The	Back-Door	Criterion
00		
00		
000		

do Calculu 00 Symbolic Derivation

Example 0000

An Overview of The Back-Door and Front-Door Criteria A Presentation Based On Sections 3.3 and 3.4 of Pearl's Causality

Mohammad Ali Javidian¹ Marco Valtorta¹

¹Department of Computer Science University of South Carolina

June, 2018

Mohammad Ali Javidian, Marco Valtorta

An Overview of The Back-Door and Front-Door Criteria

University of South Carolina

The Back-Door Criterion ●0 ○0	The Front-Door Criterion 00 00	do Calculus 00	Symbolic Derivation	Example 0000
Definition 1. (Back-Door)				

Outline

The Back-Door Criterion

- Definition 1. (Back-Door)
- Theorem 1. (Back-Door Adjustment)
- Proof of Theorem 1.
- 2 The Front-Door Criterion
 - Definition 2. (Front-Door)
 - Theorem 2. (Front-Door Adjustment)

3 do Calculus

4 Symbolic Derivation

5 Example

The Back-Door Criterion ○● ○○○○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Definition 1. (Back-Door)				

Definition

A set of variables Z satisfies the *back-door criterion* relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○● ○○○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Definition 1. (Back-Door)				

Definition

A set of variables Z satisfies the *back-door criterion* relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

(i) no node in Z is a descendant of X_i ; and

larco Valtorta

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

	00 00		
Definition 1. (Back-Door)			

Definition

A set of variables Z satisfies the *back-door criterion* relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

- (i) no node in Z is a descendant of X_i ; and
- (ii) Z blocks every path between X_i and X_j that contains an arrow into X_i .

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○● ○○○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Definition 1. (Back-Door)				

Definition

A set of variables Z satisfies the *back-door criterion* relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

- (i) no node in Z is a descendant of X_i ; and
- (ii) Z blocks every path between X_i and X_j that contains an arrow into X_i .

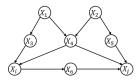


Figure: $S_1 = \{X_3, X_4\}$ and $S_2 = \{X_4, X_5\}$ would qualify under the back-door criterion, but $S_3 = \{X_4\}$ would not because X_4 does not *d*-separate X_i from X_i along the path $(X_i, X_3, X_1, X_4, X_2, X_5, X_i)$.

The Back-Door Criterion ○○ ●○ ○○○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Theorem 1. (Back-Door Adjus	stment)			
• • •				

Outline

 The Back-Door Criterion • Definition 1. (Back-Door) Theorem 1. (Back-Door Adjustment) Proof of Theorem 1. Definition 2. (Front-Door) Theorem 2. (Front-Door Adjustment) 4) Symbolic Derivation

University of South Carolina

The Back-Door Criterion ○○ ○○○○○○	The Front-Door Criterion 00 00	do Calculus 00	Symbolic Derivation	Example 0000
Theorem 1. (Back-Door Adjust	:ment)			
Back-Door Criterion Back-Door Adjustment Theorem				

If a set of variables Z satisfies the back-door criterion relative to (X, Y), then the causal effect of X on Y is identifiable and is given by the formula

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○○ ○○○○○○	The Front-Door Criterion 00 00	do Calculus 00	Symbolic Derivation	Example 0000
Theorem 1. (Back-Door Adjust	tment)			
Back-Door Cr Back-Door Adjustmen				

If a set of variables Z satisfies the back-door criterion relative to (X, Y), then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|\hat{x}) = \sum_{z} P(y|x,z)P(z).$$
(1)

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○○ ●○○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Proof of Theorem 1.				

Outline

The Back-Door Criterion • Definition 1. (Back-Door) • Theorem 1. (Back-Door Adjustment) Proof of Theorem 1. Definition 2. (Front-Door) Theorem 2. (Front-Door Adjustment) 4) Symbolic Derivation

The Back-Door Criterion ○○ ○●○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Proof of Theorem 1.				
T I 6 · · ·		10001		i .

The proof originally offered in Pearl [2, 1993] is based on the observation that, when Z blocks all back-door paths from X to Y, setting (X = x) or conditioning on X = x has the same effect on Y.

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○○ ○●○○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Proof of Theorem 1.				

The proof originally offered in Pearl [2, 1993] is based on the observation that, when Z blocks all back-door paths from X to Y, setting (X = x) or conditioning on X = x has the same effect on Y.

• The effect of an atomic intervention $do(X_i = x'_i)$ is encoded by adding to G a link $F_i \rightarrow X_i$ (see the following Figure), where F_i is a new variable taking values in $\{do(x'_i), idle\}, x'_i$ ranges over the domain of X_i , and *idle* represents *no intervention*. Thus, the new parent set of X_i in the augmented network is $PA'_i = PA_i \cup \{F_i\}$, and it is related to X_i by the conditional probability:

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○○ ○●○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Proof of Theorem 1.				

The proof originally offered in Pearl [2, 1993] is based on the observation that, when Z blocks all back-door paths from X to Y, setting (X = x) or conditioning on X = x has the same effect on Y.

• The effect of an atomic intervention $do(X_i = x'_i)$ is encoded by adding to G a link $F_i \rightarrow X_i$ (see the following Figure), where F_i is a new variable taking values in $\{do(x'_i), idle\}, x'_i$ ranges over the domain of X_i , and *idle* represents *no intervention*. Thus, the new parent set of X_i in the augmented network is $PA'_i = PA_i \cup \{F_i\}$, and it is related to X_i by the conditional probability:

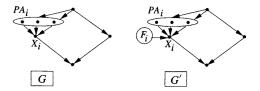


Figure: Representing external intervention F_i by an augmented network G'.

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

The Back-Door Criterion ○○ ○○●○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000000	Example 0000
Proof of Theorem 1.				

$$P(x_i|pa'_i) = \begin{cases} P(x_i|pa_i) & \text{if } F_i = \text{idle} \\ 0 & \text{if } F_i = do(x'_i) \text{ and } x_i \neq x'_i \\ 1 & \text{if } F_i = do(x'_i) \text{ and } x_i = x'_i \end{cases}$$
(2)

Mohammad Ali Javidian, Marco Valtorta

An Overview of The Back-Door and Front-Door Criteria

æ

(日) (四) (日) (日) (日)

The Back-Door Criterion ○○ ○○ ○○●○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000000	Example 0000
Proof of Theorem 1.				

$$P(x_i|pa'_i) = \begin{cases} P(x_i|pa_i) & \text{if } F_i = \text{idle} \\ 0 & \text{if } F_i = do(x'_i) \text{ and } x_i \neq x'_i \\ 1 & \text{if } F_i = do(x'_i) \text{ and } x_i = x'_i \end{cases}$$
(2)

The effect of the intervention do(x_i') is to transform the original probability function P(x₁,..., x_n) into a new probability function P(x₁,..., x_n|x_i'), given by

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○○ ○○ ○○●○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000000	Example 0000
Proof of Theorem 1.				

$$P(x_i|pa'_i) = \begin{cases} P(x_i|pa_i) & \text{if } F_i = \text{idle} \\ 0 & \text{if } F_i = do(x'_i) \text{ and } x_i \neq x'_i \\ 1 & \text{if } F_i = do(x'_i) \text{ and } x_i = x'_i \end{cases}$$
(2)

The effect of the intervention do(x_i') is to transform the original probability function P(x₁,..., x_n) into a new probability function P(x₁,..., x_n|x_i'), given by

$$P(x_1,...,x_n|\hat{x}'_i) = P'(x_1,...,x_n|F_i = do(x'_i))$$
(3)

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○○ ○○●○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000000	Example 0000
Proof of Theorem 1.				

$$P(x_i|pa'_i) = \begin{cases} P(x_i|pa_i) & \text{if } F_i = \text{idle} \\ 0 & \text{if } F_i = do(x'_i) \text{ and } x_i \neq x'_i \\ 1 & \text{if } F_i = do(x'_i) \text{ and } x_i = x'_i \end{cases}$$
(2)

The effect of the intervention do(x_i') is to transform the original probability function P(x₁,...,x_n) into a new probability function P(x₁,...,x_n) into a new probability function P(x₁,...,x_n) is provided by

$$P(x_1,...,x_n|\hat{x}'_i) = P'(x_1,...,x_n|F_i = do(x'_i))$$
(3)

Image: A math a math

University of South Carolina

By writing P(y|x̂) in terms of the augmented probability function P' in accordance with eq. (3) and conditioning on Z we obtain:

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○○ ○○ ○○●○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000000	Example 0000
Proof of Theorem 1.				

$$P(x_i|pa'_i) = \begin{cases} P(x_i|pa_i) & \text{if } F_i = \text{idle} \\ 0 & \text{if } F_i = do(x'_i) \text{ and } x_i \neq x'_i \\ 1 & \text{if } F_i = do(x'_i) \text{ and } x_i = x'_i \end{cases}$$
(2)

The effect of the intervention do(x_i') is to transform the original probability function P(x₁,...,x_n) into a new probability function P(x₁,...,x_n) into a new probability function P(x₁,...,x_n) is provided by

$$P(x_1,...,x_n|\hat{x}'_i) = P'(x_1,...,x_n|F_i = do(x'_i))$$
(3)

By writing P(y|x̂) in terms of the augmented probability function P' in accordance with eq. (3) and conditioning on Z we obtain:

$$P(y|\hat{x}) = P'(y|F_x) = \sum_{z} P'(y|z,F_x)P'(z|F_x) = \sum_{z} P'(y|z,x,F_x)P'(z|F_x).$$

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

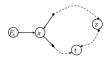
Image: A math a math

Dreaf of Theorem 1	The Back-Door Criterion ○○ ○○○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Proof of Theorem 1.	Proof of Theorem 1.				

According to the condition (i) of the definition of the back-door criterion, no node in Z is a descendant of x. So, all paths between F_x and each node z ∈ Z have (at least) a collider i.e., F_x ⊥⊥ z (see the following figure).

The Back-Door Criterion ○○ ○○○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Proof of Theorem 1.				

According to the condition (i) of the definition of the back-door criterion, no node in Z is a descendant of x. So, all paths between F_x and each node z ∈ Z have (at least) a collider i.e., F_x ⊥⊥ z (see the following figure).

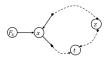


University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○○ ○○○○○	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Proof of Theorem 1.				

According to the condition (i) of the definition of the back-door criterion, no node in Z is a descendant of x. So, all paths between F_x and each node z ∈ Z have (at least) a collider i.e., F_x ⊥⊥ z (see the following figure).



• Therfore,
$$P'(z|F_x) = P'(z) = P(z)$$
.

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion ○○ ○○○○●	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000000	Example 0000
Proof of Theorem 1.				

University of South Carolina

Proof of Theorem 1.	The Back-Door Criterion ○○ ○○○○●	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000000	Example 0000
	Proof of Theorem 1.				

$$P(y|x, F_X = do(x)) = P(y|x) = P(y|x, F_X = idle)$$
(4)

Mohammad Ali Javidian, Marco Valtorta

Proof of Theorem 1.	The Back-Door Criterion ○○ ○○○○●	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000000	Example 0000
	Proof of Theorem 1.				

$$P(y|x, F_X = do(x)) = P(y|x) = P(y|x, F_X = idle)$$
(4)

According to the back-door condition (ii), Z blocks every path between X and Y that contains an arrow into X. This observation together with eq. (4) implies that Y ⊥⊥ F_x|(X, Z) i.e.,

Proof of Theorem 1.	The Back-Door Criterion ○○ ○○○○●	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000000	Example 0000
	Proof of Theorem 1.				

$$P(y|x, F_X = do(x)) = P(y|x) = P(y|x, F_X = idle)$$
(4)

According to the back-door condition (ii), Z blocks every path between X and Y that contains an arrow into X. This observation together with eq. (4) implies that Y ⊥⊥ F_x|(X, Z) i.e.,

$$P'(y|z,x,F_x) = P'(y|z,x) = P(y|z,x).$$

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

The Back-Door Criterion 00 00000	The Front-Door Criterion ●0 ○○	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Definition 2. (Front-Door)				
Outline				

- The Back-Door Criterion

 Definition 1. (Back-Door)
 Theorem 1. (Back-Door Adjustment)
 Proof of Theorem 1.

 The Front-Door Criterion
 - Definition 2. (Front-Door)
 - Theorem 2. (Front-Door Adjustment)
- 3 do Calculus
- 4 Symbolic Derivation

5 Example

The Back-Door Criterion 00 000000	The Front-Door Criterion ○● ○○	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Definition 2. (Front-Door)				

Definition

A set of variables Z satisfies the *front-door criterion* relative to an ordered pair of variables (X, Y) in a DAG G if:

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 000000	The Front-Door Criterion ○● ○○	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Definition 2. (Front-Door)				

Definition

A set of variables Z satisfies the *front-door criterion* relative to an ordered pair of variables (X, Y) in a DAG G if:

(i) Z intercepts all directed paths from X to Y;

The Back-Door Criterion	The Front-Door Criterion	do Calculus	Symbolic Derivation	Example
00 00 00000	00 00			
Definition 2. (Front-Door)				

Definition

A set of variables Z satisfies the *front-door criterion* relative to an ordered pair of variables (X, Y) in a DAG G if:

- (i) Z intercepts all directed paths from X to Y;
- (ii) there is no unblocked back-door path from X to Z; and

The Back-Door Criterion	The Front-Door Criterion	do Calculus	Symbolic Derivation	Example
00 00 00000	0 ● 00			
Definition 2. (Front-Door)				

Definition

A set of variables Z satisfies the *front-door criterion* relative to an ordered pair of variables (X, Y) in a DAG G if:

- (i) Z intercepts all directed paths from X to Y;
- (ii) there is no unblocked back-door path from X to Z; and
- (iii) all back-door paths from Z to Y are blocked by X.

The Back-Door Criterion 00 000000	The Front-Door Criterion ○● ○○	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Definition 2. (Front-Door)				

Definition

A set of variables Z satisfies the *front-door criterion* relative to an ordered pair of variables (X, Y) in a DAG G if:

- (i) Z intercepts all directed paths from X to Y;
- (ii) there is no unblocked back-door path from X to Z; and
- (iii) all back-door paths from Z to Y are blocked by X.

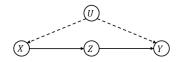


Figure: A diagram representing the front-door criterion.

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

The Back-Door Criterion	The Front-Door Criterion	do Calculus	Symbolic Derivation	Example
00 00 00000	00 ● 0			
Theorem 2. (Front-Door Adju	stment)			
Outling				

- The Back-Door Criterion

 Definition 1. (Back-Door)
 Theorem 1. (Back-Door Adjustment)
 Proof of Theorem 1.

 The Front-Door Criterion

 Definition 2. (Front-Door)
 - Theorem 2. (Front-Door Adjustment)
- 3 do Calculus

นเททธ

- 4 Symbolic Derivation
- 5 Example

The Back-Door Criterion 00 00000	The Front-Door Criterion ○○ ○●	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Theorem 2. (Front-Door Adjus	tment)			
Front-Door Cr Front-Door Adjustme				

If a set of variables Z satisfies the front-door criterion relative to (X, Y) and if P(x, z) > 0, then the causal effect of X on Y is identifiable and is given by the formula

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 000000	The Front-Door Criterion ○○ ○●	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000
Theorem 2. (Front-Door Adjust	tment)			
Front-Door Cr Front-Door Adjustme				

If a set of variables Z satisfies the front-door criterion relative to (X, Y) and if P(x, z) > 0, then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x', z) P(x').$$
 (5)

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 000000	The Front-Door Criterion 00 00	<i>do</i> Calculus ●0	Symbolic Derivation 0000000	Example 0000

Rules of do Calculus

Preliminary Notation

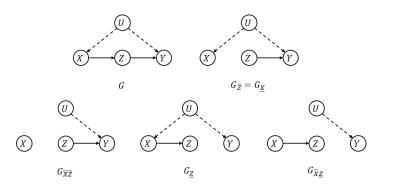


Figure: Subgraphs of G used in the derivation of causal effects.

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

Image: Image:

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus ⊙●	Symbolic Derivation 0000000	Example 0000
Inference Rule	25			

Rules of *do* Calculus

Rule 1 (Insertion/deletion of observations):

 $P(y|\hat{x}, z, w) = P(y|\hat{x}, w)$ if $(Y \perp \!\!\!\perp Z|X, W)_{G_{\overline{X}}}$.

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus ⊙●	Symbolic Derivation 0000000	Example 0000

Inference Rules Rules of *do* Calculus

Rule 1 (Insertion/deletion of observations):

 $P(y|\hat{x}, z, w) = P(y|\hat{x}, w)$ if $(Y \perp Z|X, W)_{G_{\overline{X}}}$.

Rule 2 (Action/observation exchange):

 $P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X}Z}}.$

University of South Carolina

Image: A math a math

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus ⊙●	Symbolic Derivation	Example 0000

Inference Rules Rules of *do* Calculus

Rule 1 (Insertion/deletion of observations):

 $P(y|\hat{x}, z, w) = P(y|\hat{x}, w)$ if $(Y \perp \!\!\!\perp Z|X, W)_{G_{\overline{X}}}$.

Rule 2 (Action/observation exchange):

 $P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X}Z}}.$

Rule 3 (Insertion/deletion of actions):

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp\!\!\!\perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in $G_{\overline{X}}$.

Mohammad Ali Javidian, Marco Valtorta

An Overview of The Back-Door and Front-Door Criteria

University of South Carolina

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation ●000000	Example 0000

Symbolic Derivation of Causal Effects: An Example Star 1: Compute $P(-|0\rangle)$

Step 1: Compute $P(z|\hat{x})$

• $X \perp \!\!\!\perp Z$ in G_X because the path from X to Z is blocked by the converging arrows at Y.

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion oo ooooo	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation ●000000	Example 0000

Step 1: Compute $P(z|\hat{x})$

• $X \perp \!\!\!\perp Z$ in $G_{\underline{X}}$ because the path from X to Z is blocked by the converging arrows at Y.

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 000000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation ●000000	Example 0000

• $X \perp \!\!\!\perp Z$ in $G_{\underline{X}}$ because the path from X to Z is blocked by the converging arrows at Y.

• G satisfies the applicability condition for Rule 2:

 $P(y|\hat{x},\hat{z},w)=P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp\!\!\!\perp Z|X,W)_{G_{\overline{XZ}}}.$

Image: A math a math

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation ●000000	Example 0000

• $X \perp \!\!\!\perp Z$ in $G_{\underline{X}}$ because the path from X to Z is blocked by the converging arrows at Y.

• G satisfies the applicability condition for Rule 2:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp\!\!\!\perp Z|X,W)_{G_{\overline{X}Z}}.$$

• In Rule 2, set
$$y = z, x = \emptyset, z = x, w = \emptyset$$
:

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation ●000000	Example 0000

• $X \perp \!\!\!\perp Z$ in $G_{\underline{X}}$ because the path from X to Z is blocked by the converging arrows at Y.

• G satisfies the applicability condition for Rule 2:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{XZ}}}.$$

$$P(z|\hat{x}) = P(z|x)$$
 because $(Z \perp L X)_{G_X}$.

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion oo oo ooooo	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0●00000	Example 0000

Step 2: Compute $P(y|\hat{z})$

•
$$P(y|\hat{z}) = \sum_{x} P(y|x, \hat{z}) P(x|\hat{z}).$$

・ロト・日本・日本・日本・日本・日本・日本

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

	The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation 0●00000	Example 0000
--	--	--------------------------------------	--------------------------	--------------------------------	-----------------

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x, \hat{z}) P(x|\hat{z}).$
- $X \perp \!\!\!\perp Z$ in $G_{\overline{Z}}$ because the path from X to Z is blocked by the converging arrows at Y.

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation 0●00000	Example 0000

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x, \hat{z}) P(x|\hat{z}).$
- X ⊥⊥ Z in G_Z because the path from X to Z is blocked by the converging arrows at Y.

Mohammad Ali Javidian, Marco Valtorta

An Overview of The Back-Door and Front-Door Criteria

University of South Carolina

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation 0●00000	Example 0000

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x, \hat{z}) P(x|\hat{z}).$
- X ⊥⊥ Z in G_Z because the path from X to Z is blocked by the converging arrows at Y.

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation 0●00000	Example 0000

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x, \hat{z}) P(x|\hat{z}).$
- $X \perp \!\!\!\perp Z$ in $G_{\overline{Z}}$ because the path from X to Z is blocked by the converging arrows at Y.

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w)$$
 if $(Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}$

In Rule 3, set y = x, x = ø, z = z, w = ø:

Mohammad Ali Javidian, Marco Valtorta

ৰ □ ▶ ৰ ঐ ▶ ৰ ই ▶ ৰ ই ▶ ই ≫ি ৭ ব University of South Carolina

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation 0●00000	Example 0000

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x, \hat{z}) P(x|\hat{z}).$
- $X \perp \!\!\!\perp Z$ in $G_{\overline{Z}}$ because the path from X to Z is blocked by the converging arrows at Y.

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

In Rule 3, set y = x, x = Ø, z = z, w = Ø:

$$P(x|\hat{z}) = P(x)$$
 because $(Z \perp L X)_G$

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation	Example 0000

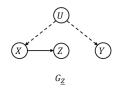
• $(Z \perp Y | X)_{G_Z}$ because the path from Z to Y is blocked by X.

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

	The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 00●0000	Example 0000
--	--	--------------------------------------	--------------------------	--------------------------------	-----------------

• $(Z \perp Y | X)_{G_Z}$ because the path from Z to Y is blocked by X.



Mohammad Ali Javidian, Marco Valtorta

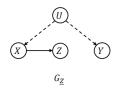
An Overview of The Back-Door and Front-Door Criteria

University of South Carolina

< 🗇 🕨

	The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 00●0000	Example 0000
--	--	--------------------------------------	--------------------------	--------------------------------	-----------------

• $(Z \perp Y | X)_{G_Z}$ because the path from Z to Y is blocked by X.



• *G* satisfies the applicability condition for Rule 2: $P(y|\hat{x}, \hat{z}, w) = P(y|\hat{x}, z, w)$ if $(Y \perp Z|X, W)_{G_{\overline{X}Z}}$.

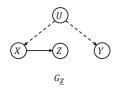
Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

< (T) >

	The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 00●0000	Example 0000
--	--	--------------------------------------	--------------------------	--------------------------------	-----------------

• $(Z \perp Y | X)_{G_Z}$ because the path from Z to Y is blocked by X.



• *G* satisfies the applicability condition for Rule 2: $P(y|\hat{x}, \hat{z}, w) = P(y|\hat{x}, z, w)$ if $(Y \perp Z|X, W)_{G_{\overline{X}Z}}$.

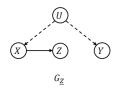
Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

< (T) >

	The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 00●0000	Example 0000
--	--	--------------------------------------	--------------------------	--------------------------------	-----------------

• $(Z \perp Y | X)_{G_Z}$ because the path from Z to Y is blocked by X.



- *G* satisfies the applicability condition for Rule 2: $P(y|\hat{x}, \hat{z}, w) = P(y|\hat{x}, z, w)$ if $(Y \perp Z|X, W)_{G_{\overline{X}Z}}$.
- In Rule 2, set y = y, x = ø, z = z, w = x:

$$P(y|x, \hat{z}) = P(y|x, z)$$
 because $(Z \perp \!\!\!\perp Y | X)_{G_Z}$.

< 🗇 🕨

The Back-Door Criterion	The Front-Door Criterion	do Calculus	Symbolic Derivation	
00 00 00000	00 00		000000	

• $P(y|\hat{z}) = \sum_{x} P(y|x, \hat{z}) P(x|\hat{z}) = \sum_{x} P(y|x, z) P(x).$

▲口> ▲圖> ▲画> ▲画> 三回 ろんの

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion	The Front-Door Criterion	do Calculus	Symbolic Derivation	
00 00 00000	00 00	00	000000	0000

•
$$P(y|\hat{z}) = \sum_{x} P(y|x, \hat{z}) P(x|\hat{z}) = \sum_{x} P(y|x, z) P(x).$$

• This formula is a special case of the back-door formula in Theorem 1.

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

The Back-Door Criterion The Front-Door Criterion do Calcul 00 00 00 00 00 00 00000 00 00	us Symbolic Derivation Example 0000€00 0000
--	--

Step 3: Compute $P(y|\hat{x})$

• $P(y|\hat{x}) = \sum_{z} P(y|z, \hat{x}) P(z|\hat{x}).$

・ロト・日本・ キャー ヨー うらの

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

	The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 0000€00	Example 0000
--	--	--------------------------------------	--------------------------	--------------------------------	-----------------

- $P(y|\hat{x}) = \sum_{z} P(y|z, \hat{x}) P(z|\hat{x}).$
- (Y ⊥⊥ Z|X)_{G_{XZ}} because there is no outgoing edge from Z and no incoming edge to X in G_{XZ}.

• • • • • • • •

The Back-Door Criterion 00 000000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation	Example 0000

- $P(y|\hat{x}) = \sum_{z} P(y|z, \hat{x}) P(z|\hat{x}).$
- (Y ⊥⊥ Z|X)_{G_{XZ}} because there is no outgoing edge from Z and no incoming edge to X in G_{XZ}.

University of South Carolina

Image: A math a math

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 000000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation	Example 0000

- $P(y|\hat{x}) = \sum_{z} P(y|z, \hat{x}) P(z|\hat{x}).$
- (Y ⊥⊥ Z|X)_{G_{XZ}} because there is no outgoing edge from Z and no incoming edge to X in G_{XZ}.

• G satisfies the applicability condition for Rule 2:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X}Z}}.$$

Mohammad Ali Javidian, Marco Valtorta

An Overview of The Back-Door and Front-Door Criteria

University of South Carolina

Image: A mathematical states and a mathem

The Back-Door Criterion 00 000000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation	Example 0000

- $P(y|\hat{x}) = \sum_{z} P(y|z, \hat{x}) P(z|\hat{x}).$
- (Y ⊥⊥ Z|X)_{G_{XZ}} because there is no outgoing edge from Z and no incoming edge to X in G_{XZ}.

• G satisfies the applicability condition for Rule 2:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X}Z}}.$$

● In Rule 2, set *y* = *y*, *x* = *x*, *z* = *z*, *w* = ∅ :

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

Image: A math a math

The Back-Door Criterion 00 000000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation	Example 0000

- $P(y|\hat{x}) = \sum_{z} P(y|z, \hat{x}) P(z|\hat{x}).$
- (Y ⊥⊥ Z|X)_{G_{XZ}} because there is no outgoing edge from Z and no incoming edge to X in G_{XZ}.

• G satisfies the applicability condition for Rule 2:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{XZ}}}.$$

In Rule 2, set y = y, x = x, z = z, w = ø :

$$P(y|z, \hat{x}) = P(y|\hat{z}, \hat{x})$$
 because $(Y \perp LZ)$

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation 00000€0	Example 0000

Step 3 (continued): Compute $P(y|\hat{x})$

(Y ⊥⊥ X | Z)_{G_{XZ}} because there is no incoming edge to X and no outgoing edge from X in G_{XZ}.

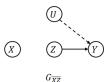
University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 00000●0	Example 0000

Step 3 (continued): Compute $P(y|\hat{x})$

(Y ⊥⊥ X | Z)_{G_{XZ}} because there is no incoming edge to X and no outgoing edge from X in G_{XZ}.



Mohammad Ali Javidian, Marco Valtorta

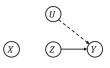
University of South Carolina

Image: A mathematical states and a mathem

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation 00000●0	Example 0000

Step 3 (continued): Compute $P(y|\hat{x})$

(Y ⊥⊥ X | Z)_{G_{XZ}} because there is no incoming edge to X and no outgoing edge from X in G_{XZ}.



 $G_{\overline{XZ}}$

• G satisfies the applicability condition for Rule 3:

 $P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$

Mohammad Ali Javidian, Marco Valtorta

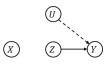
University of South Carolina

Image: A math a math

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus oo	Symbolic Derivation 00000●0	Example 0000

Step 3 (continued): Compute $P(y|\hat{x})$

(Y ⊥⊥ X | Z)_{G_{XZ}} because there is no incoming edge to X and no outgoing edge from X in G_{XZ}.



 $G_{\overline{XZ}}$

• *G* satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

• In Rule 3, set
$$y = y, x = z, z = x, w = \emptyset$$
:

Mohammad Ali Javidian, Marco Valtorta

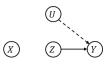
University of South Carolina

Image: Image:

The Back-Door Criterion 00 00000	The Front-Door Criterion 00 00	<i>do</i> Calculus 00	Symbolic Derivation 00000€0	Example 0000

Step 3 (continued): Compute $P(y|\hat{x})$

(Y ⊥⊥ X | Z)_{G_{XZ}} because there is no incoming edge to X and no outgoing edge from X in G_{XZ}.



 $G_{\overline{XZ}}$

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

• In Rule 3, set
$$y = y, x = z, z = x, w = \emptyset$$
:

 $P(y|\hat{z}, \hat{x}) = P(y|\hat{z})$ because $(Y \perp \!\!\!\perp Z|X)_{G_{\overline{XZ}}}$.

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

The Back-Door Criterion	The Front-Door Criterion	do Calculus	Symbolic Derivation	Example
00 00 00000	00 00		000000	

• $P(y|\hat{x}) = \sum_{z} P(y|z, \hat{x}) P(z|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x', z) P(x').$

・ロット 山戸 ・ 山川 ・ 山戸 ・ 山下 ・ 山下

Mohammad Ali Javidian, Marco Valtorta

University of South Carolina

The	Back-Door	Criterion
00		
000		

do Calculu: 00 Symbolic Derivation

Example •000

Example: Smoking and the Genotype Theory

• The tobacco industry has managed to forestall antismoking legislation by arguing that the observed correlation between smoking and lung cancer could be explained by some sort of carcinogenic genotype (U) that involves inborn craving for nicotine.

Mohammad Ali Javidian, Marco Valtorta

The	Back-Door	Criterion
00		
000		

do Calculu: 00 Symbolic Derivation

Example •000

Example: Smoking and the Genotype Theory

• The tobacco industry has managed to forestall antismoking legislation by arguing that the observed correlation between smoking and lung cancer could be explained by some sort of carcinogenic genotype (U) that involves inborn craving for nicotine.

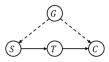


Figure: A diagram representing the story of smoking and the genotype (X=S=Smoking, Z=T=Tar, Y=C=Cancer, and U=G=Genotype (unobserved)).

Mohammad Ali Javidian, Marco Valtorta

An Overview of The Back-Door and Front-Door Criteria

University of South Carolina

< 口 > < 同 >

The	Back-Door	Criterion
00		
000		

do Calculu 00 Symbolic Derivation

Example 0000

Example: Smoking and the Genotype Theory continued

		P(x, z)	$P(Y = 1 \mid x, z)$
		Group Size	% of Cancer Cases
	Group Type	(% of Population)	in Group
$\overline{X=0, Z=0}$	Nonsmokers, No tar	47.5	10
X = 1, Z = 0	Smokers, No tar	2.5	90
X = 0, Z = 1	Nonsmokers, Tar	2.5	5
X = 1, Z = 1	Smokers, Tar	47.5	85

A hypothetical data set: 95% of smokers and 5% of nonsmokers have developed high levels of tar in their lungs. Moreover,

81% of subjects with tar deposits have developed lung cancer, compared to only 14% among those with no tar deposits.

University of South Carolina

Image: A mathematical states and a mathem

Mohammad Ali Javidian, Marco Valtorta

The	Back-Door	Criterion
00		
000		

do Calculu 00 Symbolic Derivation

Example 0000

Example: Smoking and the Genotype Theory continued

		P(x, z)	$P(Y=1 \mid x, z)$
		Group Size	% of Cancer Cases
	Group Type	(% of Population)	in Group
$\overline{X=0, Z=0}$	Nonsmokers, No tar	47.5	10
X = 1, Z = 0	Smokers, No tar	2.5	90
X = 0, Z = 1	Nonsmokers, Tar	2.5	5
X = 1, Z = 1	Smokers, Tar	47.5	85

A hypothetical data set: 95% of smokers and 5% of nonsmokers have developed high levels of tar in their lungs. Moreover,

81% of subjects with tar deposits have developed lung cancer, compared to only 14% among those with no tar deposits.

These results seem to prove that smoking is a major contributor to lung cancer. However, the tobacco industry might argue that the table tells a different story that smoking actually decreases ones risk of lung cancer. Their argument goes as follows. If you decide to smoke, then your chances of building up tar deposits are 95%, compared to 5% if you decide not to smoke. In order to evaluate the effect of tar deposits, we look separately at two groups, smokers and nonsmokers. The table shows that tar deposits have a protective effect in both groups: in smokers, tar deposits lower cancer rates from 90% to 85%; in nonsmokers, they lower cancer rates from 10% to 5%. Thus, regardless of whether I have a natural craving for nicotine, I should be seeking the protective effect of tar deposits in my lungs, and smoking offers a very effective means of acquiring those deposits.

Image: A math a math

The	Back-Door	Criterion
00		
000		

do Calculu 00 Symbolic Derivation

Example 00●0

Example: Smoking and the Genotype Theory continued

To settle the dispute between the two interpretations, we now apply the front-door formula (eq. (5)) to the data in the Table of the previous slide:

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ● ● ● ●

Mohammad Ali Javidian, Marco Valtorta

An Overview of The Back-Door and Front-Door Criteria

University of South Carolina

The	Back-Door	Criterion
00		
000		

do Calculu 00 Symbolic Derivation

Example 00●0

Example: Smoking and the Genotype Theory continued

To settle the dispute between the two interpretations, we now apply the front-door formula (eq. (5)) to the data in the Table of the previous slide:

$$P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x',z) P(x').$$

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The Back-Door Criterion	The Front-Door Criterion	do Calculus	Symbolic Derivation	Example
				0000
00	00			

Example: Smoking and the Genotype Theory continued

To settle the dispute between the two interpretations, we now apply the front-door formula (eq. (5)) to the data in the Table of the previous slide:

$$P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x',z) P(x').$$

$$P(Y = 1 | do(X = 1)) = .05(.10 \times .50 + .90 \times .50)$$

+.95(.05 × .50 + .85 × .50)
= .05 × .50 + .95 × .45 = .4525,
$$P(Y = 1 | do(X = 0)) = .95(.10 \times .50 + .90 \times .50)$$

+.05(.05 × .50 + .85 × .50)
= .95 × .50 + .05 × .45 = .4975.

- * ロ > * 個 > * 目 > * 目 > - 目 - つ < @

University of South Carolina

Mohammad Ali Javidian, Marco Valtorta

The	Back-Door	Criterion
00		
000		

Example 0000

Reference For Further Reading

🛸 J. Pearl.

Causality. Models, reasoning, and inference. Cambridge University Press, 2009.

J. Pearl.

Comment: Graphical Models, Causality and Intervention. Statistical Science, 8(3):266–269, 1993.

Mohammad Ali Javidian, Marco Valtorta

An Overview of The Back-Door and Front-Door Criteria

University of South Carolina