A%

-\
%A N

N4
il
UNIVERSITY OF

SOUTH CAROLINA

CSCE274 Robotic Applications and Design
Fall 2021
Control Architectures Overview

loannis REKLEITIS, Ibrahim SALMAN
Computer Science and Engineering

University of South Carolina
viannisr@cse.sc.edu

mailto:yiannisr@cse.sc.edu

Control architecture

* A robot control architecture (or paradigm) is
the set of principles, building blocks, and tools
for designing robots

* |t provides guiding principles and constraints
for organizing robot’s control system

Control architectures

* Deliberative control
— Top-down approach: sense-plan-act

— Starts with high level goals that are
decomposed in subtasks

* Reactive control
— Bottom-up approach =

— Independent modules run concurrently

monitoring sensor data and triggering
actions accordingly e

e Hybrid control

— Deliberative at high level, reactive at low
level

S~

11/23/21 CSCE274 - I. REKLEITIS 3

Control architectures

* Behavior-based control is usually considered
in literature a type of reactive control
architecture

— Different behaviors to achieve a goal

11/23/21 CSCE274 - I. REKLEITIS

Dimensions

* Each architecture differs in how they consider
different dimensions
— Time-scale: long time-scale vs. real-time
— Modularity: sequential vs. parallel
— Representation of the world

* Consider past or discard information

* Discrete vs. continuous

Levels of control problem

* According to the different dimensions, each
architecture solves control problems at different
levels

— High level: discrete problem, long time scale
* E.g., pick bottle of water from the fridge
— Intermediate level: continuous or discrete problem,
time scale of few seconds
* E.g., navigate to the fridge
— Low level: continuous-valued problems, short time
scale
* E.g., where the robot should place the leg at the next step

Spectrum of control

DELIBERATIVE REACTIVE

-

Purely Symbolic Reflexive

SPEED OF RESPONSE

-

PREDICTIVE CAPABILITIES

-

PEPENDENCE ON ACCURATE, COMPLETE WORLD MODELS

Representation-dependent
Slower response

High-level intelligence {cognitive)
VYariable latency

Representation-free
Real-time response
Low-level intelligence
Simple computation

Source: [Arkin, 1998, MIT Press]
11/23/21 CSCE274 - |. REKLEITIS

Deliberative architecture

 The robot in a deliberative control
architecture (also called Sense-Plan-Act
architecture)

1. Plans a solution for the task by reasoning about
the sensed world and the outcome of its actions

2. Executes it
< —

11/23/21 CSCE274 - I. REKLEITIS

Planning

* “Planning is the process of looking ahead at the
outcomes of possible actions, and searching for the
sequence of actions that will reach the desired goal”

Mataric, “The Robotics Primer”

* “Planning can be interpreted as a kind of problem
solving, where an agent uses its beliefs about available
actions and their consequences, in order to identify a
solution over an abstract set of possible plans”

Russel and Norvig, “Artificial Intelligence, a modern
approach”

Fully vs. Partially
Observable

Perfect vs. Noisy

11/23/21

Planning view

Static vs. Dynamic
Predictable vs. Unpredictable

World

What
action
next?

Actions

Robot
CSCE274 - 1. REKLEITIS

Deterministic vs. Stochastic

Instantaneous vs. Durative

Fully Observable

Perfect

11/23/21

Classical Planning view

Static
Predictable

World

What
action
next?

Sense

Actions

Robot
CSCE274 - 1. REKLEITIS

Deterministic

Instantaneous

Solving planning problems by

searching

e Search in discrete state spaces can be casted as a
planning problem that can be defined by five
components
— Initial state, where the robot starts from
— Actions, which can be performed by the robot

— Transition model, given the current state and the
action returns the new state

— Goal test, to determine whether a state is a goal state
— Path cost

* The solution is a plan/path, namely a sequence of
actions from the initial state to the goal state

Solving planning problems by

searching
o A o lannin g {ends of\

| paths on —
frontier | ‘

frogtier | (> (Y
problem can be . ,. ,.ﬂA oA
casted as a graph B s S N NG
search ¢ $ *.*‘;(»,, y ©

: explored nodes IV \ TN C) / AI 'S]_H)_l
— Each state is a plored nod 3 N
node in the grap h ‘*

— Each state-action A * * o0

pair is an edge in ‘ ‘ 55 0
the graph . ‘

Source: artint.info

11/23/21 CSCE274 - I. REKLEITIS

Problem-solving performance

e Classic planning algorithms search in the state space
systematically

e A search algorithm can be evaluated according to:

— Completeness: does the algorithm guarantee to find a
solution if it exists?

— Optimality: is the solution found optimal, according to
optimality criterion/a?

— Time complexity: computational time to find the solution
— Space complexity: memory needed to perform the search

11/23/21 CSCE274 - I. REKLEITIS

Basic tree-search algorithm

* Several search algorithms follows the
following pattern

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Source: [Russell and Norvig, 2016, Prentice Hall]

11/23/21 CSCE274 - I. REKLEITIS

Uninformed search

* Breadth first search: expands nodes at the
same depth from the initial state before going

deeper

* Depth first search: expands the deepest
unexpanded node

Informed search

* Expansion of states can be performed by using

— the cost g(x) to get to a node x from the initial
state

— a heuristic function A(x) that predicts the cost
from a state x to the goal

Informed search

Dijkstra’s algorithm: the best node is selected
according to the cost to get to the node

Greedy best first search: the best node is selected
according to a heuristic

A*: expands node with minimal cost including a
heuristic

Example: path planning

Initial state: cell in red

(%] Maze 5.0

= X

ACtIOI’] Up, dOWh, |eft, # of rows (5-83):@5
rlght, dlagonal # of columns (5-83): |20
left/right up/down [owes |
Transition model: | Maze |
given a cell and an | o |
action, new neighbor [e i |
cell (only if in free : ST”""S‘” ;
nimation
space)
Goal test: is state in T
target (green)? ObFs @ ers
Path cost: each step S
costs 1 or sqrt(2) S t
. v | Diagonal movements
dependlng On the [v] Arrows to predecessors
action
Robot
Frontier
"Paint" obstacles, then click 'Real-Time' or 'Step-by-Step' or 'Animation’ l About Maze \

Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A
11/23/21 CSCE274 - 1. REKLEITIS

Example: path planning

Y B F S (%] Maze 5.0 — x

| # of rows (5-83): |20

Algorithms

& &

Robot
Frontier

Nodes expanded: 320, Steps: 18, Distance: 23.385 | About Maze [

Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A
11/23/21 CSCE274 - 1. REKLEITIS

Example: path planning

X

- [# of rows (5-83): ?
of columns (5-83): Z—,

New grid

D F S (& Maze 50

Clear

|
’ Maze
|
|

Real-Time

Speed
'

r Algorithms

Robot
Frontier

Nodes expanded: 181, Steps: 140, Distance: 146.213 { About Maze]

Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A
11/23/21 CSCE274 - 1. REKLEITIS

Example: path planning

* Dijkstra

11/23/21

(%] Maze 5.0

= X

Nodes expanded: 321, Steps: 18, Distance: 20.899

of rows (5-83): |20

Algorithms

& &

Robot
Frontier

l About Maze]

Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A

CSCE274 - I. REKLEITIS

Example: path planning

* Greedy

11/23/21

(%] Maze 5.0

Nodes expanded: 35, Steps: 20, Distance: 25.385

of rows (5-83): |20

of columns (5-83): | 20

Real-Time

____EE X

|
|
|
|

Speed
'

Algorithms

& &

Robot
Frontier

About Maze

|

Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A

CSCE274 - I. REKLEITIS

Example: path planning

o A * (%] Maze 5.0 _ X

of rows (5-83): |20

Vi . Speed
W)
Algorithms

7 (N T o A

b s T e

Robot
Frontier

Nodes expanded: 106, Steps: 18, Distance: 20.899 | About Maze [

Source: youtube.com/channel/UCmW8X0UX8U4VqO2MfjovY-A
11/23/21 CSCE274 - 1. REKLEITIS

Graph search

* |f repeated states are not detected, a linear
problem could become exponential

* The main idea is to keep track of expanded
states

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier 1s empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Source: [Russell and Norvig, 2016, Prentice Hall]
11/23/21 CSCE274 - |. REKLEITIS

Sampling-based search

e Search space could be too big in some
practical problems

e Sampling-based search algorithms select only
some states

— Randomly

— Informed

11/23/21 CSCE274 - I. REKLEITIS

Local search

* Local search
algorithms operate
using a single current
node and not storing
paths

e Usually they are not
guaranteed to be
optimal and they
suffer of the problem
of local minima

11/23/21

objccti\‘ihnttion

global maxirmm

/

shoulder

N

local maximom

e

“flat" local maximom

state space
coment

state

Source: [Russell and Norvig, 2016, Prentice Hall]

CSCE274 - I. REKLEITIS

Logic based planning

* Al Symbolic approaches used to solve plans

clear(B) —m= Causal Link
— —¥> O dering Constiaint
aniA Table) ----»- Side Effect qan(A Tabls)
jomGAu clear(A) R ':I.Sleal(B]
4 UNSTACK(C A »> 3 STACK(A B Table)
an(C A) on(C Table) “f"|oms Table) -
lnr(C) 2 STACK(B CTable) o> ckear(C)
D Table) il on(@)
e OO, ! claariC) - an(C D)
D: e 1 STACK(C D Table) - = GOAL
e oA cleariD)
claar(B) clear (D) TloniC Tableu A
an(B D)
B
anlB Table)
5 UNSTACK(B D) = © ® \ ©
TeniB D) A D = D
cleariB) cleariC)
Initial State Goal State

Source: cs.cmu.edu/afs/cs/project/jair/pub/volumel5/ambite0la-html/node7.html

11/23/21 CSCE274 - I. REKLEITIS

Online search

* An online search problem requires that a
robot executes the action

P H

‘eps r;_."‘? |

11/23/21 CSCE274 - I. REKLEITIS

* Different
planning views
which involve
different set of
techniques

* E.g., Stochastic
planning

11/23/21

Planning views

Static
Unpredictable

Sense

Fully Observable
Perfect

CSCE274 - I. REKLEITIS

What
action
next?

Actions

Stochastic

Instantaneous

Deliberative architecture

* Drawbacks:
— Time-scale: long time to search for a plan

— Space: large memory can be occupied to calculate
a plan

— Information: world information should be updated

11/23/21 CSCE274 - I. REKLEITIS

Examples — Path planning

* Finding a path on an occupancy grid

FocusCamera = Measure 2DPoseEstimate < 2DNavGoal @ PublishPoint & =,

¢y Interact | %% Move Camera] Select
I3 pisplays x »@ Views X
» & Global Options
v Global status: Ok
@ Grid
» #hy, RobotModel
>) Axes
> ~. LaserScan
> ~ Path
» /~ Path
» F2 Map
» / Pose
> & InteractiveMar...
» wl Polygon
> FTF
» % PoseArray

Type: | TopDownOrtho = Zero

v Current View TopDownOrtho ...
Near Clip.... 0.01
Target Fra... <Fixed Frame>
Scale 69.1327
Angle 1.5708
X -0.686376
Y -0.0299684

NeeeQ

il |

RobotModel

Displays a visual representation of a robot in
the correct pose (as defined by the current TF
transforms). More Information.

Add Remove Rename save Remove || Rename
© Time 0
ROS Time: |1776.17 ROS Elapsed: |237.50 Wall Time: [1447175088.24 | Wall Elapsed: [358.95 Experimental

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click: Zoom. Shift: More options. 30fps

Source: clearpathrobotics.com

11/23/21 CSCE274 - I. REKLEITIS

Examples — Exploration

* Explore environment to build its map

Source: [Quattrini Li et al., 2012, AAAI]

11/23/21 CSCE274 - |. REKLEITIS

Examples — Puzzle

* Finding a way to pull this bars apart

)

Source: planning.cs.uiuc.edu

11/23/21 CSCE274 - I. REKLEITIS

Examples — Assembly

* Sealing cracks in automotive assembly

Source: planning.cs.uiuc.edu

11/23/21 CSCE274 - I. REKLEITIS

Reactive control architecture

* Reactive control architecture, differently from
deliberative control architecture, is
characterized by

— A lack of representation
— Not looking ahead at the possible outcomes
— Responding only to sensors readings

* |t should be multitasking to monitor different
SEeNsors

Table format

* A table that maps observation and actions can
be used to describe reactive controllers

* E.g., a robot equipped with bumpers

Observation ________|Adion
No bumps Drive forward

Left bump only Turn right

Right bump only Turn left

Both bumps Turn left

11/23/21 CSCE274 - I. REKLEITIS

State machine

e Reactive controllers can be represented also
with a state machine as directed graph
— Each vertex is a state labeled with the behavior

— Each edge shows the transition from one state to

another Right bump
only/both bumps

Note that there is
an Init state that
corresponds to
when the robot is
initialized.

How to define situations/states

* |n case of sensors that return continuous values, it is
unfeasible to represent every single value

* Some states should be defined taking into account intervals
of values

* E.g., Robot with two sonar sensors, each of them at 45° wrt
the motion direction of the robot

Observation _______JAdion
Safe zone Drive forward

Danger-zone left sonar only Turn right

Danger-zone right sonar only Turn left

Both bumps Turn left

11/23/21 CSCE274 - I. REKLEITIS

Subsumption architecture

* A way to organize a reactive controller is by
following the subsumption architecture
introduced by Prof. Rodney Brooks at MIT in
1985

e Subsumption consists of a collection of
modules, each of which achieves a task

— The design is bottom-up, from simpler to more
complex

Limitations with reactive control

architectures

e Some situations could lead robot to oscillate
between two actions

* To solve the problem
— Include some randomness
— Keep a bit of history

11/23/21 CSCE274 - I. REKLEITIS

Hybrid control architecture

* Hybrid control architecture combines both
deliberative and reactive control

* Hierarchical organization for the two control
architectures

— Deliberative control architecture in charge of
planning some abstract actions

— Reactive control architecture in charge of
executing an abstract action

Three layer architectures

A middle layer is necessary for linking the
deliberative and reactive controls

Sensors
input

Planning layer

Middle layer

Reactive layer Actuators

output

CSCE274 - I. Rekleitis

Three layer architectures

* Replanning could happen
— If deliberative layer finds a better plan

— if reactive layer cannot proceed

* Plans could be generated online, as the
reactive layer executes one abstract action

CSCE274 - 1. Rekleitis

Hybrid control drawbacks

Drawbacks include:

— Middle layer hard to design and implement as it is
usually special-purpose

— Control can degenerate and the effectiveness of
both could be minimal

CSCE274 - 1. Rekleitis

Behavior-based control architecture

e Behavior-based control architectures are
extension of reactive control architectures

e |t uses “behaviors” as modules for control

* A behavior
— Achieves and/or maintain particular goals
— |Is time-extended, not instantaneous
— Can talk to other behavior modules

Behavior-based control architecture

* Behaviors are typically executed in parallel

* Behaviors are operating on compatible time-
scales

e Networks of behaviors are used to store state
and to construct world
models/representations

CSCE274 - 1. Rekleitis

Behavior-based control architecture

e Activation conditions allow behavior to
generate actions

* Actions are generated from stimuli

Activation conditions
> Behavior n >
Stimuli Process Action
Activation conditions Action
- Bt oah _| selection
Stimuli Process Action
Activation conditions
Sensing/ S Bebiidard ~ Commands
perception
Stimuli Process Action

Source: [Mataric and Michaud, 2008, Springer]

CSCE274 - 1. Rekleitis

Behavior-based control architecture

Behavior-based control can be viewed as a generalization of the

subsumption architecture

Each behavior can be designed at different level of abstraction

Monitoring

Actuation

_’C' Ethernet (UDP)

ObstacleAvoidance

1 n
I Laserbeacon)—'—’
RobotLocalization
. — (Path Planner)
| Vision);
: ColorBlobTracker
| Laser :!
5 I RobotDispersion
: RobotMo
] < andonWandering/
. > 1Following/
—p getFollwing/
Sonar . pPotAppro q/
TurningAround 1)

I

oooooooooooo
(Sum/Min/Max/0One)

Source: robotics.usc.edu/~boyoon/rba.html

CSCE274 - I. Rekleitis

Example: distributed mapping

* Toto Robot (around 1990)

— 12 sonars

— COMpPass

Source: [Mataric, 2007, MIT Press]
CSCE274 - I. Rekleitis

Example: distributed mapping

* Control diagram

Landmark Detection

Landmark Detection

Sams ory _ P Actuators
Inputs Fiﬁosﬁa”n';dar’

free
ing

Source: [Mataric, 2007, MIT Press]
CSCE274 - I. Rekleitis

Example: distributed mapping

* Representation

Left Wall
LW4

Left Wall
LWO

Left Wall
Corridor LWs8

C4

Left Wall
LWé

Corridor

Co -
/_eft YA
LW10

Corridor
Start Cl3

Source: [Mataric, 2007, MIT Press]
CSCE274 - I. Rekleitis

Example: distributed mapping

o Pa t h Le{tvaall
planning _— .,

LWs8
C4 Left Wall
LWé

Left Wall

Source: [Mataric, 2007, MIT Press]
CSCE274 - I. Rekleitis

Behavior coordination

* When more than one behavior is available,
behavior coordination should be defined so
that the robot knows what to do

CSCE274 - 1. Rekleitis

Arbitration

* Arbitration process selects one action or
behavior from multiple possible candidates

— Fixed priority hierarchy
— Dynamic hierarchy

* |tis a competitive method

* |tis used at higher level (e.g., high-level
behaviors)

Fusion

* Behavior fusion is the process of combining
multiple possible candidates actions or

behaviors into a single output action/behavior

* |tis a cooperative method

* Used at lower level (e.g., velocities)

Behavior-based vs reactive

* Behaviors can store ¢ Reactive control
a representation of architecture does

the world by not use any
utilizing a representation of
distributed network the world
of behaviors * |t does not have
* |t has learning learning capabilities

capabilities

Behavior-based vs hybrid

e Usually multirobot ¢ Usually single robot

* Layers do not * Layers drastically
drastically differ in differ in timescale
timescale

* Organized in layers
* Both look ahead

CSCE274 - 1. Rekleitis

Emergent behavior

 Emergent behavior is structured, patterned, or
meaningful behavior that is apparent from an
observer’s viewpoint, but not from controller’s

viewpoint

* Some emergent behaviors could be desirable
and good, while some others could be bad

Flocking behavior

* Flocking motion, a collective motion of a large

number of entities, is an example of emergent
behavior

— Robots move as a group using only local

information Source: red3d.com/cwr/boids/
| \ e b A
AR NPINTS
Separation: steer to Alignment: steer Cohesion: steer to
avoid local mates towards average move toward the
heading average position of

CSCE274 - I. Rekleitis local mates

Flocking behavior

Source: youtube.com/watch?v=QbUPfMXXQlY

