
CSCE274 Robotic Applications and Design
Fall 2020

Introduction to Python

Ioannis REKLEITIS
Computer Science and Engineering

University of South Carolina
yiannisr@cse.sc.edu

Based on http://tdc-www.harvard.edu/Python.pdf

http://cse.sc.edu

Outline

• Comparison of programming languages
• Brief overview of Python
• Basics
• Main elements

9/10/20 CSCE274 - I. REKLEITIS 2

Programming Language Comparison

• Compiled vs. interpreted languages
• Static vs. dynamic types
• Metrics
– CPU efficiency
– Memory efficiency
– Programmer efficiency, e.g.,
• Memory manual vs. automatic
• Libraries of code to use -- re-use

9/10/20 CSCE274 - I. REKLEITIS 3

C/C++

• Static compile time type system
• Only dynamic type support = void*
• CPU/memory efficient
• Programmers have to explicitly manage

memory
• Wide use in embedded systems and robotics

(e.g., Robotic Operating System – ROS)

9/10/20 CSCE274 - I. REKLEITIS 4

Java

• Flexible compile time type system
• Both static and dynamic types
• CPU efficiency -- 1-2x worse than C
• Mem efficiency -- 2x worse than C
• Programmers have the benefits of a statically

typed language and at the same time
flexibility of checking types at run time

• In robotics less commonly used

9/10/20 CSCE274 - I. REKLEITIS 5

Compile Time Typing Pro/Con

• Pros
– Errors detected at compile time
– Good performance being the code compiled
– Easier optimization
– More control from the programmer
– Enables easier performance optimization
– …

• Cons
– More verbose code
– Maintaining type info can be burdensome
– …

9/10/20 CSCE274 - I. REKLEITIS 6

Python

• Interpreted language
• Dynamic language
• CPU/memory inefficient compared to compile

time languages
• Easy to prototype
• Used also in robotics, e.g., ROS

9/10/20 CSCE274 - I. REKLEITIS 7

Dynamic Typing Pro/Con

• Advantages
– Less verbose code
– More flexibility because of the dynamic typing

structure
– …

• Disadvantages
– Less readable, because type info is missing
– Worse performance
– Worse compile time error detection

• Compensate with unit tests
– …

9/10/20 CSCE274 - I. REKLEITIS 8

How to choose?

• According to the efficiency metrics
• “Legacy” driver
• Libraries that are available
• Standard/Open-source

9/10/20 CSCE274 - I. REKLEITIS 9

Python

• Allows programmers to focus more on the algorithmic
aspects rather than the intrinsic aspects of a language

• Open source general-purpose language
• Object Oriented, Procedural, Functional
• Interpreted language

• Downloads: http://www.python.org
• Documentation: http://www.python.org/doc/
• Free book: http://www.diveintopython.org

9/10/20 CSCE274 - I. REKLEITIS 10

Python 2 or 3?

• Python 2.x is legacy, Python 3.x is the present
and future of the language

• Python 3.x has slightly worse library support

• Python 2.x is still the default in many Unix-
based operating systems

9/10/20 CSCE274 - I. REKLEITIS 11

Binaries

• Python is pre-installed with Linux and Mac OS
X

• Windows binaries from http://python.org

9/10/20 CSCE274 - I. REKLEITIS 12

Python interpreter

• Interactive interface to Python
%python
Python 2.7.8 (default, Jun 30 2014, 16:03:49) [MSC v.1500 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

• Python interpreter evaluates inputs
>>> 3*(7+2)
27

• Python prompts with ‘>>>’
• To exit Python:
– CTRL-D in Linux and Mac OS X
– CTRL-C in Windows

9/10/20 CSCE274 - I. REKLEITIS 13

Running Python Programs

• Pass as argument the program
%python filename.py

9/10/20 CSCE274 - I. REKLEITIS 14

Many standard libraries

• https://docs.python.org/2/py-modindex.html

9/10/20 CSCE274 - I. REKLEITIS 15

A code sample
“““This is a code
sample”””
x = 34 - 23 # A comment.
y = “Hello” # Another one.
z = 3.45
if z == 3.45 or y == “Hello”:

x = x + 1
y = y + “ World” # String concat.

print x
print y

9/10/20 CSCE274 - I. REKLEITIS 16

Variables

• Names are case sensitive and cannot start with a
number.
– They can contain letters, numbers, and underscores.
bob Bob _bob _2_bob_ bob_2 BoB

– Some words are reserved, e.g., and, assert, break,
class, continue, def, del, elif, else, except, exec, finally,
for, from, global, if, import, in, is, lambda, not, or,
pass, print, raise, return, try, while

• Type not specified, evaluated at runtime

9/10/20 CSCE274 - I. REKLEITIS 17

Variables – Data type
• Integers (default for numbers)

z = 5 / 2 # Answer is 2, integer division.
• Floats

x = 3.456
• Strings
– Can use “” or ‘’ to specify.
“abc” ‘abc’ (Same thing.)
– Unmatched can occur within the string.
“matt’s”
– Use triple double-quotes for multi-line strings or strings

than contain both ‘ and “ inside of them:
“““a‘b“c”””

9/10/20 CSCE274 - I. REKLEITIS 18

Variables – Assignment
• Variables are created when placed it on the left side of

an assignment
x=3

• Binding a variable in Python means setting a name to
hold a reference to some object
– Assignment creates references, not copies

• Names in Python do not have an intrinsic type, instead
objects have types
– Python determines the type of the reference automatically

based on the data object assigned to it
• A reference is deleted via garbage collection after any

names bound to it have passed out of scope

9/10/20 CSCE274 - I. REKLEITIS 19

Variables - Reference semantics
• Assignment manipulates references
– x = y does not make a copy of the object y references
– x = y makes x reference the object y references

• Some data types are immutable, e.g., integer, float,
stringThe data 3 we created is of type >>> x = 3
>>> x = x + 1
>>> print x
4

• 3 is of type integer, and is stored in memory, a new
portion of the memory is allocated to 4

9/10/20 CSCE274 - I. REKLEITIS 20

Variables - Reference semantics
• Some other data types (e.g., lists, dictionaries, user-

defined types) are “mutable”
– The change of the data directly happens in place
– No copy of the data into a new memory address each time
– If two variables are referencing to the same data, both

variables are changed
• Example:

>>> a = [1, 2, 3] # a now references the list [1, 2, 3]
>>> b = a # b now references what a references
>>> a.append(4) # this changes the list a references
>>> print b # if we print what b references,
[1, 2, 3, 4] # It has changed…

9/10/20 CSCE274 - I. REKLEITIS 21

Common errors
• Accessing non-existent names
– If you try to access a name before it’s been properly

created (by placing it on the left side of an assignment),
you’ll get an error

>>> y
Traceback (most recent call last):
File "<pyshell#16>", line 1, in -toplevel-

y
NameError: name ‘y' is not defined
>>> y = 3
>>> y
3

9/10/20 CSCE274 - I. REKLEITIS 22

Sequence types

• Tuple
– A simple immutable ordered sequence of items
– Items can be of mixed types, including collection types

• Strings
– Immutable
– Conceptually very much like a tuple

• List
– Mutable ordered sequence of items of mixed types

9/10/20 CSCE274 - I. REKLEITIS 23

Sequence types

• Tuples are defined using parentheses (and
commas)
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

• Strings are defined using quotes (“, ‘, or “““)
>>> st = “Hello World”
>>> st = ‘Hello World’
>>> st = “““This is a multi-line
string that uses triple quotes.”””

• Lists are defined using square brackets (and
commas)
>>> li = [“abc”, 34, 4.34, 23]

9/10/20 CSCE274 - I. REKLEITIS 24

Sequence types
• Individual members of a tuple, list, or string can be

accessed using square bracket “array” notation
– 0-index based
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> tu[1] # Second item in the tuple.
‘abc’
>>> li = [“abc”, 34, 4.34, 23]
>>> li[1] # Second item in the list.
34
>>> st = “Hello World”
>>> st[1] # Second character in string.
‘e’

9/10/20 CSCE274 - I. REKLEITIS 25

Sequence types

• Positive and negative indices
>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with 0
>>> t[1]
‘abc’

Negative lookup: count from right, starting with –1
>>> t[-3]
4.56

9/10/20 CSCE274 - I. REKLEITIS 26

Sequence types

• Slicing
Return a copy of the container with a subset of the
original members. Start copying at the first index,
and stop copying before the second index
>>> t[1:4]
(‘abc’, 4.56, (2,3))

Negative indices can also be used when slicing
>>> t[1:-1]
(‘abc’, 4.56, (2,3))

9/10/20 CSCE274 - I. REKLEITIS 27

Sequence types

• Slicing
Omit the first index to make a copy starting from the
beginning of the container
>>> t[:2]
(23, ‘abc’)

Omit the second index to make a copy starting at
the first index and going to the end of the container
>>> t[2:]
(4.56, (2,3), ‘def’)

9/10/20 CSCE274 - I. REKLEITIS 28

Sequence types

• To make a copy of an entire sequence, you can
use [:]
>>> t[:]
(23, ‘abc’, 4.56, (2,3), ‘def’)

• Note the difference between these two lines for
mutable sequences:
>>> list2 = list1 # 2 names refer to 1 ref
Changing one affects both
>>> list2 = list1[:] # Two independent copies, two refs

9/10/20 CSCE274 - I. REKLEITIS 29

Whitespace

• Whitespace is meaningful in Python: especially
indentation and placement of newlines

• Use a newline to end a line of code
– Use \ when must go to next line prematurely

• No braces { } to mark blocks of code in Python… Use
consistent indentation instead
– The first line with less indentation is outside of the block
– The first line with more indentation starts a nested block

• Often a colon appears at the start of a new block. (e.g.
for function and class definitions)

9/10/20 CSCE274 - I. REKLEITIS 30

Control of flow
if x == 3:

print “X equals 3.”
elif x == 2:

print “X equals 2.”
else:

print “X equals something else.”
print “This is outside the ‘if’.”

9/10/20 CSCE274 - I. REKLEITIS 31

x = 3
while x < 10:

if x > 7:
x += 2
continue

x = x + 1
print “Still in the loop.”
if x == 8:

break
print “Outside of the loop.”

for x in range(10):
if x > 7:

x += 2
continue

x = x + 1
print “Still in the loop.”
if x == 8:

break
print “Outside of the loop.”

Exceptions
• Possible to use try/exception blocks

>>> try:
... 1 / 0
... except:
... print('That was silly!')
... finally:
... print('This gets executed no matter what')
...
That was silly!
This gets executed no matter what

9/10/20 CSCE274 - I. REKLEITIS 32

Useful operators

• Assignment uses = and comparison uses ==
• For numbers + - * / % are as expected
• Special use of + for string concatenation
• Special use of % for string formatting (as with

printf in C)
• Logical operators are words (and, or, not), not

symbols
• The basic printing command is print

9/10/20 CSCE274 - I. REKLEITIS 33

Functions

• def creates a function and assigns it a name
• return sends a result back to the caller

9/10/20 CSCE274 - I. REKLEITIS 34

Functions

• Arguments are passed by assignment
• Passed arguments are assigned to local names
• Assignment to argument names don't affect

the caller
• Changing a mutable argument may affect the

caller
def changer (x,y):

x = 2 # changes local value of x only
y[0] = 'hi' # changes shared object

9/10/20 CSCE274 - I. REKLEITIS 35

Functions

• Default values can be assigned to arguments
def func(a, b, c=10, d=100):

print a, b, c, d
>>> func(1,2)
1 2 10 100
>>> func(1,2,3,4)
1,2,3,4

9/10/20 CSCE274 - I. REKLEITIS 36

Functions
• All functions in Python have a return value

– even if no return line inside the code
• Functions without a return return the special value

– None
• There is no function overloading in Python

– Two different functions can’t have the same name, even if they
have different arguments

• Functions can be used as any other data type. They can be:
– Arguments to function
– Return values of functions
– Assigned to variables
– Parts of tuples, lists, etc

9/10/20 CSCE274 - I. REKLEITIS 37

Classes and objects

• Being object-oriented, classes are available
class Robot(object):

def __init__(self):
“““ this is the constructor. ”””
The code goes here.

9/10/20 CSCE274 - I. REKLEITIS 38

Files

• Closing a file is implicit with with block

with open(‘file_path’, ‘r’) as input_file:
content = input_file.read()
for line in content:

print line

9/10/20 CSCE274 - I. REKLEITIS 39

Modules

• Code reuse
– Routines can be called multiple times within a

program
– Routines can be used from multiple programs

• Namespace partitioning
– Group data together with functions used for that data

• Implementing shared services or data
– Can provide global data structure that is accessed by

multiple subprograms

9/10/20 CSCE274 - I. REKLEITIS 40

Modules
• Modules are functions and variables defined in

separate files
• Items are imported using from or import

from module import function
function()

import module
module.function()

• Modules are namespaces
– Can be used to organize variable names, i.e.

atom.position = atom.position - molecule.position

9/10/20 CSCE274 - I. REKLEITIS 41

Comments

• Start comments with # – the rest of line is
ignored.

• Can include a “documentation string” as the first
line of any new function or class that you define.

• The development environment, debugger, and
other tools use it: it’s good style to include one.
def my_function(x, y):

“““This is the docstring. This
function does blah blah blah.”””
The code would go here...

9/10/20 CSCE274 - I. REKLEITIS 42

Learning with Purpose

CODING STANDARD

• When possible, follow ROS style guides: http://wiki.ros.org/PyStyleGuide
• Important: PYTHON IS WHITESPACE SENSITIVE

– Always use spaces instead of tabs
– 4 spaces per indentation level preferred

• Naming conventions:
– package_name
– ClassName
– method_name
– field_name

43

http://wiki.ros.org/PyStyleGuide

