
 Robotic Applications and Design
Fall 2021

Robotics Software Tools (Intro)
Ioannis REKLEITIS, Ibrahim SALMAN

Lecture Outline
• Linux Overview
• ROS Overview
• Git Overview
• Docker Overview

Linux Overview

Linux Overview Outline
• Why Linux?
• Linux Command Line Interface (CLI)
• Common Topics:

• CLI manuals
• Common Helpful commands and Directory Structures
• File Permissions
• Shell Scripts
• ssh & scp

• Notes:
• Ubuntu 20.04 is the official supported distro this semester
• Natively booting linux is recommended (single or dual boot)

Why Linux
- Open source
- Security
- Privacy
- Cost (FREE)
- Portability
- Hardware Support
- Support

Command Line Interface
• CLI vs GUI
• Different command line shells:

• bash (most common)
• zsh
• fish

• Secret tip to master terminal (Hint: practice)

CLI Manuals and Help
● Manual Pages

○ Display a Man Page
○ Search Specific Sections
○ Tip: you can also search the manual on the web

● Help
○ help option for most programs: -h and --help

● Will go over piping output from man and help and using grep to search
for specific options later in the slides

Helpful commands & Directory Structures
● Basics

○ ls
○ cd
○ Directory Structures
○ mkdir
○ rm
○ pwd
○ mv
○ cp
○ echo
○ cat
○ history
○ alias
○ source (!important)

● pipe
● grep, find
● text editors in terminal: (vi, vim, nano, etc..)

File Permissions
● Permission groups

● Permission Types (bit codes):

○ read - r = 4
○ write - w = 2
○ execute - x = 1

● chmod command (owner/group/public)

● Making files executable

Shell Scripts
● Why scripts
● Types of scripts

○ bash
○ sh
○ etc..

● writing scripts
● making a script executable
● Executing scripts

Secure Shell (SSH)
● What is ssh?
● Why ssh?

○ Remote CLI
○ Remote Execution
○ SCP (Secure file transfer over ssh)

● ssh options
○ auth
○ ports

Questions about
Linux?

Robot Operating System

ROS Overview Outline
• How to pronounce

• What is ROS?

• Why ROS?

• ROS & Linux?

• ROS basics

What is ROS?
● ROS is an open-source, meta-operating system for your robot.
● General Concept

○ Multiple nodes
○ communicate with other nodes using a publish/subscribe messaging

model

Credit: www.designnews.com

Why ROS?
● ROS is lightweight

● a lot of support and packages (open-source)

● Programing languages support (C++/Python/JAVA)

● package management

ROS & LINUX
● ROS Dir structure

○ /home/$USER/catkin_ws
■ build
■ devel
■ src

● package1
○ CMakeLists.txt
○ launch
○ package.xml
○ src

● package 2

● catkin_create_pkg is used to init a ros
package.

● ROS uses shell variables, so we source
~/catkin_ws/devel/setup.bash to ensure all
variables defined in setup.bash are added
to the current shell.

● Remember: always source setup.bash after
running catkin_make

ROS basics
● node

○ programs that run in ros and can communicate with other nodes through topics

● topic

○ messages with defined type. Can use standard messages or define your own

○ a node can publish and subscribe to multiple topics or to none

● service

○ get information from node upon request rather than continuous broadcast

ROS basics
● rosrun

○ use to run and inspect individual nodes

● rostopic
○ interact with topics: list, get info, display data, publish to topic

● rosnode
○ inspect nodes

● roswtf
○ find potential bugs

● roslaunch

Questions about
ROS?

Git

Git Overview Outline
● What is git?

● Why git?

● Git basics

What is git
● Git is a free and open source distributed version control

system designed to handle everything from small to very large
projects with speed and efficiency. Source: https://git-scm.com/

● Github

Note: a significant part of the course material will be on github.

https://git-scm.com/

Why git
● easy to learn

● lightweight

● fast

● collaboration

Git basics
● Repository
● clone
● add
● commit
● push
● pull
● branch
● issue
● collaboration

Questions about
Git?

Docker

What is Docker
● Docker is an open source containerization platform. It enables

developers to package applications into
containers—standardized executable components combining
application source code with the operating system (OS)
libraries and dependencies required to run that code in any
environment. Source: IBM

Learning with Purpose

DOCKER

• Containers stored online: Docker Hub
• Docker images: builds of a configuration
• Images can be overlaid on each other
• Docker container: runtime of an image

29COURTESY OF PAUL ROBINETTE UMASS LOWELL

Learning with Purpose

DOCKER USAGE

• Pull images from docker’s servers using
$ docker pull <image name>

• To start a container from an image use:
$ docker run -it <image name>
– This will also pull any required images
– Note the “-it” flag: this makes it interactive allowing you to type in the terminal

• To share a folder on your computer with this container use the –v flag:
$ docker run -it -v <host path>:<container path> <image name>

• To find what containers are running and their names use:
$ docker ps

• To start a second process/terminal in a single docker container run:
$ docker exec -it <container name> bash

30COURTESY OF PAUL ROBINETTE UMASS LOWELL

Learning with Purpose

DOCKER BUILD

• It is often useful to build your own docker images
• These are usually based on other images
• Some have only minor modifications
• Build the image with:

$ docker build -t <name>:<version> <path-to-dockerfile>
• Only needs to be run when dockerfile is changed (rarely)

31COURTESY OF PAUL ROBINETTE UMASS LOWELL

Learning with Purpose

CONCEPT OF OPERATIONS

• Run assignments in docker images
• Keeps environment consistent for student and instructor
• Make sure to turn in whatever you use
• Easy transition to programming Duckiebots in a few weeks

32COURTESY OF PAUL ROBINETTE UMASS LOWELL

Questions about
Docker?

Questions ?

Email: YIANNISR@cse.sc.edu
Email: IJSALMAN@email.sc.edu

