DYNAMIC PLANNING FOR THE CONTROL OF
DISTRIBUTED PROBLEM SOLVING

J. D. Yang, M. N. Huhns & L. M. Stephens
Center for Machine Intelligence

USCMI Technical Report 83-10
June 1983

Department of Electrical and Computer Engineering
University of South Carolina
Columbia, SC 29208

DYNAMIC PLANNING FOR THE CONTROL OF
DISTRIBUTED PROBLEM SOLVING

Ju-Yuan D. Yang, Michael N. Huhns, and Larry M. Stephens
Department of Electrical and Computer Engineering
University of South Carolina
Columbia, SC 29208
(803) 777-4195 CSNET: huhns @ scarolina

AI Topic: Problem Solving and Inference

ABSTRACT

A distributed problem solving approach offers the advantages
of increased real-time response, reliability, and flexibility,
and lower processing, hardware, and software costs. In general,
a distributed problem solving system consists of multiple
processing nodes with one or more expert systems at each node. A
node organization is designed to support the aforementioned
approach. Some of the major components in the node organization
are a database of meta-knowledge about the expertise of its own
expert systems and those of the other processing nodes. These
information are gradually accumulated during the execution of
problem solving processes, a dynamic planning ability which
guides the problem solving process in the most promising
direction using the actual (if available) or estimated
information, and a question-and-answer mechanism for handling the
internode communication. This paper presents a description of
the node organization. A logic design example is presented to
demonstrate the functions of this system.

INTRODUCTION

Recent developments in processor fabrication technology and
computer communication technology have reduced the cost of
computing elements and communication among processors to a level
where distributed processing systems are practical. 1In recent
years, there has been growing interest in distributed problem
solving systems. Generally speaking, such a system consists of
multiple processing nodes with one or more expert systems at each
node. The advantages of a distributed approach to problem
solving are increased reliability and flexibility, enhanced
real-time response, lower communication costs, lower processing
costs and reduced software complexity. The processing nodes
cooperate in the sense that no one of them has either sufficient
expertise or complete information to solve a complete problem;
mutual sharing of the task load and interchanging of information
is therefore necessary to produce a solution.

Several distributed problem solving systems [1,2,3] and one
testbed [4] have been developed. The approaches taken include a
negotiation mechanism in the contract net [l], and a functionally

Page 2

accurate, cooperative approach [2]. Some of the important issues
in those systems have been identified as system control,
internode communication, and problem partitioning.

A group of human experts working together to solve a large
task is a familiar metaphor for a distributed problem solving
system. Of interest to our problem in examining the operation of
human experts are: (a) The meta-knowledge they use to make
judgments about acceptance and estimation of an incoming task and
who or where to submit unsolved subtasks. (b) The way in which
they make necessary plan adjustments, or even change to a new
plan, as more accurate information is gathered to lead the
problem solving process in the most promising direction. (c) The
way in which they communicate with each other to solve the entire
problem.

Based on these observations, We developed a framework [8] in
which each node is equipped with a dynamic planning ability, an
internode question-and-answer mechanism [9], and meta-knowledge
to - attack those issues mentioned above, maintain global
coherence, and efficiently use the available knowledge sources.

NODE ORGANIZATION

Figure 1 represents the organization of a processing node.
Each node consists of a front-end processor (including a receiver
and a transmitter), a planner, a scheduler, a solver, a
blackboard, meta-knowledge, and knowledge sources.

Two types of meta-knowledge are available to the processing
node; each type 1is organized according to a frame-like
structure. One type stores the names of problem areas of
interest to this node as well as corresponding problem
decompositions and result synthesis mechanisms which its own
expert systems can provide. The other type represents its
estimates of the beliefs and capabilities of other processing
nodes. The motivation for using meta-knowledge is to allow a
high-level reasoning process to be implemented in the internode
communication and planning processes.

Problems within the areas of expertise of each processing
node are accepted by the receiver from a message channel,
depending on an attached address and the meta-knowledge which is
available. After a problem is accepted, a frame is written on
the blackboard to keep the information associated with the
problem. The frame has several slots to store such information
as an abstraction of the problem, an associated data and
specifications, a solution plan, a result synthesis mechanism,
and a distribution list for results.

A planner generates a problem solving plan for each newly
received problem. For an existing problem, it dynamically makes
plan adjustments to lead the problem solving process in the most
promising direction as more precise information is gathered. A
detailed description of this mechanism is given below.

Page 3

Ve

\'
FRONT-END
- >| (RECEIVER, |[<==—=======- -
TRANSMITTER) \Y
META-
KNOWLEDGE

LA D |

—_——— PLANNER
v I S—
o
BLACKBOARD
<——I v
===-=>| SCHEDULER
V
—_———
——————————————— >| SOLVER KNOWLEDGE
mm e SOURCES
Figure 1. Node Organization.

All planned problems are ordered by the scheduler according
to their importance in the problem solving process, the
availability of results to their subproblems, and knowledge
source requirements. The ordered problems are executed according
to their priorities as assigned by the scheduler. The necessary
knowledge sources are initiated, and the problem solving plan is
deducted. This process is repeated until no further deductions
can be made. A final result is stored into the corresponding
frame on the blackboard, if the problem is completely solved;
otherwise, the problem solving plan is updated and intermediate
results are stored. The unsolved problem is then sent back to
the planner to make further plan adjustments.

The transmitter is responsible for directly transmitting or
broadcasting available results, as well as any unsolved
subproblems which are outside the capability of this processing
node.

PLANNING MECHANISM
The goal-directed planning used in STRIPS and ABSTRIPS [5]

has been proven to be an efficient mechanism. On the other hand,
the data-driven control mechanism developed for the Hearsay-1I

Page 4

speech understanding system [6] 1is regarded as an effective
control mechanism for problem domains in which each processing
node has only a partial view of the problem and erroneous data.
A combination of goal-directed and data-driven mechanisms is used
by the planner presented in this paper to dynamically guide the
problem solving process in the most promising direction and
maintain global coherence. The problem decomposition and result
synthesis meta-knowledge about problems of interest and beliefs
about other nodes are needed in this process.

The planning process begins with a goal-directed mechanism.
It decomposes an incoming problem by using the appropriate
problem decomposition expertise (this is domain dependent) which
is available in the meta-knowledge data base. An AND/OR
graph-like problem solving plan is generated after this process.
In oder to have efficient use of knowledge resources (KS”s) and
communication channel capacity, a focusing control mechanism
similar to GODDESS [7] 1is wused to select the most promising
problem solution plan from a number of possible choices in terms
of several parameters. The parameters are domain dependent, and
may include values for result confidence, data reliability, and
solution cost.

The focusing control mechanism constructs the most promising
problem solution plan by applying a problem dependent evaluation
mechanism to every node in the corresponding AND/OR graph-like
problem solving plan. For a leaf-node subproblem, its criterion
is generated by the evaluation mechanism in terms of either
actual parameter values (if available), or estimated wvalues
stored in the meta-knowledge database, and returned to its parent
node for another 1level of solution plan selection. For a
non—-leaf subproblem (either an AND or OR node), its criterion is
calculated based on the criteria of its son-node subproblems
according to the provided evaluation mechanism. It may be the
biggest, or the smallest for an OR-node subproblem, or summation,
weighted summation, or the biggest for an AND-node subproblem.
Hence, while the focusing mechanism provides a framework for the
dynamic planning, it is the responsibility of the user to supply
the domain dependent evaluation mechanism and choose the
appropriate parameters.

Initially, the most promising problem solution plan is
chosen based on the information stored in the meta-knowledge
database. As the problem solving process proceeds, more precise
information is gathered and used to select the next most
promising problem solution plan, as well as to update the
meta-knowledge database. This process 1is repeated until the
problem is solved. Since the content of the meta-knowledge data
base becomes more accurate as the system is used, the system
should be able to generate a better problem solution plan within
a few planning cycles.

Page 5

INTERNODE COMMUNICATION

The internode communication is structured into a
question-and-answer process incorporating meta-knowledge. From
the point of view of a transmitter, a problem is transmitted as a
question. When a question is received by a receiver, a task is
generated whose goal is to produce an answer for that question.
An answer could be either a result or a hypothesis, depending on
the gquestion.

A transmitted problem or question may be broadcast or may be
addressed to a particular node. A node”s acceptance or rejection
of a question depends on its attached address and the scope of
expertise available at this processing node. Questions and
answers are directly transmitted or broadcast to appropriate
processing nodes based on both the related information in problem
frames and beliefs about other nodes in the meta-knowledge data
base.

A common language is needed to specify the contents of the
communication messages. The system uses only two kinds of
messages: one for questions (task announcements) and the other
for answers (result reports). The message format is like the one
used in the contract net [1] in that it is composed of a number
of slots that specify the kind of information needed in that type
of message. A question message has four main slots: 1) message
type, with question as its value; 2) message name, with an
identification attached by the sender; 3) message abstraction, a
brief description of the gquestion written in common language;
and 4) input, a list of associated data. An answer message also
has four main slots: 1) nmessage type with value answer; 2)
message name and 3) abstraction, the same as in the question
message; and 4) output, a list of results or hypotheses replying
to the question.

Although this mechanism is much simpler than the negotiation
process used in the contract net [l], we believe it still has the
ability to control the quantity and direction of messages flowing
through the message channel.

AN EXAMPLE

A logic design problem of implementing the sum of the least
significant bit of a carrier look-ahead adder is designed to
demonstrate the operation of the proposed system. The system 1in
this example consists of three processing nodes. Their
meta-knowledge database and available devices are shown in figure
2. A task is given to the system as a question and for this
example the associated input data is a set of simple 1logic
equations, Propagation delay is <chosen as the criterion to
compare the different kinds of implementations. A task can be
either directly given to a particular processing node or
broadcast to the whole system.

Page 6

INTEREST RESULT PROBLEM
NODE PROBLEM SYNTHESIS DECOMPOSITION CRITERIA
NAME ABSTRACTION PROCESS PROCESS {DELAY ns)
1 logic—-design rs—-mux dec-mux nil
1-d-mux rs—-mux dec-mux 14
2 logic—design rs—-nad dec-nad nil
1-d-nand rs—-nad dec-nad 20
3 logic—-design rs-aot dec-aot nil
' 1-d-aot rs—-aot dec-aot 25

(a) Meta-knowledge databases describing each node”s expertise

NODE PROBLEM

NAME ABSTRACTION CANDIDATES CRITERIA
1 1-d-nand node?2 10
l-d-aot node3 15
2 l1-d-mux nodel 10
1l-d-aot node3 18
3 1-d-mux nodel 10
l-d-nand node2 12
Note:

l-d-mux stands for logic design with multiplexers.
1-d-nand stands for logic design with NAND gates.
1-d-aot stands for logic design with AND, OR, and OR gates.

(b) Estimates of the abilities of other processing nodes.

NODE NAME 1 2 3
AVAILABLE 74153 7400 (10ns) 7404 (10ns) ,7432 (4ns)
DEVICE (14ns) 7410(10ns) 7408 (10ns) ,7411(8.2ns)

7420 (10ns)
(c) Available logic devices.

Figure 2. Domain dependent knowledge needed in
logic design example.

In this particular example, the task shown in figure 3 is
given to node one. Since the task is within the area of this
node”s expertise, the corresponding problem decomposition process
takes place, and a problem solving plan, (t-1 (t-2 ¢t-3 v
identity) © rs-mux), is generated. The corresponding AND/OR
graph-like problem solving plan is shown in figure 3. The task
frames of the subtasks t-1, t-2, and t-3 are also shown in figure
4. Based on the information stored in node one”s meta-knowledge
database (l5ns for t-2 and 10ns for t-3), the most promising
problem solution plan is chosen as (t-1 t-3 © rs-mux). Among the
kernel subtasks of the solution plan, t-1 is solvable, and t-3 is
unsolved, so subtask t-3 is broadcast through a message channel
to other processing nodes in the systemn.

Page 7

;s—mux
7 \
//\/\
t-1 identity
/ \
/ \
/ \
t-2 t-3

(t=1 (t-2 t-3 v identity) "~ rs-mux)
Note:

t-1, t-2 and t~3 are leaf subtasks.
identity and rs-mux are result synthesis processes.

Figure 3. A problem solving plan.

NAME I NAME : t-1
ABSTRACTION : logic-design ABSTRACTION : l-d-mux
INPUT : equ-set INPUT : equ-setl
SOLVING-PLAN: (t-1 (t-2 t-3 v identity) SOLVING-PLAN: solvable
~ rs-mux)
NAME : t-2 NAME : t-3
ABSTRACTION : l-d-aot ABSTRACTION : l-d-nand
INPUT ¢ equ-set2 INPUT : equ-set2
SOLVING-PLAN: nil SOLVING-PLAN: nil

Note: equ-set
equ-setl
equ-set2

equ-setl U equ-set2
((p=pl +p2) (Pl = x * -y) (p2 = -x * y))
((z = 21 + 22 + z3) (z1 = x * y * cin)

(z2 = p * -cin) (23 = -x * -y * ¢cin))

Figure 4. The task frames for task t and subtasks
t_l’ t_2, and t-3.

After listening to the message channel and making the
necessary check, node two accepts subtask t-3. Since it is
solvable, the node two initiates the necessary knowledge sources
to solve it and then an implementation of t-3 is sent back to
node one through the message channel.

During the next planning process, node one determines that
the criterion of task t-3 1is worse than that of task t-2, by
comparing the actual criterion (30ns) of t-3 with the estimated
criterion (15ns) of t-2, so the most promising solution plan is
revised to become (t-1 t-2 ©~ rs-mux). Again, subtask t-2 is
broadcast.

Page 8

user

(7 (0)
final result task t

NODE1

= l
=

problem solving plan 1

(3) (6) (2) (1)

task t-2 result result task t-3
of t-2 of t-3
v (4) task t-2-1 #
NODE 3 (5) result of t-2-1 NODE 2
problem solving plan 3 t-3 and t-2-1 are
solvable tasks
Note:
problem solving planl --- (t-1 (t-2 t-3 v identity) *~ rs-mux).
problem solving plan3 --- ((t-2-1 t-2-2 v identity) ~ rs-aot).
(a)
INV
cin —{7404
0 —0 AND
1 —1 7408
1 ——2 74153
0 —3
|
X vy OR
} AND OR
cin —————7411 7432 —> 2z
7432
INV
x ——| 7404
INV AND
y —— 7404
7411
cin

(b)

Figure 5. (a) The message flow diagram of the logic
design example. (b) The final implementation.

Page 9

After making the necessary check, a problem decomposition
process is initiated at node three. A problem solving plan is
created as ((t-2-1 t-2-2 v identity) ~ rs—aot). The task frames
of subtasks t-2-1 and t-2-2 are the same as that of task t,
except the values of slots are different. According to the
criteria stored 1in its meta-knowledge database (12 ns for t-2-1
and 25ns for t-2-2), the most promising solution plan is (t-2-1 *
rs~aot). The subtask t-2-1 1is an unsolved task, so it is
broadcast. Since t-2-1 is a solvable task to node two, an
implementation of it is received from node two.

After receiving the implementation of subtask t-2-1 from
node two, node three learns its own expertise is better than
others, so it then applies the necessary knowledge sources to
solve it (t-2-2). An implementation is then formed for task t-2
and sent back to node one.

Once node one receives the result of task t-2, an overall
implementation is synthesized from the best implementations of
its subtasks. This implementation is then returned to the user
as an answer. A messge flow diagram and overall implementation
are shown in figure 5.

CONCLUSIONS

A node organization designed to support a distributed
problem solving approach is presented. Among the major
components of the node organization are a dynamic planning
ability which guides the problem solving process in the most
promising direction, a question-and-answer mechanism with
meta-knowledge to control the quantity and the direction of
message flow through a message channel, and a database of
meta-knowledge about the areas of a node”s own expertise and
estimates of the abilities of other processing nodes. These
features allow the system to constantly improve its performance,
and to perform dynamic planning and intelligent internode
communications. These features of the system are successfully
demonstrated by results from a logic design example.

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

Page 10

REFERENCES

R. G. ©Smith and R. Davis, "Framework for Cooperation in
Distributed Problem Solving," IEEE Trans. Systems, Man,
Cybernetics, Vol. SMC-11, No. 1, pp. 61~ 70, January 1981.

V. Lesser and D. Corkill, "Functionally Accurate, Cooperative
Distributed Systems," IEEE Trans. Systems, Man, Cybernetics,
Vol. SMC-11, No. 1, pp. 81-96, January 1981.

D. McArthur, R, Steeb, and S. Cammarata, "A Framework for
Distributed Problem Solving," Proc. National Conf. on
Artificial Intelligence, pp. 181-184, August 1982,

V. Lesser, et al., "A High-level Simulation Testbed for
Cooperative Distributed Problem Solving," Proc. Third
International Conf. on Distributed Computing Systems, Miami,
FL, pp. 341-350, October 1982.

N. Nilsson, Principles of Artificial Intelligence, Tioga
Publ. Co., Palo Alto, CA, 1980.

L. D. Erman and V. R. Lesser, "A Multi-level Organization for
Problem Solving Using Many, Diverse, Cooperating Sources of
Knowledge," Proc. Fourth International Joint Conf. on
Artificial Intelligence, USSR, pp. 483-490, September 1975.

J. Pearl, A. Leal and J. Saleh, "GODDESS ¢ A Goal-directed
Decision Structuring System,"” IEEE Trans. Pattern Analysis
and Machine Intelligence, Vol. PAMI-4, No. 3, pp. 250-262,
May 1982.

M. N. Huhns, L. M. Stephens, and J. D. Yang, "A Structure for
Distributed Expert Systems Based on Dynamic Planning,"
submitted to IJCAI-83, Karlsruhe, West Germany, August 1983,

M. N. Huhns, L. M. Stephens, and R. D. Bonnell, "Control and
Cooperation in Distributed Expert Systems," Proceedings of
IEEE Southeastcon, April 1983.

