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Abstract
This paper provides a graphical characterization of Markov blankets in Andersson–Madigan–Perlman
chain graphs (AMP CGs). The characterization is different from the well-known one for Bayesian
networks and generalizes it. We prove that the Grow-Shrink algorithm, the IAMB algorithm, and
its variants are still correct for Markov blanket discovery in AMP CGs under the same assumptions
as for Bayesian networks. We provide a sound and scalable constraint-based framework for learn-
ing the structure of AMP CGs from faithful causally sufficient data and prove its correctness when
the Markov blanket discovery algorithms in this paper are used. On a large scale experimentation,
we show that the proposed algorithms greatly improve on (stable) PC-like (Peña, 2012; Javid-
ian et al., 2020a) in all comparisons. Our proposed algorithms compare positively/competitively
against the state-of-the-art LCD-AMP algorithm (Javidian et al., 2020a), depending on the algo-
rithm that is used for Markov blanket discovery. Our proposed algorithms make a broad range
of inference/learning problems computationally tractable and more reliable because they exploit
locality.
Keywords: AMP chain graph; Markov blanket, conditional independence, decomposition, graph-
ical model, Markov equivalent, structural learning.

1. Introduction

Probabilistic graphical models (PGMs) use graphs, either undirected, directed, or mixed, to repre-
sent possible dependencies among the variables of a multivariate probability distribution. PGMs,
such as Bayesian networks (BNs) and Markov networks, are now widely accepted as a powerful
and mature framework for reasoning and decision making under uncertainty in knowledge-based
systems. With the increase of their popularity, the range of graphical models being investigated and
used has also expanded. Several types of graphs with different conditional independence interpre-
tations - also known as Markov properties - have been proposed and used in graphical models.

The graphical structure of a Bayesian network has the form of a directed acyclic graph (DAG),
which has the advantage of supporting an interpretation of the graph in terms of cause-effect re-
lationships. However, a limitation is that only asymmetric relationships, such as cause and effect
relationships, can be modeled between variables in a DAG. Chain graphs, which admit both directed
and undirected edges, can be used to overcome this limitation. Today there exist three main differ-
ent interpretations of chain graphs in the literature: the Lauritzen-Wermuth-Frydenberg (LWF), the
Andersson-Madigan-Perlman (AMP), and the multivariate regression (MVR) interpretations.

This paper deals with chain graphs under the alternative Andersson-Madigan-Perlman (AMP)
interpretation (Andersson et al., 1996, 2001). AMP CGs are useful when we have a set of variables
for which the internal relations has no causal ordering, so the relations should be modelled as a
Markov network, but also a second set of variables which can be seen as causes for some of these
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variables in the first set. The internal structure of the first set of variables can then be modelled
as a Markov network, creating a chain component in an AMP CG, and the causes as parents of
some of the variables in the chain component. Note that for AMP CGs the parents only affect the
direct children in the chain component, not all the nodes in the chain component as in the case
of LWF CGs. An example in medicine (Sonntag and Peña, 2015) when such a model might be
appropriate is when we are modelling pain levels on different areas on the body of a patient. The
pain levels can then be seen as correlated “geographically” over the body, and hence be modelled as
a Markov network. Certain other factors do, however, exist that alters the pain levels locally at some
of these areas, such as the type of body part the area is located on or if local anaesthetic has been
administered in that area and so on. These outside factors can then be modelled as parents affecting
the pain levels locally.

From the causality point of view, every AMP CG is Markov equivalent to some DAG with error
and selection nodes under marginalization of the error (deterministic) nodes and conditioning of the
selection nodes (Peña, 2014). In fact, AMP CGs have been shown to be suitable for representing
causal linear models with additive Gaussian noise (Peña, 2016). AMP chain graphs widely studied
in different areas from applications in biology (Sonntag and Peña, 2015), to more advanced theo-
retical investigations (Levitz et al., 2001; Roverato, 2005; Roverato and Rocca, 2006; Drton, 2009;
Studený et al., 2009; Peña, 2014, 2015; Sonntag and Peña, 2015; Peña and Gómez-Olmedo, 2016;
Peña, 2018a,b).

One important and challenging aspect of PGMs is the possibility of learning the structure of
models directly from sampled data. Three constraint-based learning algorithms, that use a statistical
analysis to test the presence of a conditional independency, exist for learning AMP chain graphs:
(1) the (stable) PC-like algorithm (Peña, 2012; Peña and Gómez-Olmedo, 2016; Javidian et al.,
2020a), (2) the answer set programming (ASP) algorithm (Peña, 2016), and a decomposition-based
algorithm, called AMP-LCD (Javidian et al., 2020a).

In a DAG G with node set V , each local distribution depends only on a single node v ∈ V
and on its parents (i.e., the nodes u 6= v such that u v, here denoted pa(v)). Then the overall
joint density is simply p(x) = Πn

v∈V p(xv|xpa(v)). The key advantage of the decomposition in this
equation is to make local computations possible for most tasks, using just a few variables at a time
regardless of the magnitude of |V | = n. In Bayesian networks, the concept that enables us to
take advantage of local computation is Markov blanket. The Markov blanket (Markov boundary in
Pearl’s terminology) of each node v, defined as the set Mb(v) of nodes that separates v from all
other nodes V \ {v,Mb(v)}. Markov blankets can be used for variable selection for classification,
for causal discovery, and for Bayesian network learning (Tsamardinos et al., 2003a).

Markov blanket discovery has attracted a lot of attention in the context of Bayesian network
structure learning (see section 2). It is surprising, however, how little attention (if any) it has at-
tracted in the context of learning AMP chain graphs. In this paper, we focus on addressing the prob-
lem of Markov blanket discovery for structure learning of AMP chain graphs. For this purpose, we
extend the concept of Markov blankets to AMP CGs. We prove that Grow-Shrink Markov Blanket
(GSMB) (Margaritis and Thrun, 1999), IAMB, and its variants (Tsamardinos et al., 2003a; Yara-
makala and Margaritis, 2005) (that are mainly designed for Markov blanket recovery in Bayesian
networks) are still correct for Markov blanket discovery in AMP CGs under the faithfulness and
causal sufficiency assumptions.

Since constraint-based learning algorithms are sensitive to error propagation (Triantafillou et al.,
2014), and an erroneous identification of an edge can propagate through the network and lead to er-

2



MARKOV BLANKET DISCOVERY IN AMP CGS

roneous edge identifications or conflicting orientations even in seemingly unrelated parts of the
network, the learned chain graph model will be unreliable. In order to address the problem of re-
liable structure learning, we present a generic approach (i.e., the algorithm is independent of any
particular search strategy for Markov blanket discovery) based on Markov blanket recovery to learn
the structure of AMP CGs from a causally sufficient and faithful data. This algorithm first learns
the Markov blanket of each node. This preliminary step greatly simplifies the identification of
neighbours. This in turn results in a significant reduction in the number of conditional indepen-
dence tests, and therefore of the overall computational complexity of the learning algorithm. In
order to show the effectiveness of this approach, the resulting algorithms are contrasted against
(stable) PC-like (Peña, 2012; Javidian et al., 2020a) and LCD-AMP (Javidian et al., 2020a) on sim-
ulated data. We report experiments showing that our proposed generic algorithm (via 5 different
instantiations) consistently outperform (stable) PC-like, while they provide better/competitive per-
formance against the LCD-AMP algorithm in our Gaussian experimental settings, depending on
the approach that is used for Markov blanket discovery. Our proposed approach has an advan-
tage over LCD-AMP because local structural learning in the form of Markov blanket is a theoret-
ically well-motivated and empirically robust learning framework that can serve as a powerful tool
in classification and causal discovery (Aliferis et al., 2010). We also note that Markov blankets
are useful in their own right, for example in sensor validation and fault analysis (Ibargüengoytla
et al., 1996). Code for reproducing our results and its corresponding user manual is available at
https://github.com/majavid/AMPCGs-PGM2020. Our main theoretical and empirical
contributions are as follows:
(1) We extend the concept of Markov blankets to AMP CGs and we prove what variables make up
the Markov blanket of a target variable in an AMP CG (Section 4).
(2) We theoretically prove that the Grow-Shrink, IAMB algorithm and its variants are still sound
for Markov blanket discovery in AMP chain graphs under the faithfulness and causal sufficiency
assumptions (Section 4).
(3) We propose a generic algorithm for structure learning of AMP chain graphs, called MbAMP,
based on the proposed Markov blanket recovery algorithms in Section 4, and we prove its correct-
ness theoretically (Section 5).
(4) We evaluate the performance of 6 instantiations of the proposed generic algorithm MbAMP
with 6 different Markov blanket recovery algorithms on synthetic Gaussian data, and we show that
the resulting chain graphs are more accurate and reliable than the state-of-the-art algorithms in the
literature (Section 6).

2. Related Work

Markov Blanket Discovery in BNs with Causal Sufficiency Assumption. Margaritis and Thrun
(Margaritis and Thrun, 1999) presented the first provably correct algorithm, called Grow-Shrink
Markov Blanket (GSMB), that discovers the Markov blanket of a variable from a faithful data under
the causal sufficiency assumption. Variants of GSMB were proposed to improve speed and reliabil-
ity such as the Incremental Association Markov Blanket (IAMB) and its variants (Tsamardinos et al.,
2003a), Fast-IAMB (Yaramakala and Margaritis, 2005), and IAMB with false discovery rate con-
trol (IAMB-FDR) (Peña, 2008). Since in discrete data the sample size required for high-confidence
statistical tests of conditional independence in GSMB and IAMB algorithms grows exponentially in
the size of the Markov blanket, several sample-efficient algorithms e.g., HITON-MB (Aliferis et al.,
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2010) and Max–Min Markov Blanket (MMMB) (Tsamardinos et al., 2006) were proposed to over-
come the data inefficiency of GSMB and IAMB algorithms. One can find alternative computational
methods for Markov blanket discovery that were developed in the past two decades in (Peña et al.,
2007; Liu and Liu, 2016; Ling et al., 2019), among others.
Markov Blanket Discovery in BNs without Causal Sufficiency Assumption. Gao and Ji (Gao
and Ji, 2016) proposed the latent Markov blanket learning with constrained structure EM algorithm
(LMB-CSEM) to discover the Markov blankets in BNs in the presence of unmeasured confounders.
However, LMB-CSEM was proposed to find the Markov blankets in a DAG and provides no the-
oretical guarantees for finding all possible unmeasured confounders in the Markov blanket of the
target variable. Recently, Yu et. al. (Yu et al., 2018) proposed a new algorithm, called M3B, to mine
Markov blankets in BNs in the presence of unmeasured confounders.
Markov Blanket Discovery in LWF CGs. Recently, Javidian et. al. (Javidian et al., 2020b)
extended the concept of Markov blankets to LWF CGs and proved what variables make up the
Markov blanket of a target variable in an LWF CG. Authors theoretically proved that the Grow-
Shrink, IAMB algorithm and its variants are still sound for Markov blanket discovery in LWF chain
graphs under the faithfulness and causal sufficiency assumptions (Javidian et al., 2020b, Section 4).
In addition, they presented a new algorithm, called MBC-FSP, for learning Markov blankets in LWF
chain graphs (Javidian et al., 2020b, Section 4).

In this paper, we extend the concept of Markov blankets to AMP CGs, which is different from
Markov blankets defined in DAGs under the causal sufficiency assumption and also is different from
Markov blankets defined in maximal ancestral graphs without assuming causal sufficiency.

3. Notation and Key Definitions

In this paper, we consider graphs containing both directed (→) and undirected (−) edges and largely
use the terminology of (Andersson et al., 2001), where the reader can also find further details. Below
we briefly list some of the central concepts used in this paper.

If A ⊆ V is a subset of the vertex set in a graph G = (V,E), the induced subgraph GA =
(A,EA) is a graph in which the edge set EA = E ∩ (A×A) is obtained from G by keeping edges
with both endpoints in A. If there is an arrow from a pointing towards b, a is said to be a parent of
b. The set of parents of b is denoted as pa(b). If there is an undirected edge between a and b, a and
b are said to be adjacent or neighbors. The set of neighbors of a vertex a is denoted as ne(a). The
expressions pa(A) and ne(A) denote the collection of parents and neighbors of vertices inA that are
not themselves elements of A. The boundary of a subset of vertices A, bd(A), is the set of vertices
in V \A that are parents or neighbors to vertices in A. The closure of A is cl(A) = bd(A) ∪A.

A path of length n from a to b is a sequence a = a0, . . . , an = b of distinct vertices such that
(ai, ai+1) ∈ E, for all i = 1, . . . , n. A vertex α is said to be an ancestor of a vertex β if there is
a directed path α → · · · → β from α to β. We define the smallest ancestral set containing A as
An(A) := an(A)∪A. A partially directed cycle (or semi-directed cycle) in a graphG is a sequence
of n distinct vertices v1, v2, . . . , vn(n ≥ 3), and vn+1 ≡ v1, such that (a) for all i(1 ≤ i ≤ n) either
vi − vi+1 or vi → vi+1, and (b) there exists a j(1 ≤ j ≤ n) such that vj → vj+1.

An AMP chain graph is a graph in which there are no partially directed cycles. The chain
components T of a chain graph are the connected components of the undirected graph obtained by
removing all directed edges from the chain graph. We define the smallest coherent set containing A
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Figure 1: (a) Triplexes, and (b) the corresponding augmented triplex. (c) the four configurations
that define the bi-flag, and (d) the corresponding augmented bi-flag. The “?” indicates that either
X − Y ∈ G, X → Y ∈ G, Y → X ∈ G, or X and Y are not adjacent in G.

as Co(A) := ∪τ{τ ∈ T |τ ∩ A 6= ∅}. Let G be obtained by deleting all directed edges of G; for
A ⊆ V the extended subgraph G[A] is defined by G[A] := GAn(A) ∪GCo(An(A)).

A triple of vertices {X,Y, Z} is said to form a flag in CG if the induced subgraph CGX∪Y ∪Z
is X → Y − Z or X − Y ← Z. A triple of vertices {X,Y, Z} is said to form a triplex in CG if the
induced subgraph CGX∪Y ∪Z is either X → Y − Z, X → Y ← Z, or X − Y ← Z. A triplex is
augmented by adding the X − Z edge. A set of four vertices {X,A,B, Y } is said to form a bi-flag
if the edges X → A, Y → B, and A − B are present in the induced subgraph over {X,A,B, Y }.
A bi-flag is augmented by adding the edge X − Y . We say that X is a flag-spouse of Y and vice
versa, and that fsp(X) = {Y ∈ V |∃ a triplex or bi-flag between X and Y }. A minimal complex
(or simply a complex) in a chain graph is an induced subgraph of the form a→ v1−· · · · · ·−vr ← b.
The augmented CG Ga is the undirected graph formed by augmenting all triplexes and bi-flags in
CG and replacing all directed edges with undirected edges (see Figure 1). The skeleton (underlying
graph) of a CG G is obtained from G by changing all directed edges of G into undirected edges.
Vertex Y is an unshielded collider (or V-structure) in a DAG G if G contains the induced subsgraph
U → Y ← V .

Definition 1 (Global Markov property for AMP CGs) For any triple (A,B, S) of disjoint subsets
of V such that S separates A from B in (G[A ∪ B ∪ S])a, in the augmented graph of the extended
subgraph of A ∪B ∪ S, we have A⊥⊥ B|S (or 〈A,B|S〉) i.e., A is independent of B given S.

An equivalent pathwise separation criterion that identifies all valid conditional independencies
under the AMP Markov property was introduced in (Levitz et al., 2001):

Definition 2 (The pathwise p-separation criterion for AMP chain graphs) A node B in a chain ρ in
an AMP CG G is called a triplex node in ρ if A → B ← C,A → B − C, or A − B ← C is a
subchain of ρ. Moreover, ρ is said to be Z-open with Z ⊆ V when (i) every triplex node in ρ is in
An(Z), and (ii) every non-triplex node B in ρ is outside Z, unless A − B − C is a subchain of ρ
and paG(B) \ Z 6= ∅.

Let X,Y 6= ∅ and Z (may be empty) denote three disjoint subsets of V . When there is no
Z-open chain in an AMP CG G between a node in X and a node in Y , we say that X is separated
from Y given Z in G and denote it as X⊥⊥ Y |Z.

Theorem 4.1 in (Levitz et al., 2001) establishes the equivalence of the p-separation criterion and
the augmentation criterion occurring in the AMP global Markov property for CGs.
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Figure 2: (a) The AMP CGG, (b)An(X∪Y ∪A), (c) the undirected edges inCo(An(X∪Y ∪A)),
(d) G[X ∪ Y ∪A], and (e) (G[X ∪ Y ∪A])a.

Example 1 Consider the AMP CG G in Figure 2(a). The global Markov property of AMP chain
graphs implies that X⊥⊥ Y |A (see Figure 2). There is no A-open chain in the AMP CG G between
X and Y because the only chain between X and Y i.e., X → A − B ← Y is blocked at B
(B is a triplex node in the chain and B 6∈ An(A)).

We say that two AMP CGs G and H are Markov equivalent or that they are in the same Markov
equivalence class if they induce the same conditional independence restrictions. Two AMP chain
graphs G and H are Markov equivalent if and only if they have the same skeletons and the same
triplexes (Andersson et al., 2001). We say that AMP chain graphs G and H belong to the same
strong Markov equivalent class iff G and H are Markov equivalent and contain the same flags. An
AMP CG G∗ is said to be the AMP essential graph of its Markov equivalence class iff for every
directed edge A → B that exists in G∗ there exists no AMP CG H s.t. G∗ and H are Markov
equivalent and A ← B is in H . An AMP CG G∗ is said to be the largest deflagged graph of
its Markov equivalence class iff there exists no other AMP CG H s.t. G∗ and H are Markov
equivalent and either H contains fewer flags than G∗ or G∗ and H belong to the same strong
Markov equivalence class but H contains more undirected edges. Any largest deflagged graph or
AMP essential graph are AMP CGs and both of these have been proven to be unique for the Markov
equivalence class they represent (Roverato and Rocca, 2006; Andersson and Perlman, 2006).

The Markov condition is said to hold for a DAG G = (V,E) and a probability distribution
P (V ) if every variable is statistically independent of its graphical non-descendants conditional on
its graphical parents in P . Pairs 〈G,P 〉 that satisfy the Markov condition satisfy the implication:
∀X,Y ∈ V,∀Z ⊆ V \ {X,Y } : (X ⊥⊥d Y |Z =⇒ X ⊥⊥p Y |Z). The faithfulness condition
states that the only conditional independencies to hold are those specified by the Markov condition:
∀X,Y ∈ V,∀Z ⊆ V \ {X,Y } : (X 6⊥⊥d Y |Z =⇒ X 6⊥⊥p Y |Z). In practice, the Markov
condition is used by constraint-based algorithms, which use a statistical analysis to test the presence
of a conditional independency, to perform conditional independence tests on the data and build the
graph accordingly, and faithfulness is assumed to prove that the graph is correct.

Let a Bayesian network G = (V,E, P ) be given. Then, V is a set of random variables, (V,E)
is a DAG, and P is a joint probability distribution over V . Let T ∈ V . Then, the Markov blanket
Mb(T ) is the minimal set of variables such that T is conditionally independent of all the other
variables given Mb(T ) for any choice of numerical parameters. That is, T ⊥⊥p V \ (Mb(T ) ∪
{T})|Mb(T ) for any distribution that respects the conditional independencies. Suppose 〈G,P 〉
satisfies the Markov condition. Then for each variable T , the set of all parents of T , children of T ,
and spouses of T is a Markov blanket of T . If 〈G,P 〉 also satisfies the faithfulness condition, then
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for each variable T , the set of all parents of T , children of T , and spouses of T is the unique Markov
blanket of T (Tsamardinos et al., 2003a).

4. Markov Blanket Discovery in AMP Chain Graphs

The Markov blanket of the target variable T in an AMP chain graph probabilistically shields T
from the rest of the variables. In this section, we first prove which variables make up the Markov
blanket of a target variable T in an AMP CG. Then, we prove that GSMB, IAMB and its variants
are sound for Markov blanket discovery in AMP CGs under the faithfulness and causal sufficiency
assumptions.

Theorem 3 Suppose (G,P ) satisfies the global Markov property for AMP CGs, where G = (V,E)
is an AMP chain graph and P is a joint probability distribution over V . Then for each variable
T , the set of all parents of T , children of T , neighbors of T , and flag-spouses of T is the Markov
blanket of T . Formally, Mb(T ) = bd(T ) ∪ ch(T ) ∪ fsp(T ).

Proof First, we observe that if G is a DAG, then ne(T ) = ∅ and since the only flag-spouses of
T are sp(T ), Mb(T ) reduces to the set of all parents, children, and spouses of T , as it should. We
now prove the general case by distinguishing 3 cases. Let S be a generic variable (node) other than
T .
(1) S is directly linked to T in G. Clearly, no set can p-separate T from S in G. So, S ∈ Mb(T ).
In other words, bd(T ) ∪ ch(T ) ⊆Mb(T ).
(2) S is not directly linked to T , S ∈ fsp(T ), and there is a triplex or bi-flag between T and S. We
consider the four following sub-cases: (i) the triplex between T and S is of the form T X S,
(ii) the triplex between T and S is of the form T X S, (iii) the triplex between T and S is of
the form T X S, and (iv) the bi-flag between T and S is of the form T X Y S.
As shown in case (1), all children and neighbours of T are in Mb(T ). So, in the augmented graph of
the extended subgraph of T ∪S ∪X , where X ∈ ch(T ) or X ∈ ne(T ), T and S are linked directly
by adding an undirected edge. This means that no set that contains bd(T ) ∪ ch(T ) can p-separate
T from S in G in sub-cases (i), (ii), and (iii). In sub-case (iv), since T X Y is a triplex,
sub-case (iii) implies that Y ∈ Mb(T ). So, in the augmented graph of the extended subgraph of
T ∪ S ∪X ∪ Y , T and S are linked directly by adding an undirected edge. This means that no set
that contains bd(T ) ∪ ch(T ) ∪ sp(T ) can p-separate T from S in G in sub-case (iv).
(3) S is not directly linked to T and there is a path (of length > 1) between T and S, and S 6∈
fsp(T ). From the definition of the augmented graph of the extended subgraphs, it is straightforward
to see that S is not linked to T directly by adding an undirected edge in the augmented graph
of the extended subgraph of T ∪ S ∪ CMB, where CMB := bd(T ) ∪ ch(T ) ∪ fsp(T ). This
means that T ⊥⊥ S|CMB. From the definition of the Markov condition it follows that every p-
separation relation in G implies conditional independence in every joint probability distribution P
that satisfies the Markov condition for G. Thus, we have T ⊥⊥p S|CMB in P for every variable
S ∈ V \ CMB \ {T}, from which it follows that CMB is a Markov blanket of T .
(1), (2), and (3) together imply that Mb(T ) = bd(T ) ∪ ch(T ) ∪ fsp(T ).

Example 2 Suppose (G,P ) satisfies the Markov condition where G is the AMP chain graph in
Figure 3. Then due to Theorem 3, the set of {C,F,G,H,K,L} is the Markov blanket of T . Because
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pa(T ) = {C,G}, ch(T ) = {K}, ne(T ) = {F}, fsp(T ) = {E,L, J, S}. Note that if only T ’s
adjacents are instantiated, then T is not p-separated from L, J , and S in G.
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I J K L
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S T

Figure 3: The AMP CG G. The Markov
blanket of the target node T is Mb(T ) =
{C,F,E,G, J,K,L, S}.
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Figure 4: The procedure of Markov blanket re-
covery in the Grow-Shrink based algorithms.

Theorem 4 Given the Markov assumption, the faithfulness assumption, a graphical model repre-
sented by an AMP CG, and i.i.d. sampling, in the large sample limit, the Markov blanket recov-
ery algorithms GS (Margaritis and Thrun, 1999), IAMB (Tsamardinos et al., 2003a), fastIAMB
(Yaramakala and Margaritis, 2005), Interleaved Incremental Association (interIAMB) (Tsamardi-
nos et al., 2003a), and fdrIAMB (Peña, 2008) correctly identify all Markov blankets for each vari-
able. (Note that Causal Sufficiency is assumed i.e., all causes of more than one variable are ob-
served.)

Proof [Sketch of proof] If a variable belongs to Mb(T ), then it will be admitted in the first step
(Grow phase) at some point, since it will be dependent on T given the candidate set of Mb(T ). This
holds because of the faithfulness and because the set Mb(T ) is the minimal set with that property.
If X 6∈ Mb(T ), then conditioned on Mb(T ) \ {X}, it will be independent of T and thus will be
removed from the candidate set of Mb(T ) in the second phase (Shrink phase) because the Markov
condition entails that independencies in the distribution are represented in the graph. Since the
faithfulness condition entails dependencies in the distribution from the graph, we never remove any
variable X from the candidate set of Mb(T ) if X ∈ Mb(T ). Using this argument inductively we
will end up with the Mb(T ).

The algorithms listed in Theorem 4 are structurally similar to the standard Markov blanket
discovery algorithms and follow the same two-phase grow-shrink structure as shown in the Figure
4. An estimate of the Mb(T ) is kept in the set CMB. In the grow phase all variables that belong in
Mb(T ) and possibly more (false positives) enter CMB while in the shrink phase the false positives
are identified and removed so that CMB = Mb(T ) in the end.
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5. Learning AMP Chain Graphs via Markov Blankets

Any sound algorithm for learning Markov blankets of AMP CGs can be employed and extended to a
full AMP CG learning algorithm, as originally suggested in (Margaritis and Thrun, 1999) for Grow-
Shrink Markov blanket algorithm (for Bayesian networks). Thanks to the proposed Markov blanket
discovery algorithms listed in Theorem 4, we can now present a generic algorithm for learning AMP
CGs. Algorithm 1 lists pseudocode for the three main phases of this approach.

Algorithm 1: MbAMP: Learning AMP CGs via Markov blanket discovery
Input: a set V of nodes and a probability distribution p faithful to an unknown AMP chain graph

G = (V,E).
Output: An AMP CG H that is triplex equivalent to G.
/* Phase 1: Learning Markov blankets */

1 For each variable Xi ∈ V , learn its Markov blanket Mb(Xi);
2 Check whether the Markov blankets are symmetric, e.g., Xi ∈Mb(Xj)↔ Xj ∈Mb(Xi). Assume

that nodes for whom symmetry does not hold are false positives and drop them from each other’s
Markov blankets;

3 Set Sepset(Xi, Xj) = Sepset(Xj , Xi) to the smallest of Mb(Xi) and Mb(Xj) if Xi 6∈Mb(Xj)
and Xj 6∈Mb(Xi);
/* Phase 2: Skeleton Recovery */

4 Construct the undirected graph H = (V,E), where
E = {Xi Xj |Xj ∈Mb(Xi) and Xi ∈Mb(Xj)};

5 for i← 0 to |VH | − 2 do
6 while possible do
7 Select any ordered pair of nodes u and v in H such that u ∈ adH(v) and

|[adH(u) ∪ adH(adH(u))] \ {u, v}| ≥ i, using order(V );
/* adH(x) := {y ∈ V |x y, y x, or x y} */

8 if there exists S ⊆ ([adH(u) ∪ adH(adH(u))] \ {u, v}) s.t. |S| = i and u ⊥⊥p v|S then
9 Set Sepset(u, v) = Sepset(v, u) = S;

10 Remove the edge u v from H;
11 end
12 end
13 end

/* Phase 3: Orientation phase: */
14 while possible do
15 Apply the rules R1-R4 in the Figure 5 to H .

/* A block is represented by a perpendicular line at the edge
end such as in or , and it means that the edge cannot
be a directed edge pointing in the direction of the block.
Note that means that the edge must be undirected. The
ends of some of the edges in the rules are labeled with a
circle such as in or . The circle represents an
unspecified end, i.e. a block or nothing. */

16 end
17 Replace every edge ( ) in H with ( );

Phase 1: Learning Markov blankets. This phase consists of learning the Markov blanket of
each variable with feature selection to reduce the number of candidate structures early on. Any
algorithm in Theorem 4 can be plugged in Step 1. Once all Markov blankets have been learned,
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they are checked for consistency (Step 2) using their symmetry; by definition Xi ∈ Mb(Xj) ↔
Xj ∈ Mb(Xi). Asymmetries are corrected by treating them as false positives and removing those
variables from each other’s Markov blankets. At the end of this phase, separator sets of X and Y
set to the smallest of Mb(X) and Mb(Y ) if X 6∈Mb(Y ) and Y 6∈Mb(X).

Figure 5: Rules R1-R4 (Peña, 2012)

Phase 2: Skeleton Recovery. First, we con-
struct the augmented graph of the extended
graph of the AMP CG G that is an undirected
graph in which each node of the original G is
now connected to its Markov blanket (line 4 of
Algorithm 1). Lines 5-13 learn the skeleton of
the AMP CG by removing the spurious edges.
In fact, we remove the added undirected edge(s)
between each variable T and its flag-spouses
due to the fact that fsp(T ) ⊆ Mb(T ). Sepa-
ration sets are updated correspondingly.
Phase 3: Orientation Recovery. We use the
resulting undirected graph obtained in the pre-
vious step to orient undirected edges via rules R1-R4 in Figure 5 (Peña, 2012; Peña and Gómez-
Olmedo, 2016). This process is formally described in Algorithm 1.

Remark 5 One can apply Algorithm 3 in (Roverato and Rocca, 2006) to to the resulting chain
graph of Algorithm 1 to obtain the largest deflagged graph. Also, one can apply Algorithm 1 in
(Sonntag and Peña, 2015) to the resulting chain graph of Algorithm 1 to obtain the AMP essential
graph.

Computational Complexity Analysis of Algorithm 1 Assume that the “learning Markov blankets”
phase uses the grow-shrink (GSMB) approach and n = |V |, m = |E|, where G = (V,E) is the
true AMP CG. Since the Markov blanket algorithm involves O(n) conditional independence (CI)
tests, Phase 1 (learning Markov blankets) involves O(n2) tests. If b = maxXMb(X), the skeleton
recovery (line 5-13) does O(nb2b) CI tests. In the worst case, i.e. when b = O(n) and m = O(n2)
i.e. the original graph is dense, the total complexity for these 2 phases becomes O(n2 + nb2b) or
O(n22n). Under the assumption that b is bounded by a constant (the sparseness assumption), the
complexity of Phase 1 and 2 together is O(n2) in the number of CI tests. Since the orientation
phase (phase 3) does not generate new CI tests, the total number of CI tests for the entire algorithm
is therefore O(n2 + nb2b). Under the assumption that b is bounded by a constant, this algorithm is
O(n2) in the number of CI tests.

6. Experimental Evaluation

We performed a large set of experiments on simulated data for contrasting our proposed structure
learning algorithms (GSAMP, IAMBAMP, interIAMBAMP, fastIAMBAMP, and fdrIAMBAMP)
against the state-of-the-art algorithms (stable) PC-like and LCD-AMP for AMP CG recovery. We
implemented all algorithms in R by extending code from the bnlearn (Scutari, 2010) and pcalg
(Kalisch et al., 2012) packages to AMP CGs. We run our algorithms and the algorithm (stable)
PC-like and LCD-AMP on randomly generated AMP CGs and we compare the results and report
summary error measures.

10
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6.1 Performance Evaluation Metrics

We evaluate the performance of our proposed generic algorithm MbAMP (via 5 different instanti-
ations: GSAMP, fastIAMBAMP, fdrIAMBAMP, interIAMBAMP, and IAMBAMP) in terms of six
measurements: (a) the true positive rate (TPR) (also known as recall), (b) the false positive rate
(FPR), (c) the true discovery rate (TDR) (also known as precision), (d) accuracy (ACC) for the
skeleton, (e) the structural Hamming distance (SHD)1, and (f) run-time for the CG recovery algo-
rithms. In short, TPR is the ratio of the number of correctly identified edges over total number
of edges (in true graph), FPR is the ratio of the number of incorrectly identified edges over total
number of gaps, TDR is the ratio of the number of correctly identified edges over total number of
edges (both in estimated graph), ACC is the ratio of the number of correctly identified edges plus
the number of correctly identified gaps over the number of real positive cases plus the number of
real negative cases, and SHD is the number of legitimate operations needed to change the current
resulting graph to the true CG, where legitimate operations are: (i) add or delete an edge and (ii)
insert, delete or reverse an edge orientation. In principle, a large TDR, TPR and ACC, a small FPR
and SHD indicate good performance.

6.2 Data Generation Procedure

Now, we explain the way in which the random AMP chain graphs and random samples are gen-
erated. Given a vertex set V , let p = |V | and N denote the average degree of edges (including
undirected and pointing out and pointing in) for each vertex. We generate a random AMP chain
graph on V as follows:

• Order the p vertices and initialize a p× p adjacency matrix A with zeros;

• For each element in the lower triangle part of A, set it to be a random number generated from
a Bernoulli distribution with probability of occurrence s = N/(p− 1);

• Symmetrize A according to its lower triangle;

• Select an integer k randomly from {1, . . . , p} as the number of chain components;

• Split the interval [1, p] into k equal-length subintervals I1, . . . , Ik so that the set of variables
falling into each subinterval Im forms a chain component Cm;

• Set Aij = 0 for any (i, j) pair such that i ∈ Il, j ∈ Im with l > m.

This procedure yields an adjacency matrix A for a chain graph with (Aij = Aji = 1) repre-
senting an undirected edge between Vi and Vj and (Aij = 1, Aji = 0) representing a directed edge
from Vi to Vj . Moreover, it is not difficult to see that E[vertex degree] = N , where an adjacent
vertex can be linked by either an undirected or a directed edge. In order to sample from the artificial
CGs, we first transformed them into DAGs and then sampled from these DAGs under marginaliza-
tion and conditioning as indicated in (Peña, 2014). The transformation of an AMP CG G into a
DAG H is as follows: First, every node X in G gets a new parent εX representing an error term,
which by definition is never observed. Then, every undirected edge X Y in G is replaced by

1. This is the metric described in (Tsamardinos et al., 2006) to compare the structure of the learned and the original
graphs.

11
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εX SXY εY where SXY denotes a selection bias node, i.e. a node that is always observed.
Given a randomly generated chain graphGwith ordered chain componentsC1, . . . , Ck, we generate
a Gaussian distribution on the corresponding transformed DAG H using the Hugin API. Note that
the probability distributions of samples are likely to satisfy the faithfulness assumption, but there is
no guarantee i.e., samples can have additional independencies that cannot be represented by the CG
G.

6.3 Results and their Implications

In our simulation, we change three parameters p (the number of vertices), n (sample size) and N
(expected number of adjacent vertices) as follows:

• p ∈ {10, 20, 30, 40, 50},

• n ∈ {500, 5000}, and

• N ∈ {2, 3}.

For each (p,N) combination, we first generate 30 random AMP CGs. We then generate a ran-
dom Gaussian distribution based on each graph and draw an identically independently distributed
(i.i.d.) sample of size n from this distribution for each possible n. For each sample, three different
significance levels (α = 0.005, 0.05) are used to perform the hypothesis tests. The null hypoth-
esis H0 is “two variables u and v are conditionally independent given a set C of variables” and
alternative H1 is that H0 may not hold. We then compare the results to access the influence of the
significance testing level on the performance of our algorithms.

Some highlights for AMP CGs recovery: (1) As shown in our experimental results (see Figure
6), except for GSAMP, our proposed Markov blanket based algorithm, MbAMP, (via 4 different
instantiations: fastIAMBAMP, fdrIAMBAMP, interIAMBAMP, and IAMBAMP) is (slightly) bet-
ter than PCAMP and is as good as or even (slightly) better than LCDAMP in many settings. The
reason is that both LCDAMP and MbLWF algorithms take advantage of local computations that
make them equally robust against the choice of learning parameters. (2) While our Markov blan-
ket based algorithms (except for GSAMP) have better precision and FPR, the LCDAMP algorithm
enjoys (slightly) better recall. The reason for this may be that the faithfulness assumption makes
the LCDAMP algorithm search for a CG that represents all the independencies that are detected in
the sample set. However, such a CG may also represent many other independencies. Therefore, the
LCDAMP algorithm trades precision for recall. In other words, it seems that the faithfulness as-
sumption makes the LCDAMP algorithm overconfident and aggressive, whereas under this assump-
tion MbAMP algorithms are more cautious, conservative, and more importantly more precise than
the LCDAMP algorithm. (3) The performance of the LCDAMP algorithm based on ACC is slightly
better than other algorithms. Except for the GSAMP algorithm and the fdrIAMB algorithm in small
sample size, there is no meaningful difference among the performance of the Markov blanket based
algorithms based on ACC. (4) The best SHD belongs to LCDAMP in small sample size settings,
and to fastIAMBAMP, interIAMBAMP, IAMBAMP, and LCD in large sample size settings. This is
consistent with the results obtained in (Tsamardinos et al., 2003b) for Bayesian networks. Because
IAMB and its variants are not data-efficient (Peña, 2008). (5) Except for the FPR, the p-value (α
parameter) has a very small impact on the performance of algorithms. (6) Markov blankets of dif-
ferent variables can be learned independently from each other, and later merged and reconciled to
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produce a coherent AMP CG. This allows the parallel implementations for scaling up the task of
learning chain graphs from data containing more than hundreds of variables, which is crucial for big
data analysis tools. In fact, our proposed structure learning algorithms can be parallelized follow-
ing (Scutari, 2017); see https://github.com/majavid/AMPCGs-PGM2020 for a detailed
example.

With the use of our generic algorithm (Algorithm 1), the problem of structure learning is reduced
to finding an efficient algorithm for Markov blanket discovery in AMP CGs. This greatly simplifies
the structure-learning task and makes a wide range of inference/learning problems computationally
tractable because they exploit locality.

7. Discussion and Conclusion

An important novelty of local methods in general and Markov blanket recovery algorithms in partic-
ular for structure learning is circumventing non-uniform graph connectivity. A chain graph may be
non-uniformly dense/sparse. In a global learning framework, if a region is particularly dense, that
region cannot be discovered quickly and many errors will result when learning with a small sample.
These errors propagate to remote regions in the chain graph including those that are learnable ac-
curately and fast with local methods. In contrast, local methods such as Markov blanket discovery
algorithms are fast and accurate in the less dense regions. In addition, when the dataset has tens or
hundreds of thousands of variables, applying global discovery algorithms that learn the full chain
graph becomes impractical. In those cases, Markov blanket based approaches that take advantage
of local computations can be used for learning full AMP CGs. For this purpose, we extended the
concept of Markov blankets to AMP CGs. We proved that GSMB and IAMB and its variants are
still sound for Markov blanket discovery in AMP CGs under the faithfulness and causal sufficiency
assumptions. This, in turn, enabled us to extend these algorithms to a new family of global structure
learning algorithms based on Markov blanket discovery. As we have shown for MbAMP algorithm
(via 5 different instantiations) improves the quality of the learned AMP CG. One interesting direc-
tion for future work is answering the following question: Can we relax the faithfulness assumption
and develop a correct, scalable, and data efficient algorithm for learning Markov blankets in AMP
CGs?

Acknowledgments

We are grateful to Professor Jose M. Peña and Dr. Dag Sonntag for providing us with code that
helped in the data generating procedure. This work has been partially supported by AFRL and
DARPA (FA8750-16-2-0042).

13

https://github.com/majavid/AMPCGs-PGM2020


JAVIDIAN, VALTORTA, AND JAMSHIDI

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.5

0.6

0.7

0.8

0.9

1.0

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

sample size
size = 500

size = 5000

alpha = 0.05

●●

●●

●

●

●

●●

●

●●
●●

●
●

●●

●
●

●

●

●●● ●

●

0.7

0.8

0.9

1.0

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

sample size
size = 500

size = 5000

alpha = 0.005

P
re

ci
si

o
n

●●
●

●

●

●●
● ●

●

●●●

●

●

● ●

●

●

0.00

0.25

0.50

0.75

1.00

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

sample size
size = 500

size = 5000

alpha = 0.05

●

●●●●●●
●

● ●●●●
● ●●●●●

●
● ● ●●●●●

●
● ●●

● ●

●

0.00

0.25

0.50

0.75

1.00

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

sample size
size = 500

size = 5000

alpha = 0.005

P
re

ci
si

o
n

●

●

●

●

●
●

0.4

0.6

0.8

1.0

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

sample size
size = 500

size = 5000

alpha = 0.05

●

●

●

0.4

0.6

0.8

1.0
G

S
A

M
P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

sample size
size = 500

size = 5000

alpha = 0.005

R
ec

al
l

●

● ●0.00

0.25

0.50

0.75

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

sample size
size = 500

size = 5000

alpha = 0.05
●●

● ●

●

●

0.00

0.25

0.50

0.75

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

alpha = 0.005

R
ec

al
l

●

●

●

●

0.95

0.96

0.97

0.98

0.99

1.00

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

A
C

C

sample size
size = 500

size = 5000

alpha = 0.05

●

●

●

0.96

0.97

0.98

0.99

1.00

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

sample size
size = 500

size = 5000

alpha = 0.005

●

●0.900

0.925

0.950

0.975

1.000

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

A
C

C

sample size
size = 500

size = 5000

alpha = 0.05

●

●

●0.900

0.925

0.950

0.975

1.000

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

sample size
size = 500

size = 5000

alpha = 0.005

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

0.000

0.005

0.010

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

F
P

R

alpha = 0.05

●●

●●

●

●

●

●●

●

●● ●●

● ●

●●

● ●

●●

●●● ●●

0.000

0.002

0.004

0.006

0.008

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

alpha = 0.005
●

●

●

●

sample size
size = 500

size = 5000

●● ● ● ●
●● ● ●

●
●●●
●
●

●

●

●

0.00

0.01

0.02

0.03

0.04

0.05

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

F
P

R

alpha = 0.05

●

●●●●●●● ● ●●●● ● ●●●●●●● ● ●●●●●●● ●●

●

●

●●

0.00

0.01

0.02

0.03

0.04

0.05

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

alpha = 0.005
sample size

size = 500

size = 5000

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●10

20

30

40

50

60

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

S
H

D

sample size
size = 500

size = 5000

alpha = 0.05

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

20

40

60

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

alpha = 0.005

●

●

●

25

50

75

100

125

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

S
H

D

alpha = 0.05

●

●

●

25

50

75

100

125

G
S

A
M

P

fa
st

IA
M

B
A

M
P

fd
rI

A
M

B
A

M
P

in
te

rI
A

M
B

A
M

P

IA
M

B
A

M
P

P
C

A
M

P

LC
D

A
M

P

alpha = 0.005
sample size

size = 500

size = 5000

Figure 6: Performance of MbAMP, PC-like, and LCD-AMP algorithms for randomly generated
Gaussian AMP CGss: over 30 repetitions with 50 variables correspond to N = 2 (the first two
columns) and 3 (the last two columns). The yellow line in a box indicates the mean of that group.
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Figure 7: Runtime of MbAMP, PC-like, and LCD-AMP algorithms for randomly generated Gaus-
sian AMP CGss: over 30 repetitions with 50 variables correspond to N = 2 (the first two columns)
and 3 (the last two columns). The yellow line in a box indicates the mean of that group.
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