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Abstract 
This report describes a methodology by which information from large numbers of independently 

developed sources can be associated, organized, and merged.  The central hypothesis is that a multiplicity 
of ontology fragments, representing the semantics of the independent sources, can be related to each other 
automatically without the use of a global ontology.  That is, any pair of ontologies can be related 
indirectly through a semantic bridge consisting of many other previously unrelated ontologies, even when 
there is no way to determine a direct relationship between them.  The relationships among the ontology 
fragments indicate the relationships among the sources, enabling the source information to be categorized 
and organized.  A preliminary evaluation of the methodology has been conducted by relating 53 small, 
independently developed ontologies for a single domain.  A nice feature of the methodology is that 
common parts of the ontologies reinforce each other, while unique parts are de-emphasized.  The result is 
a consensus ontology. 

1. Introduction 
The research reported herein targets the following basic problem: a Web search will typically yield a 

large number of pointers to Web sites—some of which are relevant and some of which are irrelevant; the 
sites might be ranked, but they are otherwise unorganized, and there are too many for a user to investigate 
manually.  The problem is familiar and many solutions have been proposed.  The solutions range from 
requiring the user to be more precise in specifying search criteria, to constructing more intelligent search 
engines, to requiring Web sites to be more precise in describing their contents.  A common theme for all 
of the approaches is the use of ontologies for describing both requirements and sources.  Unfortunately, 
ontologies are not a panacea unless everyone adheres to the same one, which does not yet exist in a 
comprehensive enough form (in spite of attempts, such as the Cyc Project, to create one).  Moreover, even 
if one did exist, it is unlikely that it would be adhered to, considering the dynamic and eclectic nature of 
the Web. 

To overcome this, there are three possible approaches by which information from large numbers of 
independently developed sources can be associated, organized, and merged semantically: (1) each Web 
site will use the same terminology with agreed-upon semantics (a method considered improbable), (2) 
each Web site will use its own terminology, but provide translations to a global ontology (a method 
considered difficult, and thus unlikely), and (3) the methodology described herein based on small, local 
ontologies.  Our methodology relies on Web sources that have been annotated with ontological 
information [Pierre 2000], which is consistent with several visions for the semantic Web [Berners-Lee 
1999; Heflin and Hendler 2000; Berners-Lee, Hendler, and Lassila 2001].  The sources and ontologies 
must be for similar domains—else there would be no interesting relationships among them—but they will 
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undoubtedly have dissimilar formulations and terminology because they will have been developed 
independently. 

Our central hypothesis is that a multiplicity of ontology fragments, representing the semantics of the 
independent sources, can be related to each other automatically without the use of a global ontology.  That 
is, any pair of ontologies can be related indirectly through a semantic bridge consisting of many other 
previously unrelated ontologies, even when there is no way to determine a direct relationship between 
them.  Rather than scale being a problem, additional ontologies can make it easier—or even possible—to 
relate two ontologies.  The resultant merged ontologies provide a semantic characterization of the set of 
sources and their domain, and gives the apparent effect of a large single ontology serving as a global hub 
for interactions.  The methodology produces a means for agents and other information system 
components to interoperate. 

We are evaluating the methodology by applying it to a large number of independently constructed 
ontologies in a restricted domain.  The success or difficulty encountered in this effort will constitute 
useful scientific knowledge of benefit to others working in ontology development and heterogeneous 
information integration. 

2. Semantic Reconciliation of Separately Developed Ontologies 
In agent-assisted information retrieval, a user will describe a need to his agent, which will translate 

the description into a set of requests, using terms from the user’s local ontology.  The agent will contact 
on-line brokers and request their help in locating sources that can satisfy the requests.  The agents must 
reconcile their semantics in order to communicate about the request.  This will be seemingly impossible if 
their ontologies share no concepts.  However, if their ontologies share concepts with a third ontology, 
then the third ontology might provide a “semantic bridge” to relate all three.  Note that the agents do not 
have to relate their entire ontologies, only the portions needed to respond to the request.  

The difficulty in establishing a bridge will depend on the semantic distance between the concepts, and 
on the number of ontologies that comprise the bridge.  The methodology we are investigating is 
appropriate when there are large numbers of small ontologies—the situation we expect to occur in large 
and complex information environments.  Our metaphor is that a small ontology is like a piece of a jigsaw 
puzzle, as depicted in Figure 1.  It is difficult to relate two random pieces of a jigsaw puzzle until they are 
constrained by other puzzle pieces.  We expect the same to be true for ontologies. 

 
Analysis 

Two concepts can have the following seven mutually exclusive relationships between them: subclass, 
superclass, equivalence, partOf, hasPart, sibling, or other.  If a request contains three concepts, for 
example, and the request must be related to an ontology containing 10 concepts, then there are 
7 x 3 x 10 = 210 possible relationships among them.  Only 30 of the 210 will be correct, because each of 
the three concepts in the request will have exactly one relationship with each of the 10 concepts in the 
source’s ontology.  The correct ones will be determined automatically by applying constraints among the 
concepts within an ontology, and constraints that arise from discovered constraints among multiple 
ontologies.  Once the correct relationships have been determined, the major ones of interest are 
equivalence and sibling or, where those do not exist, the most specific superclass or most specific partOf.   

Consider the example in Figure 1.  The ontology fragment on the left would be represented as 
partOf(Wheel, Truck), while the one on the right would be represented as partOf(Tire, APC).  There are 
no obvious equivalences between these two fragments.  The concept Truck in the first ontology could be 
related to APC in the second by equivalence, partOf, hasPart, subclass, superclass, or other.  There is no 
way to decide which is correct.  Now consider the addition of the middle ontology fragment 
partOf(Wheel, APC).  With this added information, there is evidence that we could link as equivalent the 
concepts Truck and APC, and Wheel and Tire. 

 



    3

(a) Two ontology fragments with no obvious relationships between them 

Truck 

Wheel 

APC 

Tire 

(b) The introduction of a third ontology reveals equivalences between components of the 
original two ontology fragments 

 
Figure 1. Ontologies can be made to relate to each other like pieces of a jigsaw puzzle 
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This example exploits the existence of the relation partOf, which is common to all three ontologies.  

Other domain-independent relations, such as subclassOf, instanceOf, and subrelationOf1, will be 
necessary for the reconciliation process.  Moreover, the following properties of relations are needed for 
relating occurrences of the relations to each other [Stephens 1991]:  reflexivity, symmetry, asymmetry, 
transitivity, irreflexivity, and antisymmetry.  Domain concepts and relations can be related to each other 
by converse/inverse, composition, (exhaustive) partition, part-whole (with 6 subtypes), and There must be 

��                                                       
1 Examples of subrelations are (1) on is a subrelation of above in spatial relations, (2) daughterOf is a subrelation 

of childOf in familial relations, and (3) cityLocation is a subrelation of countryLocation in geographic relations. 
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some minimum set of these fundamental relations that are understood and used by all local ontologies and 
information system components. 

In attempting to relate two ontologies, a system might be unable to find correspondences between 
concepts because there might not be enough constraints and similarity among their terms.  However, 
trying to find correspondences with other ontologies might yield enough constraints to relate the original 
two ontologies.  As more ontologies are related, there will be more constraints among the terms of any 
pair of ontologies.  In this way, the presence of many small ontologies becomes an advantage.  It is also a 
disadvantage in that some of the constraints might be in conflict.  We will make use of the preponderance 
of evidence to resolve these statistically. 

3. Experimental Methodology 
We asked a group of 53 graduate students in computer science, who were novices in constructing 

ontologies, to each construct a small ontology for the Humans/People/Persons domain.  The ontologies 
were written in DAML and were required to contain at least 8 classes with at least 4 levels of subclasses; 
a sample ontology is shown in Figure 2. 

Using a string-matching algorithm and other heuristics (see the Appendix for precise 
characterizations of the heuristics), we constructed a single merged ontology from the 53 component 
ontologies.  The component ontologies described 864 classes.  After applying our algorithm, the merged 
ontology contained 281 classes in a single graph with a root node of the DAML #Thing.  It related all of 
the concepts from these ontologies, leaving no orphan concepts, i.e., there was some relationship (path) 
between any pair of the 281 concepts. 

Next, we constructed a consensus ontology by counting the number of times classes and subclass 
links appeared in the component ontologies when we performed the merging operation.  For example, the 
class Person, and all similar classes whose name matched using our string-matching algorithm, appeared 
14 times.  The subclass link from Mammals (and its matches) to Humans (and its matches) appeared 9 
times.  We termed these values the “reinforcement” of a concept. 

Redundant subclass links were removed and the corresponding transitive closure links were 
reinforced.  That is, if C has subclass A with reinforcement 2, C has subclass B reinforced m times, and B 
has subclass A reinforced n times, then the link from C directly to A was removed and the remaining link 
reinforcements were increased by 2.  

We then removed from the merged ontology any classes or links that were not reinforced by 
appearing multiple times.  The result, shown in Figure 4, represents an implicit consensus among the 
ontology writers about what concepts should appear in the Humans/People/Persons domain and how they 
should be related. 

Finally, we applied an equivalence heuristic for collapsing classes that have common reinforced 
superclasses and subclasses.  For example, Figure 4 contains both Humans and Person.  The equivalence 
heuristic found that all reinforced subclasses of Person are also reinforced subclasses of Humans, and all 
reinforced superclasses of Person are also reinforced superclasses of Humans.  It thus deems that Humans 
and Person are the same concept.  This heuristic is similar to an inexact graph matching technique such as 
[Manocha et al., 2001].  The collapsed consensus ontology, now containing 36 classes related by 62 
subclass links, is shown in Figure 5. 
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Figure 2.  A typical small ontology used to characterize a Web site about people (all links denote 
subclasses)
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Figure 3. A portion of the ontology formed by merging 53 independently constructed ontologies for the 
domain Humans/People/Persons.  The entire ontology has 281 concepts related by 554 subclass links 
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Figure 4.  The consensus ontology formed from a merger of 53 ontologies independently constructed for 
the domain of Humans/People/Persons.  There are 38 concepts with 71 subclass links that appear in more 
than one of the 53 original ontologies 
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Figure 5. The final consensus ontology formed by merging concepts with common subclasses and 
superclasses.  The resultant ontology contains 36 concepts related by 62 subclass links. 
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4. Discussion of Results 
A consensus ontology is perhaps the most useful for information retrieval by humans, because it 

represents the way most people view the world and its information.  For example, if most people wrongly 
believe that crocodiles are a kind of mammal, then most people would find it easier to locate information 
about crocodiles if it were located in a mammals grouping, rather than where it factually belonged. 

Although promising, our experiments and analysis so far are very preliminary.  We used the 
following simplifications: 

• = Our string-matching algorithm did not use morphological analysis to separate the root word from 
its prefixes and suffixes, and did not identify negated concepts, such as “uneducated” versus 
“educated.” 

• = We did not use synonym information, such as is readily available from WordNet, and so did not 
for example merge “meat eating” and “carnivorous.” 

• = We did not make use of any properties of the classes, as is done in terminological subsumption. 
• = We used only subclass-superclass information, and have not yet made use of other important 

relationships, notably part-of. 
Our future research will systematically address each of these limitations and will use the more 

sophisticated merging algorithm found in the Appendix. 

5. Semantic Distance 
The information retrieval measures of precision and recall are based on some degree of match 

between a request and a response.  The length of a semantic bridge between two concepts can provide an 
alternative measure of conceptual distance and an improved notion for relevance of information.  
Previous measures relied on the number of properties shared by two concepts within the same ontology, 
or the number of links separating two concepts within the same ontology.  These measures not only 
require a common ontology, but also do not take into account the density or paucity of information about 
a concept.  Our suggested measure does not require a common ontology and is sensitive to the amount of 
information available in the domain. 

6. Ongoing Research 
Our hypothesis, that a multiplicity of ontology fragments can be related to each other automatically 

without the use of a global ontology, appears promising, but our investigation of it is just beginning.  We 
are proceeding according to the following plan:  
• = Utilize our graduate students to produce domain-specific ontologies that contain additional attributes 

and relationships, such as part-whole.  
• = Improve the algorithm for relating ontologies described in section 2.  The algorithm will be based on 

methods for partial and inexact matching, and will make extensive use of common ontological 
primitives, such as subclass and partOf.  The algorithm will take as input ontology fragments and 
produce mappings among the concepts represented in the fragments.  The algorithm will control the 
computational complexity of its ontology-relating operation by making use of constraints among 
known ontological primitives. 

• = Evaluate the computational complexity of the algorithm both theoretically and experimentally. 
• = Develop metrics for successful relations among ontologies, based on the number of concepts correctly 

related, as well as the number incorrectly matched.  The quality of a match will be based on semantic 
distance, as measured by the number of intervening semantic bridges. 
The results of our effort will be (1) software components for semantic reconciliation, and (2) a 

scientific understanding of automated semantic reconciliation among disparate information sources. 
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7. Conclusion 
Imagine that in response to a request for information about a particular topic, a user receives pointers 

to more than 1000 documents, which might or might not be relevant.  The technology developed by our 
research would yield an organization of the received information, with the semantics of each document 
reconciled.  Our goal is to enable users to retrieve dynamically generated information that is tailored to 
their individual needs and preferences. 

Our premise is that it is easier for individuals or small groups to develop their own ontologies, 
whether or not a global one is available, and that these can be automatically and ex post facto related.  We 
are working to determine the efficacy of local annotation for Web sources, as well as the ability to 
perform reconciliation that is qualified by measures of semantic distance.  The success of this research 
will enable software agents to resolve the semantic misconceptions that inhibit successful interoperation 
with other agents and that limit the effectiveness of searching distributed information sources.   
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9. Appendix: Heuristics for Merging Component Ontologies 
Using the relations of Section 2.1, our methodology is embodied in the following algorithm (similar 

to one we developed for plausible inferencing among Cyc relationships [Huhns and Stephens 1989]): 
Given RDF ontologies A and B (both based on the RDF Schema specification) having nodes nA(i),

i=1,2,…,N and nB(k), k=1,2,…,M and relationship arcs rA(i1,i2) and rB(k1,k2),
• = Perform string matching among nA(i) and nB(k), ∀ i,k, to determine

candidate matches
• = Perform synonym matching among nA(i) and nB(k), ∀ i,k, to determine

additional candidate matches
• = Discard matches where nA(i1) matches nB(k1) and nA(i2) matches nB(k2) but

where rA(i1,i2) is inconsistent with rB(k1,k2); matches that remain are
presumed to represent the relation equivalence2

• = Add additional relations:
o If nA(i) ≡ nB(k)

∧ nA(j) is a subclass3 (superclass/hasPart/partOf) of nA(i)
then nA(j) is a subclass (superclass/hasPart/partOf) of nB(k)

o If nA(i1) ⊆ nA(i2) ⊆ nA(i3) ∧ nB(k1) ⊆ nB(k2) ⊆ nB(k3)

∧ nA(i1) ≡ nB(k1) ∧ nA(i3) ≡ nB(k3)
then the relation between nA(i2) and nB(k2) is either sibling,
subclass, superclass, or equivalence

o If nA(i1) partOf nA(i2) partOf nA(i3)

∧ nB(k1) partOf nB(k2) partOf nB(k3)
∧ nA(i1) ≡ nB(k1)
∧ nA(i3) ≡ nB(k3)
then the relation between nA(i2) and nB(k2) is either sibling,
partOf, hasPart, or equivalence4

Considering an additional ontology C introduces constraints that enable relations to be added as follows: 
• = If nA(i1) ≡ nC(j1)

∧ nC(j2) ≡ nB(k2)
∧ nA(i1) ⊆ nA(i2)
∧ nC(j1) ⊆ nC(j2)
∧ there are no known relationships between nA(i1) and nB(k1)
∧ there are no known relationships between nA(i2) and nB(k2)
then the relationship between nA(i1) and nB(k1) and nA(i2) and nB(k2) is
either sibling, subclass, superclass, or equivalence

• = If nA(i1) ≡ nC(j1)

∧ nC(j2) ≡ nB(k2)
∧ nA(i1) partOf nA(i2)
∧ nC(j1) partOf nC(j2)
∧ there are no known relationships between nA(i1) and nB(k1)
∧ there are no known relationships between nA(i2) and nB(k2)
then the relationship between nA(i1) and nB(k1) and nA(i2) and nB(k2)
cannot be other

 

��                                                       
2 The relation equivalence is denoted by ≡ 
3 The relation subclass is denoted by ⊆  
4 The relation cannot be subclass (superclass) because if nA(i2) ⊆  nB(k2), then at least one of the equivalence 

relations nA(i1) ≡ nB(k1) or nA(i3) ≡ nB(k3) must instead be subclass (superclass). 
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