

CSCE274 Robotic Applications and Design Fall 2022 Controllers

Ibrahim Salman

Computer Science and Engineering University of South Carolina ijsalman@email.sc.edu

 Control theory studies the behavior of systems whose behavior is governed by one or more inputs

 Open-loop controller or non-feedback controller is a type of controller that computes the system input only using the current state and its model of the system

- Example:
 - Move a differential drive robot by spinning motors at a given angular velocity
 - Apply fixed voltage to it and never check to see if it is rotating properly

- Example:
 - Changing load on the motor changes also the output velocity

- Example:
 - Target reaching

Source: konozlearning.com

- Example:
 - Target reaching

Source: konozlearning.com

 Closed loop control or feedback control is a type of controller that computes the system input using also a sensor to measure the error that is taken into account

- Example:
 - Thermostat

LUX			FAN
MENU	HEAT HO	DLD	AUT
	TUE	DAY	°
12:0		1 71	
IL U		bc.	
	111	N JEI	HEA
		$\langle 0 \rangle$	OF
HOLD			COO

Thermostat – Source: wikipedia.com

- The goal of a feedback controller is to achieve and maintain a desired state (*set point*) by using the information coming from the sensor(s)
- *Error* is the difference between the current and desired state
- Sampling rate is the frequency at which the sensors read new information that can be used to compute the error

<u>Notation</u>

- *X*(*t*) state space
- *x(t) state* at time *t*
- *U* input space (also called action space or control space)
- *u(t) input* (also called *action* or *control*) at time *t*
- *e(t)* error

• Proportional term accounts for present errors

$$\begin{split} u(t) &= K_p e(t) & \frac{U(s)}{E(s)} = K_p \\ \text{where} \end{split}$$

 $-K_p$ is a constant that is called *proportional gain*

Integral term accounts for past errors

$$u(t) = K_i \int_0^t e(t) dt \qquad \frac{U(s)}{E(s)} = \frac{K_i}{s}$$

where

 $-K_i$ is a constant that is called *integral gain*

• Derivative term accounts for future errors

$$u(t) = K_d \frac{d}{dt} e(t)$$
 $\frac{U(s)}{E(s)} = K_d s$ where

 $-K_d$ is a constant that is called *derivative gain*

- It is possible to combine the different feedback controllers
 - PD controller

$$u(t) = K_p e(t) + K_d \frac{d}{dt} e(t)$$

– PID controller

$$u(t) = K_p e(t) + K_i \int_0^t e(t) dt + K_d \frac{d}{dt} e(t)$$

How to tune the gains?

The usual case is to tune them experimentally
Different methods to do it

- When tuning, it is fundamental to consider
 - Stability
 - Oscillation
 - Response time
 - Steady-state error: final difference between the state and the set point

- Example:
 - Target reaching

Source: konozlearning.com

PID examples

- Changes to K_p
 - High proportional gain will increase the speed of the control system response: possibly unstable system
 - Small gain results in small output response to a large input error: possibly less responsive controller

PID examples

- Changes to K_i
 - High integral gain can result in overshooting the setpoint value
 - Small gain can result in slower rise time

PID examples

- Changes to K_d
 - High derivative gain increases the speed of the overall control system response
 - Small gain can result in slower rise time

Discrete time controller

Systems are usually discrete time, thus discrete approximations are needed

$$u_k = K_p e_k + K_i \Delta t \sum_{i=1}^k e_i + K_d \frac{e_k - e_{k-1}}{\Delta t}$$

- Exercise: given the following
 - Set point 200

$$-K_p = K_i = K_d = 2$$

– Sampling rate (Δt) is 1 second

$$-x_1 = 205$$

$$-x_2 = 204$$

$$-x_3 = 198$$

Compute the output of the controller after the third sensor reading

• Errors

$$-e_1 = 200 - 205 = -5$$

 $-e_2 = 200 - 204 = -4$
 $-e_3 = 200 - 198 = 2$

• Errors

$$-e_1 = 205 - 200 = 5$$
$$-e_2 = 204 - 200 = 4$$
$$-e_3 = 198 - 200 = -2$$

Controls over time, applying the discrete PID controller

$$u_{3} = K_{p}e_{3} + K_{i}\Delta t \sum_{i=1}^{3} e_{i} + K_{d}\frac{e_{3}-e_{2}}{\Delta t}$$
$$u_{3} = 2(-2) + 2(1(5+4+(-2))) + 2\frac{-2-4}{1}$$
$$u_{3} = -2$$