



# CSCE274 Robotic Applications and Design Fall 2021 Robot Components Sensors

**Ioannis REKLEITIS, Ibrahim SALMAN** 

**Computer Science and Engineering** 

University of South Carolina

yiannisr@cse.sc.edu

## <u>Sensors</u>

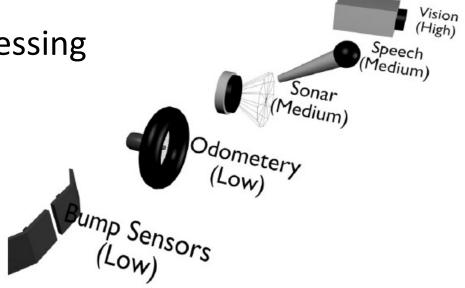
 Sensors are devices that can sense and measure physical properties of the environment

### <u>Sensors</u>

Sensors provide partial information about the world

• Sensors are noisy

 Sensors cannot be modeled completely as finding the inverse is an ill-posed problem, namely the solution is not uniquely defined


## **Classification**

- According to the operation mode:
  - Active: emit energy in the environment
  - Passive: receive energy from the environment

- According to what kind of information is able to detect:
  - Proprioceptive: monitor the state of the robot
  - Exteroceptive: monitor the environment

# Level of processing

- Raw data processed at different levels, depending on the sensor
  - Low: electronics
  - Medium: signal processing
  - High: computation



Source: [Mataric, 2007, MIT Press]



 Sensor fusion is the process of combining data from multiple sensors

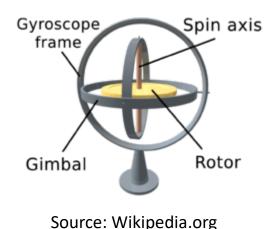
- Complex process because:
  - Every sensor has some noise and inaccuracy
  - Each sensor provides different types of information

## **Sensor characteristics**

- Sensitivity: change of output wrt change of input
- Linearity: constancy of output wrt input
- Measurement/Dynamic range: difference between min and max measurable values
- Response time: time required for a change in input to cause a change in the output
- Accuracy: difference between the measured and actual value
- Repeatability: difference between repeated measurements
- Resolution: smallest observable increment
- Power consumption
- Size and weight

## **Acceleration sensors**

- Measures acceleration in a single direction
  - Measure the displacement of a mass on a spring, then use Newton's second law:


$$a = -\frac{k}{m}x$$



Source: mbed.org



- Measures angular velocity
  - By having a spinning gyroscope and trying to rotate its spin axis, the gyroscope will try to rotate about an axis at right angles to the force axis

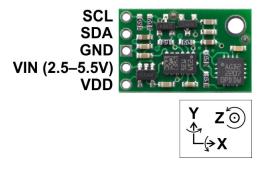




Source: robotshop.com

## <u>Compass</u>

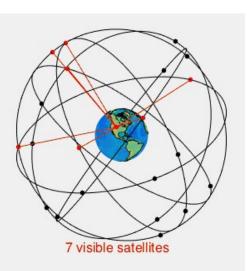
• Compass measures orientation w.r.t. Earth's magnetic field


- Note that data could be affected by
  - Design of the robot
  - Unexpected variations in magnetic field



Source: dfrobot.com

## <u>IMUs</u>


 Inertial Measurement Units (IMUs) combine 3 accelerometers with 3 gyroscopes, and possibly compass

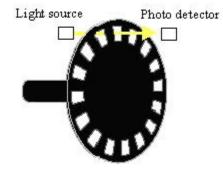


Source: pololu.com



GPS provides the position on Earth by using a constellation of between 24 and 32 Medium Earth Orbit satellites






Source: adafruit.com

Source: Wikipedia.org

## **Encoders**

 Encoders measure the amount of rotation in a joint or wheel




Source: robotix.in

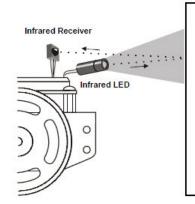


Source: hohner.com

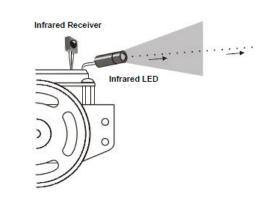
### **Tactile sensor**

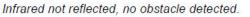
• Sensor that reports if in contact with an object




Source: clear.rice.edu/elec201/




Source: dfrobot.com


## **Infrared sensors**

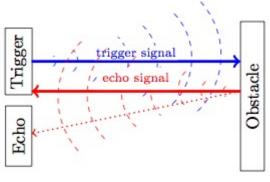
- Sensor that measures distance from objects by transmitting an IR pulse and measures the intensity of the signal reflected back
  - Note that it strongly depends on the reflective properties of the obstacle surface



Infrared reflected, obstacle detected.






Source: parallax.com



Source: tinkerforge.com



- Sensor that measures distance from objects by transmitting sound waves and measures the time-of-flight
  - Note that there are a number of problems and uncertainties associated to the readings

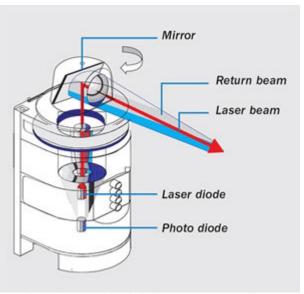


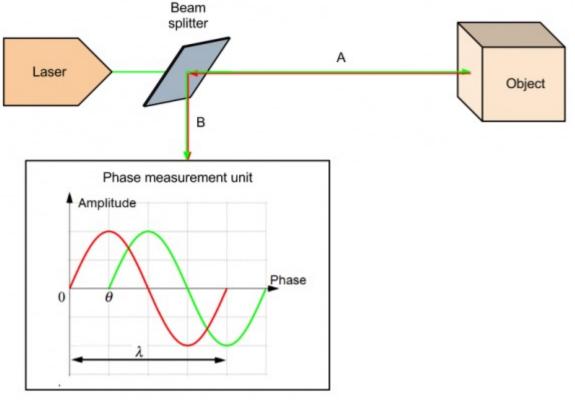
Source: robotics.jcu.io





 Sensor that measures distance from objects by transmitting a short pulse of laser light and measuring the time-of-flight





Illustration of LIDAR sensor demonstrating the time of flight principle. (Courtesy of SICK, Inc.) Source: robotics.org



Source: hokuyo-aut.jp



• As light is faster, phase shift is used



Source: roboticlab.eu

#### Laser sensors

• A higher resolution in the FOV of the sensor is obtained by a rotating mirror

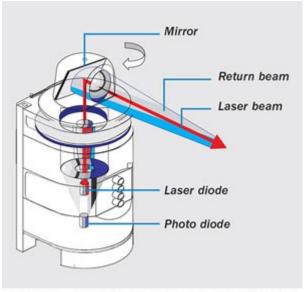
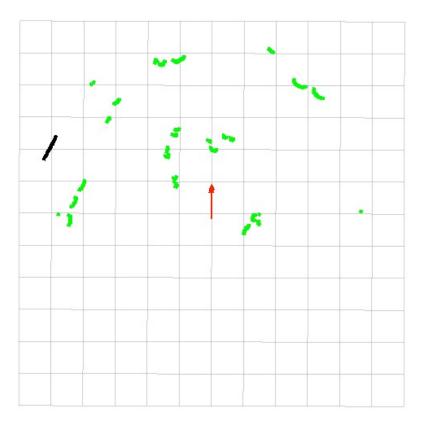
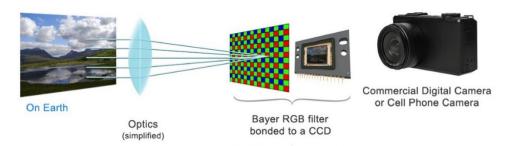




Illustration of LIDAR sensor demonstrating the time of flight principle. (Courtesy of SICK, Inc.) Source: robotics.org




• Many laser sensors are *planar* sensors





Passive sensor that capture lights from the world



Source: jpl.nasa.gov



Source: ids-imaging.com

### **Cameras**

Images are data heavy

1920



From GoPro HERO3+ at Barbados 2015 Field Trials

| 1000 | 42 | 41 | 40 | 39 | 38 | <br><b>-</b> 0<br>31 | <u>-</u> 0<br>32 | 35 | 37 |
|------|----|----|----|----|----|----------------------|------------------|----|----|
|      | 14 |    | 10 |    |    |                      | 02               |    |    |
| Ŧ    | :  | :  |    | :  |    | <br><br>:            |                  |    | ÷  |
|      | 54 | 57 | 60 | 62 | 66 | <br>42               | 43               | 56 | 46 |

| 80 | 129<br>128 | $\begin{array}{c} 129 \\ 128 \end{array}$ | $\begin{array}{c} 129 \\ 127 \end{array}$ | $\begin{array}{c} 129 \\ 128 \end{array}$ | $\begin{array}{c} 128 \\ 127 \end{array}$ | •••• | $\begin{array}{c} 149 \\ 151 \end{array}$ | $\begin{array}{c} 149 \\ 152 \end{array}$ | $\begin{array}{c} 151 \\ 155 \end{array}$ | $\frac{153}{157}$ | G |
|----|------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------|---|
| 10 | :<br>146   | :<br>146                                  | :<br>148                                  | :<br>148                                  | :<br>148                                  | <br> | :<br>149                                  | :<br>150                                  | :<br>151                                  | :<br>152          |   |

| 0   | $146 \\ 145$ | $\begin{array}{c} 146 \\ 145 \end{array}$ | $\frac{146}{144}$ | $\begin{array}{c} 145 \\ 144 \end{array}$ | $\begin{array}{c} 146 \\ 145 \end{array}$ | · · · · | $\begin{array}{c} 166 \\ 168 \end{array}$ | $\frac{166}{169}$ | $\frac{168}{172}$ | 170<br>174 |   |
|-----|--------------|-------------------------------------------|-------------------|-------------------------------------------|-------------------------------------------|---------|-------------------------------------------|-------------------|-------------------|------------|---|
| 108 |              | •                                         | •                 | •                                         | •                                         | •••     | $\vdots$<br>165                           | •                 | •                 | :          | _ |

R



• Aliasing





#### **Cameras**

• Challenging scenarios





• 3d structure in 2d





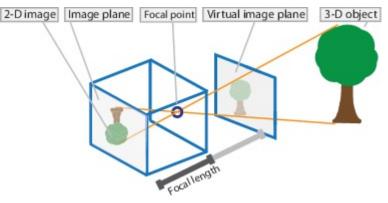
• 3d structure in 2d



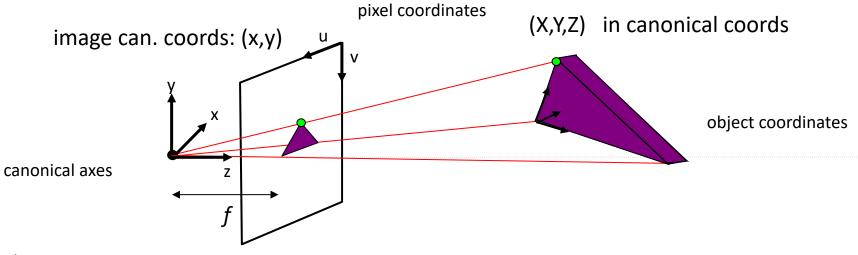




• 3d structure in 2d

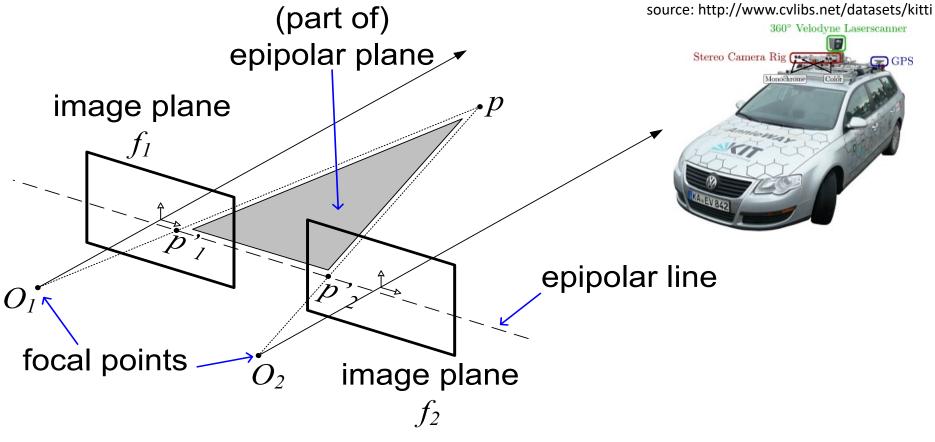




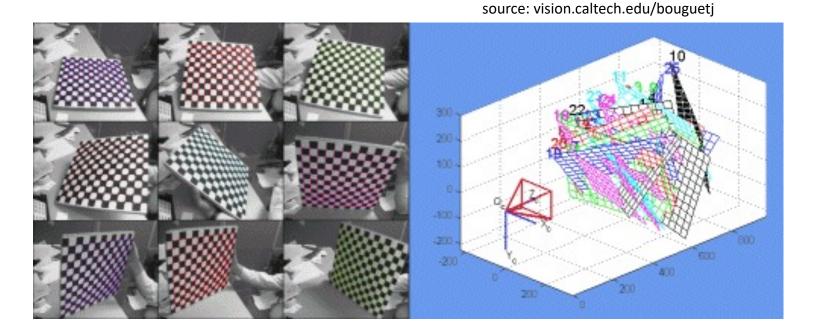

# **Pinhole camera model**

 Pinhole camera model describes the *relationship* between the coordinates of 3D points of objects in the world and its projection onto the image plane of an ideal pinhole camera




Source: mathworks.com






• Stereo vision to recover depth information



## **Camera calibration**

 Camera calibration is estimating the parameters of lens and image sensor of a camera



## **Camera calibration**

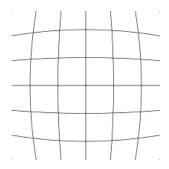
 These parameters can be used to correct for lens distortion, measure size of an object, or determine the location of the camera



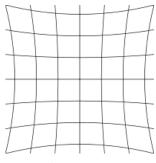
#### Unrectified



Rectified


From Parrot ARDrone 2.0 front camera

#### LENS

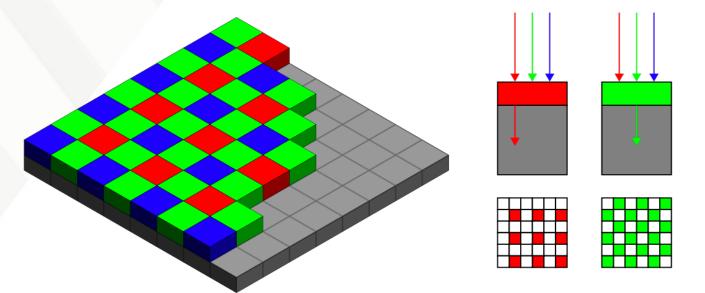

- Pros:
  - Can put sensor much closer to aperture than pinhole
  - Can adjust light independent of focus (mostly)
  - Relatively easy to make at variety of focal lengths

#### Cons:

- Focal length usually fixed
- Lens distorts image
- Imperfections in lens distort image further



**Barrel Distortion** 




**Pincushion Distortion** 

https://en.wikipedia.org/wiki/Distortion (optics)



#### **BAYER FILTER**



Filter layer Sensor array

Incoming light

Resulting pattern

https://en.wikipedia.org/wiki/Bayer\_filter



## What does a robot need?

#### *doesn't* need a full interpretation of available images

"In the middle of Assembly street, big truck coming my way, license plate number, driver has a beard, sky has clouds, leaves on trees are changing color..." does need information about what to do...

"Get out of the way!!"

reactive

- avoiding obstacles (or predators)
  - pursuing objects
  - localizing itself
  - •Mapping
  - finding targets

•reasoning about the world ... \_

environmental interactions



- Recognition:
  - What is that thing in the picture?
  - What are all the things in the image?
- Scene interpretation
  - Describe the image?
- Scene "reconstruction":
  - What is the 3-dimensional layout of the scene?
  - What are the physical parameters that gave rise to the image?
  - What is a description of the scene?

## **Computer vision algorithms**

- Tools necessary to solve the key problems
  - Image processing
  - Geometric computer vision
  - Semantic computer vision





### **REPRESENTING IMAGES**

- OpenCV works really well with ROS
- Still, an OpenCV image is not quite the same as a ROS sensors\_msg/Image
- Fortunately, there is an easy conversion!
  - CvBridge Class
  - imgmsg\_to\_cv function
  - cv\_to\_imgmsg function



For sending images on topics as sensor\_msgs/Image

\$ catkin\_create\_package <package\_name> sensor\_msgs cv\_bridge rospy [other dependencies]

To convert between ROS and OpenCV image formats



#### #!/usr/bin/env python

import rospy
import cv2
from sensor\_msgs.msg import Image
from cv\_bridge import CvBridge

#### class ImageFlipper:

def \_\_init\_\_(self):

rospy.Subscriber("image", Image, self.flipper\_cb)
self.pub = rospy.Publisher("flipped", Image,

#### queue\_size=10)

*#* Instantiate the converter class once by using a class member

#### self.bridge = CvBridge()

#### def flipper\_cb(self, msg):

# convert to a ROS image using the bridge

#### cv\_img = self.bridge.imgmsg\_to\_cv2(msg, "bgr8")

# flip along the horizontal axis using an OpenCV function

#### cv\_flipped = cv2.flip(cv\_img, 0)

# convert new image to ROS to send

ros\_flipped = self.bridge.cv2\_to\_imgmsg(cv\_flipped,

#### "bgr8")

*# publish flipped image* 

#### self.pub.publish(ros\_flipped)

if \_\_name\_\_=="\_\_main\_\_":

# initialize our node and create a publisher as normal
rospy.init\_node("image\_flipper", anonymous=True)
img\_flip = ImageFlipper()
rospy.spin()

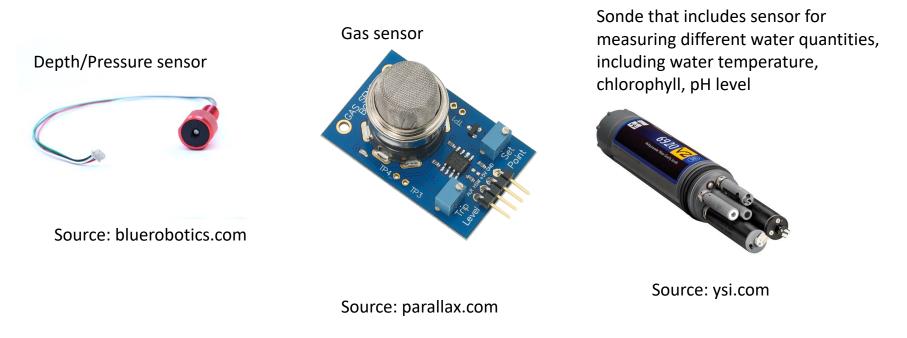


### **OPENCV PYTHON NOTES**

- An OpenCV image is really just a 2D or 3D NumPy Array
- To access a pixel value, use array indexing: pixel = image[i,j,k] where
  - i is the row (vertical) number
  - j is the column (horizontal) number,
  - k is the color channel: 0=Blue,1= Green, 2=Red (if present)
- To create a new image that is a subset of the image use array slices: cropped\_image = image[start\_y:end\_y, start\_x:end\_x]





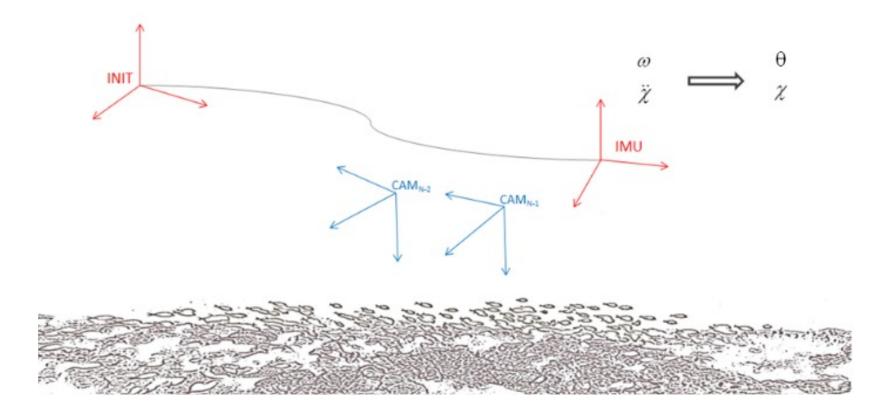

 Sensor that has a camera and IR sensor to enrich images with depth information



Source: robotics.ait.kyushu-u.ac.jp

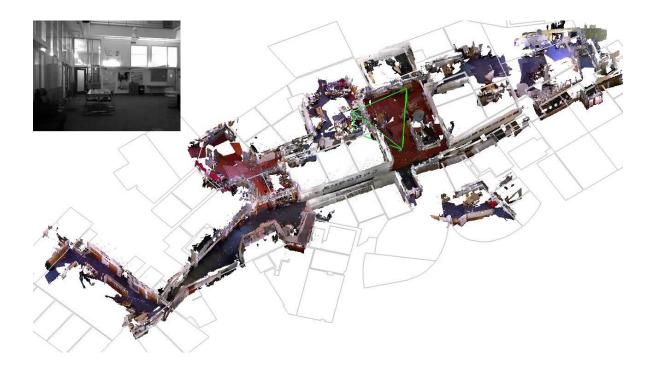
# Many other sensors

 Many other sensors can be found for measuring different physical quantities




# **State Estimation**

• The use of sensor data allows to estimate the state of the robot and the world


## **Localization**

• Where am I?



# **Mapping**

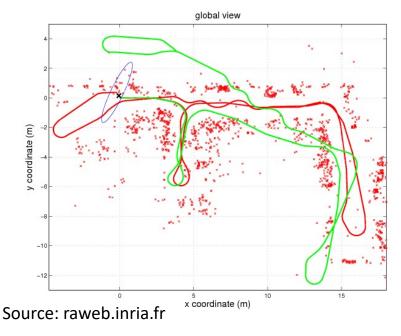
• What the world looks like



Source: http://people.csail.mit.edu/hordurj/

# **Simultaneous Localization and**

## **Mapping**


• Localization and Mapping together form the problem of SLAM



Source: cs.cmu.edu/afs/cs/usr/br/mosaic/homepage.html

# **State estimation process**

- Fusing sensor data
- Update the state of the robot
- Adjust it according to observations

