
CSCE274 Robotic Applications and Design
Fall 2021

Control Architectures Overview

Ioannis REKLEITIS, Ibrahim SALMAN
Computer Science and Engineering

University of South Carolina
yiannisr@cse.sc.edu

mailto:yiannisr@cse.sc.edu

• A robot control architecture (or paradigm) is
the set of principles, building blocks, and tools
for designing robots

• It provides guiding principles and constraints
for organizing robot’s control system

Control architecture

11/23/21 CSCE274 - I. REKLEITIS 2

• Deliberative control
– Top-down approach: sense-plan-act
– Starts with high level goals that are

decomposed in subtasks
• Reactive control
– Bottom-up approach
– Independent modules run concurrently

monitoring sensor data and triggering
actions accordingly

• Hybrid control
– Deliberative at high level, reactive at low

level

Control architectures

11/23/21 CSCE274 - I. REKLEITIS 3

Sense

PlanAct

Sense Act

Sense Act

Plan

• Behavior-based control is usually considered
in literature a type of reactive control
architecture
– Different behaviors to achieve a goal

Control architectures

11/23/21 CSCE274 - I. REKLEITIS 4

• Each architecture differs in how they consider
different dimensions
– Time-scale: long time-scale vs. real-time
– Modularity: sequential vs. parallel
– Representation of the world
• Consider past or discard information
• Discrete vs. continuous

Dimensions

11/23/21 CSCE274 - I. REKLEITIS 5

• According to the different dimensions, each
architecture solves control problems at different
levels
– High level: discrete problem, long time scale

• E.g., pick bottle of water from the fridge
– Intermediate level: continuous or discrete problem,

time scale of few seconds
• E.g., navigate to the fridge

– Low level: continuous-valued problems, short time
scale
• E.g., where the robot should place the leg at the next step

Levels of control problem

11/23/21 CSCE274 - I. REKLEITIS 6

Spectrum of control

11/23/21 CSCE274 - I. REKLEITIS 7
Source: [Arkin, 1998, MIT Press]

• The robot in a deliberative control
architecture (also called Sense-Plan-Act
architecture)
1. Plans a solution for the task by reasoning about

the sensed world and the outcome of its actions
2. Executes it

Deliberative architecture

11/23/21 CSCE274 - I. REKLEITIS

Sense

PlanAct

• “Planning is the process of looking ahead at the
outcomes of possible actions, and searching for the
sequence of actions that will reach the desired goal”
Mataric, “The Robotics Primer”

• “Planning can be interpreted as a kind of problem
solving, where an agent uses its beliefs about available
actions and their consequences, in order to identify a
solution over an abstract set of possible plans”
Russel and Norvig, “Artificial Intelligence, a modern
approach”

Planning

11/23/21 CSCE274 - I. REKLEITIS

Planning view

11/23/21 CSCE274 - I. REKLEITIS

World

Robot

ActionsSense

Static vs. Dynamic
Predictable vs. Unpredictable

Fully vs. Partially
Observable

Perfect vs. Noisy

Deterministic vs. Stochastic

Instantaneous vs. Durative
What
action
next?

Classical Planning view

11/23/21 CSCE274 - I. REKLEITIS

World

Robot

ActionsSense

Static
Predictable

Fully Observable

Perfect

Deterministic

Instantaneous
What
action
next?

• Search in discrete state spaces can be casted as a
planning problem that can be defined by five
components
– Initial state, where the robot starts from
– Actions, which can be performed by the robot
– Transition model, given the current state and the

action returns the new state
– Goal test, to determine whether a state is a goal state
– Path cost

• The solution is a plan/path, namely a sequence of
actions from the initial state to the goal state

Solving planning problems by
searching

11/23/21 CSCE274 - I. REKLEITIS

• A planning
problem can be
casted as a graph
search
– Each state is a

node in the graph
– Each state-action

pair is an edge in
the graph

Solving planning problems by
searching

11/23/21 CSCE274 - I. REKLEITIS

Source: artint.info

• Classic planning algorithms search in the state space
systematically

• A search algorithm can be evaluated according to:
– Completeness: does the algorithm guarantee to find a

solution if it exists?
– Optimality: is the solution found optimal, according to

optimality criterion/a?
– Time complexity: computational time to find the solution
– Space complexity: memory needed to perform the search

Problem-solving performance

11/23/21 CSCE274 - I. REKLEITIS

• Several search algorithms follows the
following pattern

Basic tree-search algorithm

11/23/21 CSCE274 - I. REKLEITIS

Source: [Russell and Norvig, 2016, Prentice Hall]

• Breadth first search: expands nodes at the
same depth from the initial state before going
deeper

• Depth first search: expands the deepest
unexpanded node

• …

Uninformed search

11/23/21 CSCE274 - I. REKLEITIS

• Expansion of states can be performed by using
– the cost g(x) to get to a node x from the initial

state
– a heuristic function h(x) that predicts the cost

from a state x to the goal

Informed search

11/23/21 CSCE274 - I. REKLEITIS

• Dijkstra’s algorithm: the best node is selected
according to the cost to get to the node

• Greedy best first search: the best node is selected
according to a heuristic

• A*: expands node with minimal cost including a
heuristic

• …

Informed search

11/23/21 CSCE274 - I. REKLEITIS

• Initial state: cell in red
• Action: up, down, left,

right, diagonal
left/right up/down

• Transition model:
given a cell and an
action, new neighbor
cell (only if in free
space)

• Goal test: is state in
target (green)?

• Path cost: each step
costs 1 or sqrt(2)
depending on the
action

Example: path planning

11/23/21 CSCE274 - I. REKLEITIS
Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A

• BFS

Example: path planning

11/23/21 CSCE274 - I. REKLEITIS
Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A

• DFS

Example: path planning

11/23/21 CSCE274 - I. REKLEITIS
Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A

• Dijkstra

Example: path planning

11/23/21 CSCE274 - I. REKLEITIS
Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A

• Greedy

Example: path planning

11/23/21 CSCE274 - I. REKLEITIS
Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A

• A*

Example: path planning

11/23/21 CSCE274 - I. REKLEITIS
Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A

• If repeated states are not detected, a linear
problem could become exponential

• The main idea is to keep track of expanded
states

Graph search

11/23/21 CSCE274 - I. REKLEITIS

Source: [Russell and Norvig, 2016, Prentice Hall]

• Search space could be too big in some
practical problems

• Sampling-based search algorithms select only
some states
– Randomly
– Informed

Sampling-based search

11/23/21 CSCE274 - I. REKLEITIS

• Local search
algorithms operate
using a single current
node and not storing
paths

• Usually they are not
guaranteed to be
optimal and they
suffer of the problem
of local minima

Local search

11/23/21 CSCE274 - I. REKLEITIS

Source: [Russell and Norvig, 2016, Prentice Hall]

• AI Symbolic approaches used to solve plans

Logic based planning

11/23/21 CSCE274 - I. REKLEITIS

Source: cs.cmu.edu/afs/cs/project/jair/pub/volume15/ambite01a-html/node7.html

• An online search problem requires that a
robot executes the action

Online search

11/23/21 CSCE274 - I. REKLEITIS

• Different
planning views
which involve
different set of
techniques

• E.g., Stochastic
planning

Planning views

11/23/21 CSCE274 - I. REKLEITIS

Robot

World

ActionsSense

Static
Unpredictable

Fully Observable
Perfect

Stochastic

Instantaneous
What
action
next?

• Drawbacks:
– Time-scale: long time to search for a plan
– Space: large memory can be occupied to calculate

a plan
– Information: world information should be updated

Deliberative architecture

11/23/21 CSCE274 - I. REKLEITIS

Examples – Path planning

11/23/21 CSCE274 - I. REKLEITIS

• Finding a path on an occupancy grid

Source: clearpathrobotics.com

Examples – Exploration

11/23/21 CSCE274 - I. REKLEITIS

• Explore environment to build its map

Source: [Quattrini Li et al., 2012, AAAI]

Examples – Puzzle

11/23/21 CSCE274 - I. REKLEITIS

• Finding a way to pull this bars apart

Source: planning.cs.uiuc.edu

Examples – Assembly

11/23/21 CSCE274 - I. REKLEITIS

• Sealing cracks in automotive assembly

Source: planning.cs.uiuc.edu

• Reactive control architecture, differently from
deliberative control architecture, is
characterized by
– A lack of representation
– Not looking ahead at the possible outcomes
– Responding only to sensors readings

• It should be multitasking to monitor different
sensors

Reactive control architecture

11/23/21 CSCE274 - I. REKLEITIS

• A table that maps observation and actions can
be used to describe reactive controllers

• E.g., a robot equipped with bumpers

Table format

11/23/21 CSCE274 - I. REKLEITIS

Observation Action

No bumps Drive forward

Left bump only Turn right

Right bump only Turn left

Both bumps Turn left

• Reactive controllers can be represented also
with a state machine as directed graph
– Each vertex is a state labeled with the behavior
– Each edge shows the transition from one state to

another

State machine

11/23/21 CSCE274 - I. REKLEITIS

Drive
forward

Turn
Left

Turn
Right

Right bump
only/both bumps

No bump
No bump

Left bump
only

Righ
t b

ump

only/
both

 bumps

Le
ft

bump
onlyNote that there is

an Init state that
corresponds to
when the robot is
initialized.

• In case of sensors that return continuous values, it is
unfeasible to represent every single value

• Some states should be defined taking into account intervals
of values

• E.g., Robot with two sonar sensors, each of them at 45° wrt
the motion direction of the robot

How to define situations/states

11/23/21 CSCE274 - I. REKLEITIS

Observation Action

Safe zone Drive forward

Danger-zone left sonar only Turn right

Danger-zone right sonar only Turn left

Both bumps Turn left

• A way to organize a reactive controller is by
following the subsumption architecture
introduced by Prof. Rodney Brooks at MIT in
1985

• Subsumption consists of a collection of
modules, each of which achieves a task
– The design is bottom-up, from simpler to more

complex

Subsumption architecture

11/23/21 CSCE274 - I. REKLEITIS

• Some situations could lead robot to oscillate
between two actions

• To solve the problem
– Include some randomness
– Keep a bit of history

Limitations with reactive control
architectures

11/23/21 CSCE274 - I. REKLEITIS

• Hybrid control architecture combines both
deliberative and reactive control

• Hierarchical organization for the two control
architectures
– Deliberative control architecture in charge of

planning some abstract actions
– Reactive control architecture in charge of

executing an abstract action

Hybrid control architecture

CSCE274 - I. Rekleitis

• A middle layer is necessary for linking the
deliberative and reactive controls

Three layer architectures

CSCE274 - I. Rekleitis

Planning layer

Middle layer

Reactive layerSensors
input

Actuators
output

• Replanning could happen
– If deliberative layer finds a better plan
– if reactive layer cannot proceed

• Plans could be generated online, as the
reactive layer executes one abstract action

Three layer architectures

CSCE274 - I. Rekleitis

• Drawbacks include:
– Middle layer hard to design and implement as it is

usually special-purpose
– Control can degenerate and the effectiveness of

both could be minimal

Hybrid control drawbacks

CSCE274 - I. Rekleitis

• Behavior-based control architectures are
extension of reactive control architectures

• It uses “behaviors” as modules for control

• A behavior
– Achieves and/or maintain particular goals
– Is time-extended, not instantaneous
– Can talk to other behavior modules

Behavior-based control architecture

CSCE274 - I. Rekleitis

• Behaviors are typically executed in parallel

• Behaviors are operating on compatible time-
scales

• Networks of behaviors are used to store state
and to construct world
models/representations

Behavior-based control architecture

CSCE274 - I. Rekleitis

Behavior-based control architecture

CSCE274 - I. Rekleitis

• Activation conditions allow behavior to
generate actions

• Actions are generated from stimuli

Source: [Mataric and Michaud, 2008, Springer]

• Behavior-based control can be viewed as a generalization of the
subsumption architecture

• Each behavior can be designed at different level of abstraction

Behavior-based control architecture

CSCE274 - I. Rekleitis
Source: robotics.usc.edu/~boyoon/rba.html

• Toto Robot (around 1990)
– 12 sonars
– compass

Example: distributed mapping

CSCE274 - I. Rekleitis
Source: [Mataric, 2007, MIT Press]

Example: distributed mapping

CSCE274 - I. Rekleitis

• Control diagram

Source: [Mataric, 2007, MIT Press]

Example: distributed mapping

CSCE274 - I. Rekleitis

• Representation

Source: [Mataric, 2007, MIT Press]

Example: distributed mapping

CSCE274 - I. Rekleitis

• Path
planning

Source: [Mataric, 2007, MIT Press]

• When more than one behavior is available,
behavior coordination should be defined so
that the robot knows what to do

Behavior coordination

CSCE274 - I. Rekleitis

• Arbitration process selects one action or
behavior from multiple possible candidates
– Fixed priority hierarchy
– Dynamic hierarchy

• It is a competitive method

• It is used at higher level (e.g., high-level
behaviors)

Arbitration

CSCE274 - I. Rekleitis

• Behavior fusion is the process of combining
multiple possible candidates actions or
behaviors into a single output action/behavior

• It is a cooperative method

• Used at lower level (e.g., velocities)

Fusion

CSCE274 - I. Rekleitis

• Behaviors can store
a representation of
the world by
utilizing a
distributed network
of behaviors

• It has learning
capabilities

Behavior-based vs reactive

CSCE274 - I. Rekleitis

• Reactive control
architecture does
not use any
representation of
the world

• It does not have
learning capabilities

• Usually multirobot
• Layers do not

drastically differ in
timescale

Behavior-based vs hybrid

CSCE274 - I. Rekleitis

• Usually single robot
• Layers drastically

differ in timescale

• Organized in layers
• Both look ahead

• Emergent behavior is structured, patterned, or
meaningful behavior that is apparent from an
observer’s viewpoint, but not from controller’s
viewpoint

• Some emergent behaviors could be desirable
and good, while some others could be bad

Emergent behavior

CSCE274 - I. Rekleitis

Flocking behavior

• Flocking motion, a collective motion of a large
number of entities, is an example of emergent
behavior
– Robots move as a group using only local

information

CSCE274 - I. Rekleitis

Source: red3d.com/cwr/boids/

Separation: steer to
avoid local mates

Alignment: steer
towards average
heading

Cohesion: steer to
move toward the
average position of
local mates

Flocking behavior

CSCE274 - I. Rekleitis
Source: youtube.com/watch?v=QbUPfMXXQIY

