

USC-CIT Technical Report 98-01

Representing and Using Ontologies1

Kuhanandha Mahalingam and Michael N. Huhns

January 1998

Center for Information Technology
Department of Electrical and Computer Engineering

University of South Carolina
Columbia, SC, U.S.A. 29208

(803) 777-5921 or kuha@sc.edu
(803) 777-8045 FAX

Keywords: Ontology, Java, Distributed Information Systems

Abstract

This paper discusses the representation of large ontologies, especially in a
graphical format. It describes a tool, developed using Java, that incorporates several
abstraction mechanisms that can help manage such ontologies. Furthermore, it briefly
analyzes possible point-and-click approaches that can be used to form queries on these
ontologies.

1 This research was partially done under a cooperative agreement between the National Institute

of Standards and Technology Advanced Technology Program (under the HIIT contract, number
70NANB5H1011) and the Healthcare Open Systems and Trials, Inc. consortium.

 2

1. Introduction
The introduction of the World Wide Web (Web) and the consequent growth of

other supporting technologies that, without doubt, have driven the Internet’s widespread
usage have created many new problems. The most notable problem is how to manage
efficiently the volume and heterogeneity of information produced on the Web each day.
Further, most of the data produced is no longer just simple text, but also consists of
multimedia objects. Multimedia objects require different policies, procedures, and
conventions. They originate from and reside on a variety of different operating systems,
and, most importantly, are large and complex.

There are many approaches for coping with these problems. One of these
approaches is to use ontologies for capturing the knowledge represented by the
information sources, so that it can be viewed and manipulated declaratively. However,
the construction and management of ontologies is itself problematic, particularly when
the ontologies are large and complex, as is common nowadays.

The Java Ontology Editor (JOE)[3], a tool developed at the University of South
Carolina, is part of an ongoing project that attempts to find solutions to the above
problems by using various abstraction mechanisms. In this paper we are mostly
interested in the management and representation of ontologies that are large in terms of
the number of concepts and relations that are represented. In the following sections we
describe various techniques currently being used for this purpose.

2. Ontologies
An ontology is, fundamentally, a conceptualization or an abstract model of some

portion of the world and is described by defining a set of representational terms.
Definitions associate the names of entities in a universe of discourse (e.g., classes,
relations, functions, or other objects) with formal axioms that constrain the interpretation
and well-formed use of these terms [1,2]. Ontologies can be used to organize keywords,
database concepts, and even unstructured data produced by multimedia applications, by
capturing the semantic relationships among the numerous concepts that define the
information space of interest. By using these concepts and relationships, a network
structure can be created providing users with a model of the information space for their
domain of interest. Due to this attractive feature, ontologies are now heavily used for
knowledge sharing in a distributed environment, and several ontology-based information
systems have been implemented [4-7].

2.1 Representing Ontologies in Textual Formats
Ultimately all ontologies are stored in a pure textual format of some form or

another. A proposed standard for storing ontologies in textual format is the Knowledge
Interchange Format (KIF)[8], which is also the most widely used format. In addition to
KIF there are several others: Lisp, Clips, Loom, Ontolingua, and LDL formats are the
most commonly used ones for representing ontologies.

The following code segments show how three different formats represent the
concept Person and a property called last_name:

 3

KIF
(defrelation Person

(subclass-of Person Agent)
(class Person))

(deffunction person.last_name
(function person.last_name)
(domain person.last_name Person)

 (range person.last_name
Name)

 (arity person.last_name 2))

LOOM LDL++
(loom:defconcept Person frame('Agent_Person’),
:context Agent name('Agent_Person', 'Person'),
:is-primitive (:and Agent) member('Agent_Person', 'Agent'),
:annotations
((documentation slot('Agent_Person_last_name'),
"A person represents a human"))) name('Agent_Person_last_name',
 'last_name'),
(loom: defrelation person.last_name
:context Agent domain('Agent_Person_last_name',
:is-primitive loom:binary-tuple 'Agent_Person'),
:domain Person range('Agent_Person_last_name',
:range Name :attributes string),

(:single-valued)
:arity 2
:annotations
((documentation
"The last name of Person.")))

As opposed to graphical representations, textual formats have one very useful
advantage. Ontologies represented by means of any of the above mentioned textual
formats are easier to port from one operating system to another, since they do not store
any platform dependent information in their representations. In a distributed and
heterogeneous environment, this feature is very useful for knowledge sharing.
Unfortunately, textual formats also exhibit many disadvantages. One is that textual
representations such as the above are not so easy to comprehend due to the nature of how
the information is presented to users. In other words, unless users are well versed in the
format used, they will not be able to read it and understand the representation. If the
information is not easily understood, then possible use of it is very limited. We have
observed that some of the problems of textual representations can be eliminated by
proper use of graphical representations in combination with textual constructs.

2.2 Representing Ontologies in Graphical Formats
It is commonly believed that one of the attractive features of graphical

representations is that they are easier to understand than their textual counterparts.
Unfortunately, unlike textual formats, graphical formats are harder to port from one
operating system to another because system-dependent information often must be stored
in addition to the actual knowledge base. However, with the introduction of system-
independent development languages such as Java, there is no need for such additional
information.

Person

last_name

 4

Because of the close relationship between the information spaces and databases,
in addition to its simple format, currently most preferred graphical representation method
is the popular Entity-Relationship (ER) diagrams. An ER diagram is a graph in which
nodes represent entities (or concepts) and arcs represent relationships between concepts.
Graphically, entities are shown as rectangles, attributes as ellipses, and relationships as
diamonds as shown in Figure 1.

Looking at Figure 1, it is quite obvious why E/R diagrams are widely used for

graphically representing meta-schemas of knowledge bases. E/R diagrams are preferred
over others because in their simplest form there can be a one-to-one mapping between an
ER diagram and an actual database. For example, we can easily transform the above
schema to a database that contains three tables (i.e., Employee, Project, and worksOn),
where the first table has four columns (i.e., Name, Address, Ssn, and Salary), the second
one has three columns (i.e., Name, Number, and Location), and the third one has four
columns (i.e., Ssn, Name, Number, and Hours).

Currently there are several variations that have been built on top of the basic E/R
model, but customized for specific application domains. It is also a common practice not
to show attributes as ellipses, but instead display them as a list inside the parent entity
rectangle.

3. Displaying Large Knowledge Bases
The Internet’s widespread usage has generated many new unexpected problems in

recent years. Unfortunately, the rate of its growth has made finding solutions to these
problems a difficult task. Of all the problems, the one most relevant to ontologies is the
task of representing and managing very large information sources, which have become
very common. The approach widely used to solve this problem is to develop tools that
support various abstraction mechanisms. In the following few sections we will take a
look at a few of these abstraction mechanisms in use today.

3.1 Hierarchical Ontologies
Ontologies with a large number of hierarchical relationships can be displayed

using various abstract levels.

Employee ProjectName

Ssn Name
Number

Location
worksOn

 Hours
Addres

Salary

(1,N) (1,N)

Figure 1. A simple E/R diagram

 5

As a hyperbolic tree: As shown in Figure 2, information can be organized using a
hyperbolic data structure. Additional information about any node (especially hidden
links) can be made visible by bringing it to the center (i.e., focusing on that node) of the
display. In this example, the tool is used to display all WWW documents (or URLs)
available at a specific server.

When the user has located a specific URL, they can directly access it by double
clicking on the node. This same tool is also ideal for representing any information space
that exhibits a large number of hierarchical relationships. However, this tool is not
suitable when there are a large number of relationships other than hierarchical. With
such relationships it becomes harder to maintain a simple and clear display as shown
above due mainly to the increased number of links that are necessary to show each
relationship.

An alternative to a hyperbolic tree is the topic graph developed by Alta Vista
Corporation [14] (see Figure 3). It is quite similar to the hyperbolic tree, and used as a
tool for searching for information in the Internet. Under each of the displayed topics, a
list of more specific topics is available (not shown) and, if necessary, the initial query can
be further modified to reduce the number of possibilities by selecting a topic from this
list.

Figure 2. Hyperbolic Tree Display of Inxight

Corporation[13]

 6

As a collapsible and expandable tree: Another alternative is to display the
information in a collapsible/expandable tree as
shown in Figures 4 and 5. In this format, the user
has the freedom to expand only the node of
interest and leave the rest in a collapsed state. If
necessary, the entire tree can be expanded to get
the complete knowledge base. Once again, this
type of format is useful only when there are a large
number of hierarchical relationships.

3.2 Nonhierarchical Ontologies
When the number of relationships other

than hierarchies is larger, the above mentioned
tools begin to lose their simple and easy to
understand formats. The display becomes
cluttered with links between the nodes and
eventually the purpose of such displays becomes lost. For such large information spaces,
the usual choice is to use graphs and represent these ontologies using the E/R model.
Furthermore, since the ontologies are very large, the initial display is usually very
abstract giving the user only a model of the layout (see top portion of Figure 6). Here,
the colored squares represent entities and relationships (in this example, red ones for
hierarchical and yellow one for other types). These tools provide options to
progressively zoom into each of the displayed node. For example, from the abstract
layout shown at the top of Figure 6, the user can get more detail about a selected node by

Figure 4. Tree as in MS Windows

Explorer Format

Figure 3. Alta-Vista LiveTopic Graph

 7

progressively zooming in; initially, the node names are shown, then attributes of an entity

(if any) are shown (see bottom portion of Figure 6), and further on even more details
about each node are shown in Figures 7 and 8.

Figure 6. An abstract view of an ontology (the layout)

and a zoomed-in view of an entity (reference) showing its
attributes

Figure 5. An expandable/collapsible Tree

 8

4. Navigating Large Knowledge Bases
Another common problem with large ontologies is locating a desired node or, in

other words, navigating through the large number of nodes that might be connected by
hundreds of arcs. Usually, users would scroll the display a few times hoping to find the
node they are looking for. Although by using this approach the user would eventually
find the node, however, it is neither convenient nor efficient. Instead, by using a few
abstraction techniques one can speed up this process somewhat.

One such technique is to display the entire ontology, regardless of its size, inside
a given window. Unfortunately, if the ontology is quite large then the displayed image
usually is unintelligible due mainly to scaling. A solution to this problem is to provide a
magnifier – window that displays the area under the mouse pointer at the normal (100%)
scale as shown in Figure 9. Using this approach, the user, can easily navigate through the
display and locate any node of interest. In addition to this feature, it is also desirable to

Figure 7. Showing even more detail (the KIF sentence) for an ontology

Figure 8. Detail (the KIF sentence that defined the attribute)

 9

have an option to search for a given node by its name if the name of the node is already
known (see Figure 10).

5. Building Large Knowledge Bases
In general, developing ontologies is a complicated process and it is currently one

of highly debated research issues in the industry. One of many and most widely debated
reasons for it is the inevitable problem of incorrectly interpreting a given ontology at a
later time. When ontologies are interpreted differently than as designed, they are useless
from the knowledge-sharing point of view. Because of this possibility, ontology
development must be carefully controlled by means of rules and axioms that can reduce
possible misinterpretations by users other than the creator.

This problem is made even more complicated by the loss of information that
results in the process of abstraction from the real-world situation to an abstract and

Figure 9. Displaying entire ontology within the current window. Magnified view of

the selected area is shown on the right.

Figure 10. Searching for nodes

 10

inconsistent model. The problem is the differences in our conceptual model of the real
world and how each of us interpret them in our day to day activities.

Currently, there are a few tools that are specifically designed for building
ontologies that have built in validation mechanisms that guarantee the integrity of the
resulting ontologies. Of these, most notable one is the Ontolingua[9] server at Sanford
University. The ontology displayed in Figures 4 and 5 is one such ontology built using
the Ontolingua server. In addition, there are several other graphical tools that support
limited features with regard to ontology development. Our tool, JOE [3], Information
Management Tools Suite (IMTS) [10] developed at MCC, and Generic Knowledge Base
(GKB) [11] editor are a few such graphical applications that support ontology
development on a limited scale. Furthermore, there are several other tools with limited
graphical user interface, such as OOHVR [12] from NJIT and others specifically
designed for the WWW use, also available.

6. Use of Ontologies as a Query Tool
Having access to useful information alone does not guarantee that a user will get

accurate and precise information. There should be efficient applications that can help a
user get exactly what he or she is looking for in a reasonable amount of time. Towards
that end, there are a number of search applications (often referred to as search engines)
that were designed specifically for that purpose.

As mentioned before, ontologies are designed to represent meta-schemas of actual
knowledge bases that contain real-world instances or facts. Often, in order to access the
data, one needs to go directly to the actual database, generate queries, most likely, using
some standard query language such as SQL, and then submit it to get the required data.
This approach is not convenient due to two reasons:
• First the user must be able to access the database - without proper access privileges,

the database is useless.
• Secondly, the user must have knowledge about a query language supported by that

specific database.
However, by using ontologies, we can find a solution to this problem. One

approach is to provide features that support generating queries on the ontology itself.
This can be made even simpler by allowing the user to just point-and-click to generate
the query at an abstract level in which they are comfortable and let the application do the
translation from the abstract query to specific one understood by the actual database (see
Figures 11 and 12). There are many advantages in using this approach. Most
importantly, the user is not required to have knowledge about query languages. In
addition, the user need not worry about access privileges because the application acts as a
bridge between the user and the actual database. Furthermore, this approach can easily
be expanded to include, in a similar manner, many other databases without affecting the
actual users.

 11

7. Conclusions

In this paper, we looked at some issues related to ontologies. In particular, the
problems of managing large ontologies and possible solutions to those were briefly
analyzed. In addition, we also briefly explored possible uses for ontologies, especially,
use of ontologies for generating queries at an abstract level. The tool described in the
paper, the Java Ontology Editor (JOE), is an ongoing process that attempts to incorporate
many of the ideas mentioned in this paper. However, it features many of the abstraction
techniques mentioned earlier that are suitable for handling large ontologies. In the future,
features that safeguard the validity and integrity of the ontologies will be added so that it
can become a very useful tool for ontology development in a distributed and
heterogeneous environment such as the Internet.

The techniques described above are only a few out of many that are in use.
Unfortunately, one technique alone cannot be used for all ontologies. Often, different
approaches must be taken in combination to handle a given ontology depending on the
type of information it contains. Nevertheless, applications that were developed for the

Figure 12. SQL translation of the query displayed in Figure 11

Figure 11. Building Queries

 12

purpose of ontology development should provide at least some of the abstraction methods
mentioned above so that they can reduce the burden on the user.

References

[1] T. Gruber. “A translation approach to portable ontologies,” Knowledge Acquisition, vol. 5, no. 2,
pp. 199-220, 1993.

[2] P. D. Karp, K. Myers, and T. Gruber, "The generic frame protocol," in Proceedings of the 1995
International Joint Conference on Artificial Intelligence, pp. 768--774, 1995.

[3] K. Mahalingam, “The Java Ontology Editor (JOE),” Center for Information Technology,
Electrical and Computer Engineering Department, University of South Carolina, 1996.
(http://www.ece.sc.edu/Labs/HIIT/html/joe/)

[4] D. Lenat and R. V. Guha, Building Large Knowledge-Based Systems: Representation and
Inference in the Cyc Project, Addison-Wesley Publishing Company, Inc., Reading, MA, 1990.

[5] M. Genesereth. “Knowledge Interchange Format,” Principles of Knowledge Representation and
Reasoning: Proceedings of the Second International Conference, Cambridge, MA, pages 599-
600, Morgan Kaufmann, 1991.

[6] D. Woelk, M. Huhns, and C. Tomlinson. “Uncovering the Next Generation of Active Objects,”
Object Magazine, vol. 5, no. 4, pp. 32--40, July/August 1995.

[7] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaratnam, Y. Sagiv, Ullman, and J.
Widom, “The TSIMMIS Approach to Mediation: Data Models and Languages,” Proceedings of
the NGITS (Next Generation Information Technologies and Systems), June 1995.

[8] Knowledge Interchange Format (KIF), Knowledge Sharing Effort Project, Stanford University
(http://www-ksl.stanford.edu/knowledge-sharing/kif/)

[9] Ontolingua Server, Knowledge Sharing Effort Project, Stanford University.
(http://www-ksl.stanford.edu/knowledge-sharing/ontolingua/index.html)

[10] Information Management Tools Suite(IMTS), Microelectronics and Computer Technology
Corporation
(http://www.mcc.com/projects/carnot/EMMI.html)

[11] Generic Knowledge Base Editor, SRI International's Artificial
Intelligence Center.
(http://www.ai.sri.com/~gkb/)

[12] Object Oriented Healthcare Vocabulary Repository, OOHVR Query Interface Project, New Jersey
Institute of Technology.
(http://object.njit.edu:2000/~newoohvr/JBI/)

[13] Inxight Corporation, Palo Alto, California.
(http://www.inxight.com/products/hw/infoseek.htm)

[14] Alta Vista Corporation, Palo Alto, California.
(http://www.altavista.digital.com/)

 13

Kuhanandha Mahalingam has recently obtained a Ph.D. degree in the Electrical

and Computer Engineering Department at the University of South Carolina. His research
interests include ontology-based distributed information systems and software agent
technology. He received his BS and MSEE degrees from North Carolina State
University. He is a member of IEEE and NSPE.

Michael Huhns is a professor of electrical and computer engineering and director

of the Center for Information Technology at the University of South Carolina. Prior to
this he was a senior researcher at the Microelectronics and Computer Technology
Corporation (MCC) and an adjunct professor in computer sciences at the University of
Texas, Austin. Dr. Huhns received the B.S.E.E. degree in 1969 from the University of
Michigan, Ann Arbor, and the M.S. and Ph.D. degrees in electrical engineering in 1971
and 1975, respectively, from the University of Southern California, Los Angeles.

Dr. Huhns is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu, ACM, IEEE,
and AAAI. He is the author of over 100 technical papers in machine intelligence and an
editor of the books Distributed Artificial Intelligence, Volumes I and II and Readings in
Agents. His research interests are in the areas of cooperative information systems, DAI
and multiagent systems, enterprise integration, and heterogeneous distributed databases.
Dr. Huhns is an associate editor for IEEE Intelligent Systems, the Journal of Autonomous
Agents and Multi-Agent Systems, and IEEE Internet Computing. He is on the editorial
boards of the International Journal of Cooperative Information Systems and the Journal
of Intelligent Manufacturing. He is a founder and treasurer of the International
Foundation for Multiagent Systems.

