based on the
vendor name, for example al t _ is the prefix for components published by Altera. It is
expected that vendors test the interoperability of all components they supply.

For example, for the al t er a_aval on_j t ag_uart component, the following
function names are valid:

m altera_ avalon jtag uart_init()
m alt_jtag uart_init()

The following names are invalid:

m avalon_jtag uart_init()

B jtag uart_init()

As source files are located using search paths, these namespace restrictions also apply
to file names for device driver source and header files.

© July 2010 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7-32 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Overriding the Default Device Drivers

Overriding the Default Device Drivers

All SOPC Builder components can elect to provide a HAL device driver. Refer to
“Integrating a Device Driver in the HAL” on page 7-17. However, if the driver
supplied with a component is inappropriate for your application, you can override
the default driver by supplying a different driver.

In the Nios II SBT for Eclipse, you can use the BSP Editor to specify a custom driver.

“*.e Forinformation about selecting device drivers, refer to “Using the BSP Editor” in the

Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook

On the command line, you specify a custom driver with the following BSP Tcl
command:
set _driver <driver name> <conponent namne>

For example, if you are using the nios2-bsp command, you replace the default driver
for uar t 0 with a driver called cust om dri ver as follows:

ni 0s2-bsp hal ny_bsp --cmd set_driver customdriver uart0+

Referenced Documents

This chapter references the following documents:
m Overview chapter of the Nios II Software Developer’s Handbook

m Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook

m Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook

m Nios II Software Build Tools chapter of the Nios 1I Software Developer’s Handbook

m Overview of the Hardware Abstraction Layer chapter of the Nios II Software Developer’s
Handbook

m Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

m Exception Handling chapter of the Nios II Software Developer’s Handbook

m Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer’s
Handbook

m LEthernet and the NicheStack TCP/IP Stack - Nios 11 Edition chapter of the Nios II
Software Developer’s Handbook

m HAL API Reference chapter of the Nios 1I Software Developer’s Handbook

m Nios II Software Build Tools Reference chapter of the Nios 1I Software Developer’s
Handbook

m AN 459: Guidelines for Developing a Nios II HAL Device Driver

m NicheStack Technical Reference Manual, available on the Literature: Nios II Processor
page of the Altera website

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/ug/NicheStackRef.zip
http://www.altera.com/literature/lit-nio2.jsp

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Document Revision History

7-33

Document Revision History

Table 7-8 shows the revision history for this document.

Tahle 7-8. Document Revision History

Date &
Document
Version Changes Made Summary of Changes
July 2010 Maintenance release
v10.0.0
November 2009 | Removed Nios Il IDE-specific information Introduced the Nios Il
v9.1.0 Software Build Tools for
Eclipse™
March 2009 m Reorganized and updated information and terminology to clarify role | Tcl-based device drivers and
v9.0.0 of Nios Il Software Build Tools. software packages
m Incorporated information about Tcl-based device drivers and
software packages, formerly in Using the Nios Il Software Build
Tools.
m Described use of the | NSTANCE macro in software packages.
m Corrected minor typographical errors.
May 2008 Maintenance release
v8.0.0
October 2007 Added documentation for HAL device driver development with the —
v7.2.0 Nios Il Software Build Tools.
May 2007 m Added table of contents to “Introduction” section. —
v7.1.0 m Added Referenced Documents section.
March 2007 Maintenance release
v7.0.0
November 2006 | m Add section “Reducing Code Footprint” Lightweight device driver API
v6.1.0 = Replace IwlIP driver section with NicheStack TCP/IP Stack driver and minimal file 1/0 AP,
section NicheStack TCP/IP Stack
support.
May 2006 Maintenance release
v6.0.0
October 2005 Added I0ADDR_* macro details to section “Accessing Hardware”.
v5.1.0
May 2005 Updated reference to version of IwIP from 0.7.2 to 1.1.0.
v5.0.0
December 2004 | Updated reference to version of IwIP from 0.6.3 to 0.7.2.
vl
May 2004 Initial release
v1.0

© July 2010 Altera Corporation

Nios Il Software Developer’s Handbook

7-34 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Document Revision History

Nios Il Software Developer’s Handbook © July 2010 Altera Corporation

	Section II. Hardware Abstraction Layer
	5. Overview of the Hardware Abstraction Layer
	Introduction
	Getting Started
	HAL Architecture
	Services
	Applications versus Drivers
	Generic Device Models
	Device Model Classes
	Benefits to Application Developers
	Benefits to Device Driver Developers

	C Standard Library—Newlib

	Supported Hardware
	Nios II Processor Core Support
	Supported Peripherals
	MPU Support
	MMU Support

	Referenced Documents
	Document Revision History

	6. Developing Programs Using the Hardware Abstraction Layer
	Introduction
	Nios II Development Flows
	HAL BSP Settings

	The Nios II Project Structure
	The system.h System Description File
	Data Widths and the HAL Type Definitions
	UNIX-Style Interface
	File System
	Using Character-Mode Devices
	Standard Input, Standard Output and Standard Error
	General Access to Character Mode Devices
	C++ Streams
	/dev/null
	Lightweight Character-Mode I/O
	Altera Logging Functions
	Enabling Altera Logging
	Extra Logging Options
	Logging Levels
	Example: Creating a BSP with Logging
	Custom Logging Messages
	Altera Logging Files

	Using File Subsystems
	Host-Based File System

	Using Timer Devices
	System Clock Driver
	Alarms
	Timestamp Driver

	Using Flash Devices
	Simple Flash Access
	Block Erasure or Corruption
	Fine-Grained Flash Access

	Using DMA Devices
	DMA Transmit Channels
	DMA Receive Channels
	Memory-to-Memory DMA Transactions

	Using Interrupt Controllers
	Reducing Code Footprint
	Enable Compiler Optimizations
	Use Reduced Device Drivers
	Reduce the File Descriptor Pool
	Use /dev/null
	Use a Smaller File I/O Library
	Use the Small newlib C Library
	Use UNIX-Style File I/O
	Emulate ANSI C Functions

	Use the Lightweight Device Driver API
	Use the Minimal Character-Mode API
	alt_printf()
	alt_putchar()
	alt_putstr()
	alt_getchar()

	Eliminate Unused Device Drivers
	Eliminate Unneeded Exit Code
	Eliminate Clean Exit
	Eliminate All Exit Code

	Turn off C++ Support

	Boot Sequence and Entry Point
	Hosted versus Free-Standing Applications
	Boot Sequence for HAL-Based Programs
	Customizing the Boot Sequence

	Memory Usage
	Memory Sections
	Assigning Code and Data to Memory Partitions
	Simple Placement Options
	Advanced Placement Options

	Placement of the Heap and Stack
	Global Pointer Register
	Boot Modes

	Working with HAL Source Files
	Finding HAL Files
	Overriding HAL Functions

	Referenced Documents
	Document Revision History

	7. Developing Device Drivers for the Hardware Abstraction Layer
	Introduction
	Integration in the HAL API
	Peripheral-Specific API
	Before You Begin

	Development Flow for Creating Device Drivers
	SOPC Builder Concepts
	The Relationship between system.h and SOPC Builder
	Using SOPC Builder for Optimal Hardware Configuration
	Components, Devices, and Peripherals

	Accessing Hardware
	Creating Drivers for HAL Device Classes
	Character-Mode Device Drivers
	Create a Device Instance
	Register a Character Device

	File Subsystem Drivers
	Create a Device Instance
	Register a File Subsystem Device

	Timer Device Drivers
	System Clock Driver
	Timestamp Driver

	Flash Device Drivers
	Create a Flash Driver
	Register a Flash Device

	DMA Device Drivers
	DMA Transmit Channel
	DMA Receive Channel

	Ethernet Device Drivers
	Provide the NicheStack Hardware Interface Routines
	Provide *INSTANCE and *INIT Macros
	Provide a Software Initialization Function

	Creating a Custom Device Driver for the HAL
	Header Files and alt_sys_init.c
	Device Driver Source Code

	Integrating a Device Driver in the HAL
	Overview
	Assumptions and Requirements
	The Nios II BSP Generator
	Component Discovery
	Device Driver Versions
	Device Driver and Software Package Inclusion

	File Names and Locations
	Source Code Discovery

	Driver and Software Package Tcl Script Creation
	Tcl Command Walkthrough for a Typical Driver or Software Package
	Creating and Naming the Driver or Package
	Identifying the Hardware Component Class
	Setting the BSP Type
	Specifying an Operating System
	Specifying Source Files
	Specifying a Subdirectory
	Enabling Software Initialization
	Adding Include Paths
	Version Compatibility

	Creating Settings for Device Drivers and Software Packages
	Data Types
	Setting Destination Files
	Setting Display Name
	Setting Generation Name
	Setting Default Value
	Setting Description
	Setting Creation Example

	Reducing Code Footprint
	Provide Reduced Footprint Drivers
	Support the Lightweight Device Driver API

	Namespace Allocation
	Overriding the Default Device Drivers
	Referenced Documents
	Document Revision History

