

CSCE274 Robotic Applications and Design Fall 2020 Learning for robots

Ioannis Rekleitis Computer Science and Engineering University of South Carolina

yiannisr@cse.sc.edu

From MultiRobot Systems

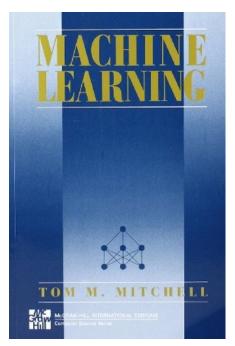
From Navigation

Finding and Navigating to Household Objects with UHF RFID Tags by Optimizing RF Signal Strength

By Travis Deyle, Matthew S. Reynolds, and Charles C. Kemp IROS 2014

Machine learning

- *Machine Learning* is a field that studies computer algorithms that improve automatically through experience
- Such techniques can be used in a robot so that it can learn about itself

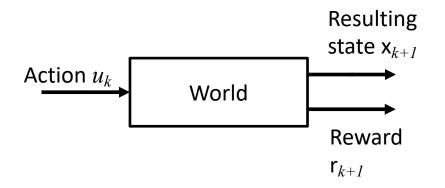


Source: cs.cmu.edu/~tom/mlbook.html

Machine learning techniques

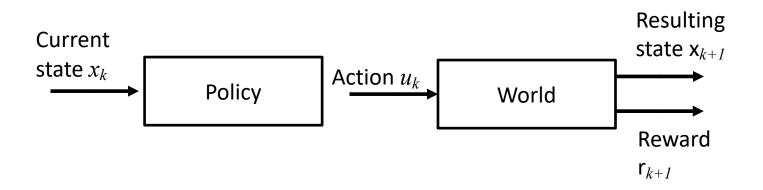
- Unsupervised learning: no external supervisor tells the robot what to do
- Supervised learning: external supervisor who provides a training dataset

- Reinforcement learning is an example of unsupervised learning
- A robot interacts with the world, performing an action, which causes a change in the world and accordingly the robot receives a reward



- Model similar to planning formulation
 - States X
 - Actions U
 - Transitions: probability distribution $P(x_{k+1} | x_k, u_k)$
 - Rewards $P(r_{k+1} \mid x_k, u_k)$
- Note that
 - Reinforcement learning typically considers an *infinite horizon* instead of a specific goal region
 - Transitions are probabilistic because they are *unpredictable*
 - Rewards are the dual of costs

 A Reinforcement learning algorithm provides a policy, namely a function that maps from states to actions

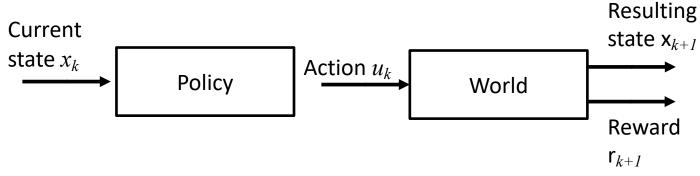


• The policy is chosen in such a way that the robot's discounted future reward is maximized

$$R = \sum_{i=k}^{\inf} \gamma^{k-i} r_i$$

where

 $\gamma \in (0,1)$ is the discount factor that weighs immediate rewards compared to future rewards



- *Q*-learning is a reinforcement learning technique that can be used to find an optimal policy
- The idea is to use a "quality function" that maps state-action pairs to discounted future rewards assuming
 - The robot at a current state x_k
 - It selects u_k
 - It chooses optimal actions in all of the future stages

- The *Q*-learning algorithm learns *Q* values as the robot selects new actions and observes the world
- The algorithm is
- 1. Initialize the Q table
- 2. Execute an action u_k
- 3. Observe the new state x_{k+1} and receive the reward r_k
- 4. Update the *Q* table

 $Q(x_k, u_k) \leftarrow (1 - \alpha)Q(x_k, u_k) + \alpha(r_k + \gamma[\max_{u \in U} Q(x_{k+1}, u)])$ where α is a learning rate parameter which controls how rapidly Q is changed

5. Repeat from Step 2.

• Example of *Q*-table for a robot

State	Action	<i>Q</i>
a	x	90
a	У	100
a	Ζ	80
b	x	7
b	У	10
b	Ζ	8

- Assume
 - Robot in state b and executes z
 - The new state is *a* and reward received is *11*
 - $-\alpha = 0.1, \gamma = 0.9$
- What is the new *Q*-table?

• Update *Q*-table by applying the formula

$$Q(x_k, u_k) \leftarrow (1 - \alpha)Q(x_k, u_k) + \alpha(r_k + \gamma[\max_{u \in U} Q(x_{k+1}, u)])$$

State	Action	<i>Q</i>
a	x	90
a	У	100
a	Ζ	80
b	x	7
b	У	10
b	Ζ	18

– Update *Q*-table by applying the formula

- Robot in state *b* and executes *z*
- The new state is *a* and reward received is *11*
- *α*=0.1, *γ* = 0.9

 $Q(x_k, u_k) \leftarrow (1 - \alpha)Q(x_k, u_k) + \alpha(r_k + \gamma[\max_{u \in U} Q(x_{k+1}, u)])$ $Q(b,z) < -(1-0.1) Q(b,z) + 0.1(11+0.9(\max Q(a, u)))$

State	Action	Q	State	Action	Q
a	x	90	а	x	90
a	у	100	а	у	100
a	Z	80	а	Z	80
b	x	7	b	x	7
b	У	10	b	У	10
b	Z	8	b	Z	18

– Update *Q*-table by applying the formula

- Robot in state *b* and executes *z*
- The new state is *a* and reward received is *11*
- *α*=0.1, *γ* = 0.9

 $Q(x_k, u_k) \leftarrow (1 - \alpha)Q(x_k, u_k) + \alpha(r_k + \gamma[\max_{u \in U} Q(x_{k+1}, u)])$ $Q(b,z) < -(0.9) \ 8 \ +0.1(11 + 0.9(100))$

State	Action	Q	State	Action	Q
a	x	90	a	x	90
a	У	100	a	у	100
a	Ζ	80	a	Z	80
b	x	7	b	x	7
b	у	10	b	у	10
b	Ζ	8	b	Z	18

– Update *Q*-table by applying the formula

- Robot in state *b* and executes *z*
- The new state is *a* and reward received is *11*
- *α*=0.1, *γ* = 0.9

 $Q(x_k, u_k) \leftarrow (1 - \alpha)Q(x_k, u_k) + \alpha(r_k + \gamma[\max_{u \in U} Q(x_{k+1}, u)])$ $Q(b,z) <- (0.9) \ 8 \ +0.1(101) = 7.2 + 10.1 = 17.3 \ round \ up \ to \ 18$

State	Action	Q	State	Action	Q
a	x	90	а	x	90
a	у	100	а	у	100
a	Z	80	а	Z	80
b	x	7	b	x	7
b	у	10	b	У	10
b	Z	8	b	Z	18

Exploration vs. exploitation

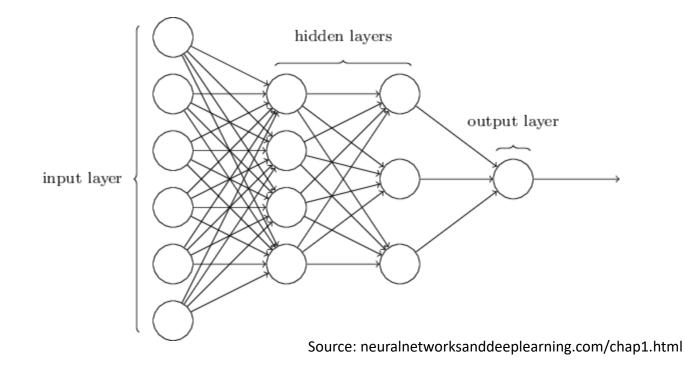
- What actions should the robot choose and execute?
 - Exploration: choose an action that the robot doesn't know about yet
 - Exploitation: choose an action with the largest Q value from the current state

$$\pi(x) = \arg\max_{u \in U} Q(x, u)$$

• Trade-off between exploration and exploitation

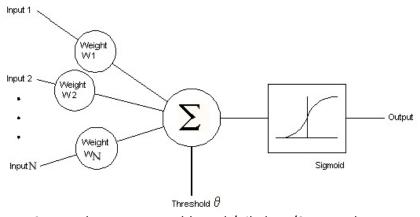
Neural network

• Neural network learning is an example of supervised machine learning



Neural network

- Neural network components
 - Perceptron: main processing unit that includes a summation function that takes weighted inputs and an activation function (e.g., sigmoid)

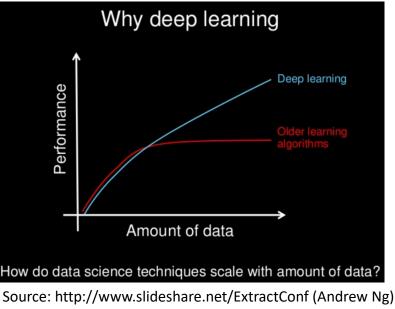


Source: homepages.gold.ac.uk/nikolaev/311perc.htm

- Training with labeled data to compute *error* and adjust weights

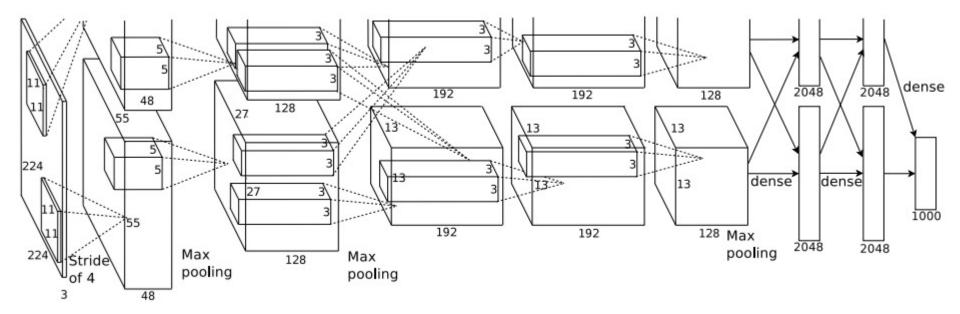
Deep learning

- Deep neural network is becoming an important technology also in robotics
- Driven by increase in computational power (e.g., GPU)



Deep learning

- Deep neural network
 - E.g., AlexNet



Source: [Krizhevsky et al., 2012, NIPS]

Learning by demonstration

 Learning by demonstration is to train the robot by showing how to do tasks

Learning Complex Sequential Tasks from Demonstrations: Pizza Dough Rolling

Nadia Figueroa, Lucia Pais and Aude Billard

Long-term learning

- Forgetting is also an important part to discard outdated previously learned information
 - Necessary because finite memory space and old information might not be correct
- Long-term learning however is one of the aims

