MCC Technical Report Number AI-445-86
USING A TMS FOR EBG
Shiuh-li Liuh and Michael N. Huhns

December 31, 1986

| Non-Confidential |

Microelectronics and Compuier Technology Corporation
AI/KBS Program
8500 West Balcones Center Drive
Austin, TX 78759
(512) 843-0978

Abstract

This paper describes a method for implementing Explanation-
Based Generalization (EBG) in a system which contains a Truth
Maintenance System (TMS). It is shown that the TMS data depen-
dency network provides the explanation structures needed by the EBG
method. An EBG learning capability can therefore be easily added
to a system with a justification-based TMS, without modifying the
TMS. The paper discusses some interesting results of incorporating
EBG in a TMS environment, one of which is nonmonotonic learning.
Future research topics related to learning in general are also discussed.
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1 Introduction

Ari intelligent system must be able to reason with whatever knowledge it
has available, and then learn from the results of its reasoning. Moreover,
the reasoning and learning processes must be robust and effective enough
to be able to operate with incomplete knowledge in a changing world. A
justification-based TMS provides a nonmonotonic reasoning capability that
can maintain a consistent set of beliefs in such a world [7]. It allows infer-
ences to be retracted by maintaining a cache, in the form of a dependency
network, for all of the inferences that the reasoning system has made. EBG
is a knowledge intensive approach for learning from examples of reason-
ing that has recently received extensive coverage in the research literature
[3,4,5,6]. It derives a generalization from a single example by deductively
justifying and explaining the example in terms of an underlying domain
theory. We show that the TMS data dependency network constitutes the
explanation structures required by EBG for generalization. Therefore, not
only does a TMS allow a straightforward and efficient implementation of
EBG, but also it enables learning to proceed nonmonotonically.

1.1 Explanation-Based Generalization

The ability to generalize from examples is essential for any machine learning
system [1,2]. Explanation-Based Generalization is a method that enables a
system to learn a generalized concept, or in terms of problem solving [4], a
generalized sequence of operators or a macrorule that achieves a goal state,
from a single training example. Based on a formulation by Mitchell, et al.
[3], it requires four types of information:

1. Goal concept or goal state

2. Training example: a specific example of the goal concept, or a se-
quence of operators which transforms a specific initial state to the
goal state

3. Domain theory: a set of inference rules and facts that can be used to
explain the training example



4. Operationality criterion: a specification of how a learned concept
definition must be expressed so it is “operational”, or in problem
solving terms, a specification of the types of the operators allowed in
the generalized solution sequence so it may be readily applied to solve
new problems.

The EBG method involves two steps:

1. Explain: use the domain theory to construct an explanation structure
which provides an operational account for how the training example
satisfies the goal.

2. Generalize: use a goal regression technique [9] to determine a set of
sufficient conditions under which the general explanation structure
holds.

1.2 'Truth Maintenance Systems

A truth maintenance system is a subsystem of a problem solver that main-
tains logical justifications for program beliefs [7]. Whenever a deduction
is made, a justification for the deduced conclusion is constructed which
records the dependency links between the conclusion and the data that
support its deduction. The primary function of the TMS is to assign belief
statuses to data in accordance with the logical dependencies, preserving
overall consistency and providing a well-founded basis for beliefs [7,8]. The
belief status of a datum may be IN or OUT, which means the datum is
currently believed or not believed, respectively. ,

Keeping track of the dependencies among data enables the system to
efficiently revise its belief set when assumptions are retracted or new infor-
mation is added; a TMS thus supports default reasoning and nonmonotonic
reasoning. It also allows dependency directed backtracking, and facilitates
the generation of comprehensive explanations.

2 TMS and EBG

In a TMS, every datum which the system can reason about or reason with
is represented as a node. A node’s justifications represent dependency links

2



between the node and other nodes which contribute to its belief. A node
is IN if and only if it has at least one valid justification; it is OUT if and
only if it does not have any valid justification. A justification consists of
two sets of nodes: an IN-list and an OUT-list. A valid justification is one
for which each node in its IN-list is IN and each node in its QUT-list is
OUT. For example [10], if Assertion g1: (gray Clyde) is derived from
the following three data:

Rule r1: (believed)
((elephant X)
(unless (albino X))

—_—

(gray X)),
Assertion el: (believed) (elephant Clyde),
Assertion al: (NOT believed) (albino Clyde),

then the TMS will construct a justification for g1 which has r1 and el in
its IN-list and al in its OUT-list, represented by the pair: ((r1 el) (al)).

As described above, a node in a TMS is connected to others by justifi-
cations. The reason for a node’s IN status can be obtained by tracing the
dependency network that a TMS creates among nodes. The key observa-
tion of this paper is that the TMS data dependency network constitutes
the explanation structures required by EBG for generalization. Further,
the EBG goal concept is simply a justified datum, the training example is
the situation that resulted in the datum and its justification being recorded
in the TMS, the domain theory is the rule-based system that generated the
justification or data-dependency network, and the operationality criterion
is the set of predicates allowed at the leaves of the data-dependency network
in order for EBG to succeed. This straightforward mapping means that it
is relatively easy to add an EBG learning capability to a reasoning system
already equipped with a TMS. An algorithm that accomplishes EBG using
the information stored in the TMS is described next.

!Preceding an assertion by unless denotes negation-by-failure, i.e., the system is unable
to establish a valid justification for the assertion.



3 The Algorithm

The purpose of the generalization step in EBG is two-fold: 1) obtaining
a more general statement about the goal predicate by substituting vari-
ables for constants in the training example, and 2) compiling knowledge by
combining several related rules into one more efficient macrorule. This is
achieved by regressing the most general form of the goal predicate through
the rules in the example’s justification network completely (or until the
operational criterion is met). To avoid over-generalization, it is necessary
to maintain a substitution list for variables in the goal predicate through-
out the regression process. Our method is very similar to the technique
described in [4].

The generalization procedure is presented in terms of a rule-based rep-
resentation of knowledge. Data in the system are either assertions or rules.
Data have justifications; a datum with a justification of empty IN-list and
empty OUT-list represents an axiom. The form X /S denotes the result of
applying the substitution list S to the form X. A substitution list is a list
of variable and binding pairs.

Given a specific example g and a valid justification j, the algorithm
computes a macrorule for a general form of g as follows:

1. G := the form obtained by replacing all arguments of ¢ with distinct
variables;
J := a justification with an empty IN-list and an empty OUT-list;
S := null; (the substitution list for G)
Antecedents := null; (the antecedents of the macrorule)
Subgoals := a sequence containing G
Ezplanations := the IN-list of the justification for g;

2. If Subgoals is null, output the macrorule
Antecedents — G/S
with the justification J.

3. Let s be the first element of Subgoals. If s meets the operational
criterion, is an unless clause (negation by failure), or unifies with an



assertion in Ezplanations which is an axiom, remove s from Subgoals
and include it in Antecedents, then go to step 2.

4. If there is a rule R in Ezplanations, one of whose consequents unifies
with s,

add the resultant binding to S,

remove 8 from Subgoals,

let the antecedents of R be R4 and include R,/S in Subgoals,
include R in the IN-list of J,

go to step 2.

Else

find an assertion in Ezplanations that unifies with s,

add to Ezplanations the IN-list of one of the valid justifi-
cations for that assertion,

go to step 4.

4 Discussion

There are several interesting implications of incorporating EBG into a sys-
tem with a TMS involving the nonmonotonicity of the domain theory and
the learning, and the flexibility of formulating the learning task. These con-
stitute capabilities that the mapping of EBG onto the Soar problem-solving
architecture does not provide [6].

4.1 Nonmonotonic Learning

Since part of the explanation structure (data-dependency network) from
which the generalized concept or macrorule is constructed may become
OUT (disbelieved) in a nonmonotonic system, it is necessary to place the
learned concept or macrorule under the realm of the TMS by assigning
it a nontrivial justification. A learned rule will then be unlearned if any
part of the domain theory which supports its derivation loses validity. This
means the system exhibits nonmonotonic learning. Those facts which are
derived from the currently disbelieved rule will also become disbelieved



automatically. The justification for the learned concept or the macrorule
contains the general domain rules from the explanation structure, but not
facts pertaining to the specific training example. This means that the
learned macrorule does not necessarily become OUT when the training
example becomes OUT.

We will illustrate this point by extending an example from [4]. The
domain theory includes the following rules: .

k1: ((hate X Y)(possess X Z)(weapon Z)

o

(kzll X YY)
hi1: ((depressed X) — (hate X X))
pl: ((buy X Y) —> (possess X Y))
wl: ((gun X) — (weapon X))
It also includes the following facts about John:
di: (depressed John)
b1: (buy John obj1)
gl: (gun objl1)
While deriving the assertion
k2: (kill John John)

the system establishes the dependency network shown in Figure 1. Given
the goal predicate (kill X Y) and the justification ((k1 h2 p2 w2) ( ))
for the example assertion k2, the generalization procedure will compute the
macrorule

k3: ((depressed X)(buy X Y)(gun Y)

-_—

(kill X X))



k2: (kill John John)

h2: (hate John John) p2: (possess John objl)

k1: ((hate X Y)
(possess X Z)
(weapon Z)

(kill X Y))

w2: (weapon objl)

d1: (depressed John) b1: (buy John objl)

h1: ((depressed X) pl: ((buy X'Y) g1: (gun objl)
(hate X X)) (possess X Y)) wl: ((gun X)

(weapon X))

Figure 1: TMS data-dependency network / EBG explanation structure.



and assign it the justification ((k1 Al pl w1)()).

However, if later we discover that our theory of psychology is not correct,
we may invalidate the rule A1 (making it OUT) and insert the following
new rule into the knowledge base:

h2: ((depressed X)(introspective X)

—

(hate X X))

The derived rule k3 will then become OUT because k1, one of its in-
supportors (an element of IN-list), is no longer IN. Any assertion that is
based on k3 will also become OUT.

If the knowledge base also contains the fact

(introspective John)
the system will be able to derive
(ktll John John)

again and, if initiated, learn the following new macrorule:

k4: ((depressed X)
(introspective X)
(buy X Y)
(gun Y)

—_—

(kill X X))

This suggests a way to tackle the problem of learning with an incomplete
domain theory or a theory with defeasible rules. We may still apply EBG
and risk over-generalization in such circumstances, but, as we (or the system
itself if it is sufficiently intelligent) learn more about the domain and start to
revise the knowledge base by making some existing rules OUT, the system
will automatically retract over-generalizations which are based on those
defeasible rules. Note that if new rules are introduced which enable another
derivation of the example, the system will be able to relearn by invoking
the generalization procedure again.



Another point about nonmonotonicity is that a TMS allows a system
to maintain consistency under incremental revision of its knowledge base.
This is accomplished by the TMS constantly updating and propagating
changes throughout the dependency network. Combining EBG with TMS
means the learning task does not have to assume a static view of the world.
Facts about the domain and the operational criterion need not be fixed
inputs to the EBG method. They may be modified as the requirements for
the learning task change, as well as when the system’s understanding of the
world changes.

The domain theory might contain rules which are defeasible, due to the
use of default reasoning or the presence of negated conditions (antecedents
preceded by unless). Because the data-dependency network maintains an
OUT-list (as well as an IN-list), corresponding to the use of defeasible rules
for the explanation of a goal concept, the resultant macrorule might also
contain defaults and negated conditions. The conclusions of the macrorule
would thus be defeasible, as well as the rule itself.

4.2 Flexible Learning

The availability of a TMS allows a structuring of when learning occurs
and how the information which is learned might be organized. The data
dependency links are created and maintained by the TMS independently
of the learning task. This means that the generalization task may be car-
ried out sometime after the proof for the example is derived without the
need to recalculate the explanation. The decoupling of the explanation and
generalization steps, plus the fact that a TMS dependency network poten-
tially encompasses the entire knowledge base, will allow more flexibility in
formulating and scheduling the learning task.

This flexibility is beneficial, but it makes the still open issue of schedul-
ing the generalization task even more complex. For example, based on
previous problem solving activities, the TMS may have multiple valid justi-
fications for an example that the learning task decides is worth generalizing.
Which justification should it use? When there are several ways to explain
a past experience, the system needs heuristics to guide it in deciding which
explanation is the best candidate for generalization.

Another open question is how to integrate the learned macrorule into



the problem solving subsystem so that the resultant performance of the
system will be improved. As the system continues learning, it may be-
come burdened with a large number of similar rules of varying generality.
How should the knowledge base be reorganized as rules are accumulated
in order for the system to take advantage of the newly-acquired rules most
effectively? After all, EBG only computes generalizations that are within
the deductive closure of the domain theory. The question is not what as-
sertions the system is able to derive, but how efficiently it can derive these
assertions or whether it can do this more efficiently after seeing one example
of the same derivation. The justifications maintained by the TMS for each
learned rule are being investigated for use in a rule-ordering mechanism
that appears to yield the desired efficiency.

5 Conclusions

A unification of EBG and TMS means that the TMS data dependency
network is useful for learning, as well as for providing explanations and
maintaining a consistent set of beliefs. The TMS can also maintain justifi-
cations for the rules derived by EBG. Thus, this unification yields a system
with both nonmonotonic reasoning and nonmonotonic learning. The algo-
rithm presented in this paper has been implemented in Proteus, a rule- and
frame-based, nonmonotonic inference system being developed at MCC.

6 Acknowledgements
We are especially grateful to Tom Mitchell for many very interesting and

stimulating discussions. We also thank members of the Proteus project at
MCC for their help and support.

10



References

[1] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, eds., Machine
Learning, An Artificial Intelligence Approach, Vol. I, Tioga Press, Palo
Alto, CA, 1983.

[2] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, eds., Machine
Learning, An Artificial Intelligence Approach, Vol. II, Morgan Kauf-
mann, Los Altos, CA, 1986.

[3] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli, “Explanation-
Based Generalization: A Unifying View”, Machine Learning, Vol. 1,
No. 1, 1986, pp. 47-80.

[4] G. DeJong and R. Mooney, “Explanation-Based Learning: An Alter-
native View”, Machine Learning, Vol. 1, No. 2, 1986, pp. 145-176.

[5] R. J. Mooney, S. W. Bennett, “A Domain Independent Explanation-
Based Generalizer”, Preceedings of the Fifth National Conference on
Artificial Intelligence, Philadelphia, PA, August 1986, pp. 551-555.

{6] P. S. Rosenbloom, J. E. Laird, “Mapping Explanation-Based Gener-
alization onto Soar”, Preceedings of the Fifth National Conference on
Artificial Intelligence, Philadelphia, PA, August 1986, pp. 561-567.

[7] J. Doyle, “A Truth Maintenance System”, Artificial Intelligence,
Vol. 12, No. 3, 1979, pp. 231-272.

[8] D. Russinoff, An Algorithm for Truth Maintenance, MCC Technical
Report AI-062-85, 1985.

[9] N. J. Nilsson, Principles of Artificial Intelligence, Tioga Press, Palo
Alto, CA, 1980.

[10] C. J. Petrie, D. M. Russinoff, D. D. Steiner, PROTEUS: A Default
Reasoning Perspective, MCC Technical Report AI-352-86, 1986.

11



i u ! ) ) — U

J

—_— o v y) ek e
) & L2 £ 3 &3 O



