A,
SRR

Dr, Michael M. Hedins

SRl

Technical Report: NAVIRAEQUIPCEN 79-C-0096-1

MULTIPLE MICROCOMPUTER CONTROL ALGORITHM

FEASIBILITY BREADBOARD

Ay s PP A
oseter

R. 0. PETTUS, PhD

M. N. HUHNS, PhD

L. M. STEPHENS, PhD

A A B A
ameteteteletels

M. J. TRASK

Department of Electrical & Computer Engineering

University of South Carolina

Columbia, SC 29208

August 1981

For period June 1979 through August 19381

DoD DISTRIBUTION STATEMENT

Approved for public release;

distribution unlimited.

NAVAL TRAINING EQUIPMENT CENTER

ORLANDO, FLORIDA 32813

NAVAL TRAINING EQUIPMENT CENTER

ORLANDO, FLORIDA 32813

GOVERNMENT RIGHTS IN DATA STATEMENT

Reproduction of this publication in whole or in
part is permitted for any purpose of the United -
States Government,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

. REPORT DOCUMENTATION PAGE BEF%%%"CIgﬁ;Eggggﬁfom 3
7. REPORT NUMBER - 2. GOVT ACCESSION NO.f 3. RECIPIENT'S CATALOG NUMBER
NAVTRAEQUIPCEN 79-C-0096-1 | :
4. TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
‘ Final Report for Period
MULTIPLE MICROCOMPUTER CONTROL ALGORITHM) June 1979 through August 1981
FEASIBILITY BREADBOARD €. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(3) R_(). PETTUS, PhD l CONTRACT OR GRANT NUMBER(a)
M.N. HUHNS, PhD Q
L.M. STEPHENS, PhD N-61339-79-C-0096
|5 PERFORMING ORGANIZATION NAME AND ADDRESS ‘ 0. PROGRAN ELEMENT. PROJECT, TASK
Department of ETectrical and Computer Engineering , iy &
University of South Carolina : PE’5275ZN
‘Columbia, S.C. 29208 (NN Work- Unit No. 5741-5
. coﬁrnon_:‘.,n.mc OFFICE NAME AND ADDRESS , 12. REPORT DATE
Computer Systems Laboratory, Code N-74 .| August 1981
Naval Training Equipment Center "13. NUMBER OF PAGES
Orlando, FL 32813 - 96
T3, MONITORING AGENCY NAME & ADDRESS(/{ different from Controfling Office). | 18, SECURITY CLASS. (of thia repart)
UNCLASSIFIED
TSa, Egsé.&%ilglCATION/DOWNGRAbING

16. DISTRIBUTION STATEMENT (of thia Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. - DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse slde if neceseary and identify by block number)

Microcomputers/Microprocessors Distributed Control
Multiple Computer Control Algorithms Microprogramming
Real-time Simulation Systems Logical Design
Control Structures Virtual Machines
Computer Architecture

20." ABSTRACT (Continue on reverse aide if ary and identify by block number). i -

The design, analysis, and fabrication of a multiple microcomputer control
algorithm feasibility breadboard is presented. The architecture of the
breadboard is hierarchically structured and functionally modular. The centrol
algorithm is vested in an efficient applications task manager (ATM) that is a
very compact operating system in each microcomputer, and an optional combina-
tion of hardware, firmware and software. The control algorithm has been -
demonstrated in this breadboard as applicable to real-time simulatior or
process control in which basic computational tasks do not change in time.

DD, an"s 1473 eoimion oF 1 NOV 68 1S omsOLETE
PR $/N 01020146601 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntersd)

UNCLASSIFIED

LLCURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The breadboard consists of a type "A" unit and a type "B" unit. The type
"A" unit consists of five identical m1crocomputers using the Motorola 6809.
Each microcomputer has a dédicated memory space. in which program tasks. are
stored. In addition, there is a system bus to a global memory which is used
primarily for communicating among the microcomputers and for storage of global
variables. To minimize contention on the system bus, selected address spaces
of global memory are duplicated at each microcomputer. This-allows the
microcomputers to obtain needed information by using a local bus rather than
the global system bus. A1l write operations to the global memory are global
and the information is duplicated at microcomputers having that address. 'Read
operations then become primarily local and can occur in parallel.

Control functions are distributed among the microcomputers; however, the
scheduling and execution of tasks is governed at each microcomputer by the
local real-time operating system (i.e. ATM). The ATM is 1mp1emented primarily
in firmware to minimize overhead. The control structure is designed to be
independent of 1mp1ementat1on so that a variety of m1crocomputers can be
utilized together. 3

. The type "B" unit is a single fully m1croprogrammab1e m1crocomputer that
emulates the instruction set architecture of the VAX-11/780 computer. The
design is based on the AMD 2900 bit slice ch1p set with a microcode word of
112 bits. ATM is 1mp1emented in microcode in the type "B" unit.

! The breadboard is intended for use as a laboratory research tool in the
deve]opment and evaluation of new control concepts for multiple m1crocomputers
operating in a parallel mode for modern real-time trainers. The derivation
oF gquantitative performance data was not a requirement of this effort. These
data will be derived through tests and evaluations of the breadboard as an
NTEC in-house project.

UNCLASSIFIED -

g SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

IT

ITI

NAVTRAEQUIPCEN 79-C-0096-1

TABLE OF CONTENTS

INTRODUCTION. o v 0o aosoees ceceves ceessecsesvesasoccans

Scop€.cescccss e e o e s oessacsssecsecssas s s assessen e

PUIPOSECaeessossooscsesscossesnanssccsssaconasoccesns

Background Information.....cceeceeeccaccscncccscsne
RequirementsS..ccceeerecccscns cecesraasesssenssonnn
Design Philosophy..ccesceccnnsne cecssssssacsescssee

MULTIPLE-MICROCOMPUTER DEMONSTRATION BREADBOARD

ARCHITECTURE. c e s e e oo secses ceccssecsncessecesssnaen

PUrpPOSE.ececssssscan cecssssacsesesecnessesaaacsacten

Background.....«.. ceessesaseacns ceccecaans cecovosas
Concepticececene csessasssscecesecssnacsnsosnes
Multiple~Microcomputer Demonstration
Breadboard.e.cceeeeceaecss ceseeasccssseronssassana
Feasibility Breadboard........ cesecceccesecans

Refinements to the Architecture During Phase II...
Unified instruction Seét.cccesesscsncncssoscsss

Exception handling.ceees... ceessssasseacencass
Command Language Interpreter Program..........
The System BuS..cescececse cesesssecccascesavna

Feasibility Breadboard System Implementation......

High-Performance ProCesSSOl.cscscscscscsacccssscscs
FEASIBILITY BREADBOARD SYSTEM HARDWARE. ..escceasse
System Services Module.....ceeeeeecarecconscanns .o
Standard Processor Module....ceceosecccccsnacs ceees

High Performance Processor Module........ccceen0ee

Page

13

13
13
13

15
17

17
20
21
22
22

23
24

27

27

29
31

Iv

NAVTRAEQUIPCEN 79-C-0096-1

FEASIBILITY BREADBOARD SYSTEM SOFTWARE. .o

PUIPOSEeesescasessvsescosssssceasoseccssccsorsss

SCOPE.sessvensssassesscsescsccsoscsscnctsccsees
Software Terminology.eceeeecsssccsssccacosecnone
Level Classification of Software Components..
standard Documentation Format....cceceeccececece
Application Task Manager.......e.eceecenoccces
Background Information....cececcoseeee-e
Function and level..ceeeeecccasscccccens
Required Environment.....ceaceccccccccne
OperatioN.ecececeseocsccocnacccnns
Organization...eeeececcccnsccnsens

Command Language Interpreter Program.
Function and level...cecoecccocsn

Required Environment..
Background...eceeccces
Operation...eceeecaces
Organization..........

System Control Programe....

Function and level....
Required environment..
OperatioNeececeecccssss

Organization....ec....

Debug Package.....cecceses

Function and level....
Required environment..
Operation..cceeceecscecs
Organization...eeecese.

Memory Test Program.......
Function and level....

Required environment.....
OperatioNeecececesescaoncascaccsns
Organization....eeeeecesccncneacsee

e e s 00 0

35

35
35
35

37
38
38
43
44
44
48

51
51
51
51
54
57

65
65
65
65
68

70
70

70
72

73
73
73
73
73

NAVTRAEQUIPCEN 79-C-0096-1

CONCLUSIONS .t coseossssooscsnasasccs cecrccenccnouss

Feasibility Breadboard SySteM...ceceoscoccsosoccsns
Favorable AsSpeCtS..ccscecccccsocosssoscasscsse
High-Performance ProCcessSoOl..c.ccceesaes cecene

Multiple Microcomputer Concept Feasibility

APPENDICES

Appendix A
Appendix B
Appendix C

Appendix D

ATM OpPCOJESceecesccsscnsesscsscsscss
Breadboard Exception CodeS...c.cass
System Command Language...cscsvees

Fundamental Disk Operating System.

77
77
77
78

78

81
82
84

92

NAVTRAEQUIPCEN 79-C-0096-1

LIST OF FIGURES

Page
Partitioning of Research Effort..... ceccsssseenis 9
Block Diagram of Breadboard System...ccececececcceccee 16
Role of the ATM in the SySteM.....cceccccaescrccccs 18
Feasibility Breadboard System Block Diagram....... 19
System Services Board....ccececsceccrsceccnracccores 28
Processor Module Block Diagram....scececessccceces 30
High Performance Processor Block Diagram..oc.... 33/34
ATM Task State Diagram..cecceccreccsscaccaccccrccns 41
ATM Executive Kernal State Diagram....ceccecececcce 43
Flowchart of ATM OperatioN...cccsecesccccscccceces 45
Operation of the ATM Exception Hendler......ccce.e 47
ATM Hierarchical Diagram..cceecccesecscccoccccccecs 49
Structure of the Ready Task Quel€..c.cecccnccccrces 50
SCL Syntax Diagram....ceeceacceesscccnccocncncces 52
CLIP FlowChart.ceesosoocesoscnssssssssccssssccocsce 55
Pseudocode for CLIP Main PrOQgraMe.ceeseessossanssos 56
CLIP Hierarchical Diagram...ccecsecccscccccsccncocs 62
Command Processor Hierarchical Diagram............ 63
System Control Program FlOWChArt.eeeeoasscasossses 66
System Control Program Hierarchical Diagram....... 69
Debug Program Flowchart.....ceccccecesccrrcnnccnces 71
Flowchart for Walking-1's Test...cccesecencccecncns 74
Flowchart for Checkerboard Test...... teeeveesas 15/76

SCL Syntax Diagram.....ccececccccccsccsccncnnccnss 85
Data Structures for FDOS....cccccccccccncccecccces 94

NAVTRAEQUIPCEN 79-C-0096-1

LIST OF TABLES

Page

CLIP GLOBAL CONSTANTS. .ieeeesecccessnsccccccecscnce 58

CLIP GLOBAL VARIABLES...csececccccscsscscs -
CLIP PARSE TABLE...eeeeeeersccanossssansssncsascsse 60

5/6

NAVTRAEQUIPCEN 79-C-0096-1

SECTION I

INTRODUCTION
SCOPE

This report details the design, fabrication, and testing of

a limited hardware-firmware-software multiple microcomputer
control algorithm breadboard. This breadboard 1is to be
implemented using an optimal mix of hardware, software, and
firmware. The breadboard 1is to be wused to evaluate the

feasibility of a new concept in computer architecture created by
the Computer Systems Laboratory of the Naval Training Equipment
Center (NTEC). Additional research and development on the
concept was done under Contract N612339-78-C-0157 by the
Department of Electrical and Computer .Engineering, University of
South Carolina. This report documents the hardware, firmware
(microcode), and software used to implement the feasibility
breadboard.

PURPOSE

The purpose of the breadboard described herein, and
delivered to NTEC, is to demonstrate the concept feasibility of
the control algorithm developed on Contract N61332-78-C-0157.
At NTEC it will also serve a&as a research tool for the
development of more advanced control concepts for mutiple
microcomputer systems.

BACKGROUND INFORMATION

The effort described herein represents only a part of the
total effort in implementing the multiple-microcomputer system
prototype. Overall implementation of a system may be
partitioned into the following steps:

Reguirements
Specifications
Design
Implementation
Testing
Extension

NAVTRAEQUIPCEN 79-C-0096-1

The partitioning of the total research effort is shown in Figure
1. The requirements and specifications were established by NTEC
as a response to the rising cost and 1increased performance
demands associated with the computer systems used for various
trainers. The conceptual and exploratory development work was
accomplished by the University of South Carolina (under contract
N61239-78-C-0157) jointly with the Computer Systems Laboratory
at NTEC. This work 1is designated as Phase I. This report
details the design, implementation, and testing of a breadboard
to demonstrate the feasibility of the concept. This feasibility
breadboard will be used by NTEC in -evaluating the control
algorithm as developed during Phase I.

As with the design of any complex system, there have been
modifications as a result of information gained as the design

proceeded. During the design and implementation of the
feasibility breadboerd several refinements were made to the
concept, as defined in the Phase I report. These refinements
were:

a) The supervisor calls (SVC's) and the communication state
opcodes for the ATM were combined into a single, unified
instruction set (the ATM commands) .

b) The method by which ATM handled exceptions was changed. The
new exception structure parallels the technique used in the
proposed DOD language, Ada, which has been formally
announced since the original work was completed.

c) Design of the operator interface to the system was not 2
part of the Phase I design. This aspect of the design
assumed greater importance with the construction and testing
of an actual system. Accordingly, a command language was
designed to facilitate operator-system interaction and
installed via software interpreter in the feasibility
breadboard. Integration of the software for this command
language into the system became one of the most important
parts of Phase II.

d) The system bus was enhanced to allow ATM commands to be
propagated from one processor to another where necessary by
the addition of an instruction bus. The system bus now
includes the shared memory bus, the control bus and the
instruction bus.

NAVTRAEQUIPCEN 79-C-0096-1

{ PROBLEM)

REQUIREMENTS AND
EXPLORATORY ANALYSES

PRELIMINARY WORK DONE
AT NTEC

SPECIFICATIONS

|
|
i :
| | EXPLORATORY DEVELOPMENT| D ST e SO
3
{ | CAROLINA
o ' REPORTED IN
DESIGN : + : NAVTRAEQUIPCEN 78-6-0157-1

| CONCEPT FEASIBILITY J PHASE II EFFORT AT
| BREADBOARD DESIGN AND § | UNIVERSITY OF SOUTH
| FABRICATION : CAROLINA
l i
1

Y T -

TESTING AND EVALUATION

Y

RESEARCH IN NEW
TECHNIQUES AND
EXTENSIONS

Figure 1. Partitioning of Research Effort.

NAVTRAEQUIPCEN 79-C-0096-1

e) The ATM dasta structures were redesigned to reflect the new
communications techniques. No functional changes were made
in the overall ATM. However, that part of the final report
of Contract N61339-78-C-0157 which sets forth the ATM data
structures should now be considered obsolete.

f) Some nomenclature changes were made for improvements 1in
clarity.

The first four items are discussed in the section on the
architecture of the breadboard. The changes in the ATM data

structures are given in the section on software. The changes in
nomenclature are referenced as introduced.

REQUIREMENTS

The requirements for the feagibility breadboard are as
follows:

a) Design, implement, and test a demonstration prototype using
proven technology (8- and 16-bit NMOS microprocessors). The
system is to contain at Jeast four processors, a shared
memory, and the required interface circuitry to evaluate the
breadboard.

b) Design, implement, and test a single high-performance
processor which emulates an instruction set to be chosen by
NTEC, and implements the tools for handling concurrent tasks
in firmware (microcode).

c) Design, implement, and test the software required to allow
operator interaction with the system.

d) Partition and implement 2 suitable demonstration program on

the breadboard. The demonstration program is not covered in
this report.

10

NAVTRAEQUIPCEN 79-C-0096-1

DESIGN PHILOSOPHY

The overall goals for the multiple-microcomputer control
algorithm concept, as given in the Phase I report
(NAVTRAEQUIPCEN 78-C-0157-1), were as follows:

a) Reduce the programming and program maintenance costs of the
software for real-time trainers.

b) Offer increased standardization and modularity.
c) Improve system throughput.
d) Provide a basis for future system improvement.

During the Phase I effort these goals were refined such that at
the beginning of the Phase II effort they were:

a) Fase of programming and use are as important as improvement
of performance.

b) The architecture should use low overhead -techniques for
communication between processors such that the system
throughput remains proportional to the number of processors
as more processors are added.

c) The design should be a well-structured mix of hardware,
firmware, and software. In addition, the design should
readily allow changing the manner in which a given feature
is implemented. The long-range objective is to maximize the
use of hardware wherever possible.

d) The multiple-microcomputer control concept is intended to
support a system of concurrent tasks. The tools to handle
concurrency should be inherent to the design.

e) The system should have a long design lifetime and,
therefore, should be as extensible as possible.

The architecture of the demonstration breadboard was designed to
meet these goals. While these are goals it is important that
the implementation of the feasibility breadboard be carried out
in such a fashion as to enhance the ability of the system to
meet the goals. To this end, the refined system goals may be
thought of as a design philosophy. This design philosophy has
guided the implementation of the hardware, firmware, and
software of the feasibility breadboard system throughout the
entire Phase II effort. :

11/12

NAVTRAEQUIPCEN 79-C-0096-1

SECTION IX

MULTIPLE-MICROCOMPUTER DEMONSTRATION BREADBOARD ARCHITECTURE

PURPOSE

The basic architecture of the multiple-microcomputer
demonstration breadboard is described in the final report of
Phase I. The purpose of this section is to:

a) Give a brief overview of the multiple-microcomputer system
architecture (BACKGROUND).

‘b) Describe the modifications and refinements to the
architecture made during Phase II (REFINEMENTS.).

c) Describe the details of the feasibility breadboard which are
relevant to a total architecture (IMPLEMENTATION).

BACKGROUND
Concept

The basic concept of the architecture of the
multiple-microcomputer demonstration breadboard 1is to take
advantage of the inherent parallelism which exists in many
applications. To do this successfully depends upon three major
criteria:

a) Successful partitioning of the problem into disjoint tasks.

b) Provision for some form of centralized control by an
operator for programming and for initialization.

c) Developing a run-time structure which provides for the
passing of system parameters between tasks and/or processors
while preserving precedence. :

NAVTRAEQUIPCEN 78-C-0096-1

The criteria are of comparable importance; however, their
effects upon the design of the system are quite different. The
implication of the first criterion is that the advantages of
distributed computing are a function of the nature of the
application. Tasks which cannot be readily decomposed do not
benefit from the use of multiple processors. Fortunately, most
tasks of sufficient complexity to warrant the use of multiple
processors have inherent parallelism. While the partitioning of
the problem into disjoint tasks is not a function of the
architecture of the system, this is a2 vital part of the overall
use of the system. Therefore, the architecture of the
multiple-microcomputer breadboard should be supportive of the
techniques used for pertitioning. This will be the case if the
the second criterion is met. A secondary implication of the
first criterion is that the multiple-microcomputer breadboard
should be able to handle problems which are not readily
partitioned as well as a conventional system comparable to one
of the individual processors. This requires that the techniques
used to support distributed or parallel processing not reduce
the efficiency of the individual processors.

The centralized control (or second) criterion was added
during Phase II. It is sufficiently basic that it has been
assumed during the previous work. The implication of this
criterion is that such & multiple-microcomputer system should be
hierarchically structured with ultimate control residing at a
single point. This is perhaps the most significant single
feature of this multiple-microcomputer breadboard concept as
opposed to the classical distributed system in which each
processor has an equal weight. In this multiple-microcomputer
breadboard concept, control 1is distributed to the greatest
extent possible, but there are bounds to the scope of all of the
processors except the control processor. The most significant
loss of authority of the processors is the ability to select
their own tasks. In this multiple-microcomputer breadboard
concept, tasks are assigned rather than selected. The effect of
this structure is to 1increase the efficiency and ease of
implementation of the system. The multiple-microcomputer
breadboard is also different from the distributed system in that
it presents, to the user, more of the appearence of & computing
system as opposed to a network.

If the second criterion determined the basic structure of
the system, it is the third criterion (the passing parameters
criterion) which most strongly drove the actual design. It is
the ability of this multiple-computer breadboard concept to
satisfy this criterion which will determine if it is to be a

14

NAVTRAEQUIPCEN 79-C-0096-1

viable system. The technique used to handle the passing of
parameters between tasks has a strong effect upon both the
partitioning of the problem and upon the programming of the
problem. The. two major aspects of the techniques proposed for
this multiple-microcomputer breadboard concept are a similarity
to the techniques used in the language Ada and ability to
reference parameters which reside in physically separate
processors.

Multiple-Microcomputer Demonstration Breadboard

A block diagram of the multiple-microcomputer breadboard is
shown in Figure 2. The system consists of the processor modules
(one of which is designated as the control processor), a system
services module, the system bus (8YSBUS, designated as the
communication and control bus in the Phase I report), and the
kernel-level software components.

The system services module contains the shared memory, bus
arbitration logic, and memory for programs unique to the control
processor. All of the processors and the system services module
are connected by the §SYSBUS. The control processor has
additional access to the system services module via a local
extension of the IBUS for those control processor enhancements
which physically reside on the system services module.

The SYSBUS consists of three functionally separate buses.
These buses are the shared memory bus (used to pass data objects
between Pprocessors), the instruction bus (used to pass.
intruction objects between processors), and the control bus
(used by the control processor to control and initialize the
system). The shared memory bus and the instruction bus are
multi-master buses. Any processor may request the use of either
bus, access being supervised by bus arbitration logic. The
control processor has no special status on either of these buses
other than occupying the highest priority position. The control
bus is a single-master ‘bus with the control processor as its
master. The processor modules are identical at the bus
interface level; it is the physical slot into which they are
inserted that determines which ijs the control processor.

The hardware, firmware, and kernel-level software of each
processor module form a virtual machine, known as the
Application Task Manager (ATM), which implements the additional
instructions used for handling concurrent tasks and

15

NAVTRAEQUIPCEN 79-C-0096-1

SNg 0YLINOD WIALSAS

e’

(AYOWIW-QIUYHS)
SNG V1va WILSAS

Ss”

N 3INA0KW
40SS30Ud
TOYLNOD

: € "ON
W0 $53204d
NOILYO11ddY

¢ 'ON L "ON
SIITAY3AS
W3LSAS

40SS3304d
NOILVIIddY

40 SS3004d
NOILvII1ddv

; SNg TUNYIINI
40SS3204d T0HLINOD

Block Diagram of Breadboard System

Figure 2.

16

NAVTRAEQUIPCEN 79-C-0096~1

interprocessor communication (or the problems associated with
the third criterion of the previous section). The use of ATM
allows the system to have a standardized interface between
processors which 1is independent of the hardware, allowing for
easier extension. The role of ATM in the system structure is
illustrated in Figure 3.

The basic object of this multiple-microcomputer breadboard
is the task, represented to the system by a task control block.
The system commands which reference the task control blocks
(TCB's) may do so regardless of the physical processor in which
the task resides. This feature is of exceptional importance if
an automated partitioning scheme is to be used. It also allows
dynamic relocation of tasks for error recovery or performance
improvement.

Feasibility Breadboard

A system block diagram of the feasibility breadboard is
shown in Figure 4. The feasibility breadboard consists of an
implementation based upon an 8-bit microprocessor (the Motorola
6809), a floppy disk system for bulk storage, a control console
for operator input, an interface to a demonstration application,
and an interface to a host computer (a VAX-11/780). The
rationale for using the 8-bit microprocessor was to use a
"friendly" technology for the breadboard so that the
architecture itself could be more readily evaluated.

The interface to the host computer is primarily for
downloading programs and data. It is more convenient to develop
the software for the system using cross-assemblers or
cross-compilers and the tools of the host system and then
download the code. The system software for the breadboard Iis
designed to facilitate use of the host system.

REFINEMENTS TO THE ARCHITECTURAL CONCEPT DURING PHASE II

As mentioned in Section I, several changes were made in the
concept during the implementation of the feasibility breadboard.
Several of these changes affected the architecture, in
particular:

17

NAVTRAEQUIPCEN 79-C-0096~-1

S¥0SSI00Ud NOILYIITddY ¥O ‘LNdINO ‘iNdNI

A
Rtadaedadelietiey ittt T H
! i)l ! !
. SWYY904d Y20 SHYY90¥d Y01 SHYY904d 0T
SWYH908d 1201 | : - ; o ; |
Niunssasoud 1 1 ” £ "ON ¥0SS3D0Yd | 1| 2 ‘owdosshdoud §, || L "ON §0SS30ud "
IW | I 1o | bt | i
i | [
. | 1 . }
Wy f | w Wy | I
N "ON ¥0SS300¥d § 4 | € "oN ¥0sS3004d " '} 2 on wossaooud §, f L "ON ¥0SSII0Y4 “
N N I N Y Y N Y W _
T 1
WY¥904d

T041NOD NIVH

!

40SS3204d
T041NOD

in the System

Role of the ATM

Figure 3.

18

NAVTRAEQUIPCEN 79-C-0096-1

(3s1a)

J0IA30
0OLS A7Ng

JT10SNOJ
TO¥LNOD

(3dA1010¥d)
WILSAS
¥31NdHO20¥I I
-1d1LINKW

(082/L1-XVA)
40S5S330dd LSOH

NOILYIIddY

Feasibility Breadboard System Block Diagram

Figure 4.

19

NAVTRAEQUIPCEN 79-C-0096-1

a) Combining the SVC and communication state opcodes 1into a
single instruction set significantly changed the state
diagram of the virtual machine used to model the processor
modules.

b) The Ada-oriented technique for handling exceptions caused
some change to the System Control Program.

c) The addition of the operator interface (CLIP program) should
be considered to be an expansion of the system architecture.

d) The system bus structure was further refined to include
separate data, instruction, and control buses.

Most of the changes given above affect the system software as
opposed to the hardware, thus the hardware portion of the system
concept is essentially the same as given in the Phase I report.
The primary reason for making the refinements in software where
possible is in recognition of the fact that the feasibility
breadboard is to be used to optimize the architecture of this
multiple-microcomputer system and that software structures are
generally more dynamic than hardware. Many of the features now
implemented in softwere may be hardware 1in later versions of
such a system.

Unified Instruction Set

The combination of the SVC and communication state opcodes
into a single instruction set is a recognition of the fact that
the Von Neumann architecture of most current processors is not
well suited for real-time applications. The fundamental concept
of the use of ATM is to add to the system the capabilities to
function in a real-time, distributed environment. The SVC
instructions were a response to the need for the ability to
schedule and coordinate multiple tasks while the communication
state instructions were to enable the processor to receive
instructions from the external world. At the beginning of Phase
IT it became apparent that these problems were strongly
connected and that a single, unified set of ATM instructions
would best serve both needs. Thus, to the user, ATM appears as
a set of additional instructions which may be used to handle the
requirements of a real-time distributed system. Ultimately, all
of these instructions could, and should, be incorporated
directly into hardware. The ATM commands are listed below:

20

NAVTRAEQUIPCEN 79-C-0096-1

SIGNAL

WATT

INITIATE (application task)

INITIATE (application task, after interval)
TERMINATE (application task)

TERMINATE (application task, after interval)
QUERY (task parameters)

SET (task parameters)

GET (data from memory)

PUT (data in memory)

MOVE (date to/from shared memory)

EXECUTE (system task)

EXECUTE (system task, after interval)
REPORT (exception) :

EXIT (communication state)

A complete listing of the ATM commands, with opcodes, is given
in Appendix A.

Exception Handling

Exceptions are now handled in a manner similar to, but not
exactly the same as, the way they are handled in Ada. An
exception may be generated by the system software or it may Dbe
generated by a user task. System exceptions are generated by
erroneous ATM commands or by attempts to exceed the capacity of
system data structures, When any module determines that an
exceptional condition exists, it raises the exception flag, sets
the exception code to the appropriate value for the exception,
and returns control to. the calling module. The calling module
"owns" this exception and may handle it in any way it sees fit,
The default option is to pass it (the exception) to the next
higher 1level. If any exception reaches the ATM main program
level it is sent, along with the total state of both the
processor and the current task, to the control console.

User programs may utilize the ATM exception handler by use
of the REPORT command, which causes the user—-generated exception

to be passed to the control console. The debug package uses
this technique to return information to the console after a
breakpoint has been reached. A complete list of system

exception codes is given in Appendix B.

21

NAVTRAEQUIPCEN 79-C-0096-1

Command Language Interpreter Program . (CLIP)

o . . o — S . o i S T i e - S A e G S S - S e e S S =

This multiple-microcomputer breadboard system is controlled
by operator 1input to the control console. The control console
is an alpha-numeric CRT terminal. The input commands to the
system are in System Command Language (SCL). The SCL inputs are
handled by the Command Language Interpreter Program (CLIP), an’
incremental compiler which runs as the null task on the control
processor. CLIP runs as an applications program with the
highest possible value of privilege. It is a normal
applications program and derives its power from the fact that
its executes in the control processor. SCL inputs to CLIP are
compiled 1into strings of ATM commands and passed to the
appropriate processor for execution. CLIP includes the Disk
Operating Package, the Vax communications handlers, and
provisions for using the Debug Package as well as the commands
required to control the multiple-microcomputer system. The
structure of the feasibility breadboard version of CLIP is
covered in the section on software.

The interface language for CLIP, SCL, has syntax similar to
that of the VAX VMS operating system. CLIP has a table driven
parser which uses default values for all operands, making the
SCL efficient without sacrificing readability. A major factor
in the design of SCL was the creation of a good human interface
to the system. SCL is fully defined in Appendix C,

The System Bus (SYSBUS)

The processors and shared memory of the
multiple-microcomputer breadboard system are linked by the
SYSBUS. The SYSBUS is a major part of the system architecture.
It must support structures which satisfy the criteria listed
earlier. To do this, the SYSBUS must create the environment for
both the hierarchical structure of the multiple-microcomputer
breadboard system and the run-time support required for
concurrent tasks. The SYSBUS, as defined in the Phase I report,
consisted of two functionally-partitioned buses, the control bus
and the shared-memory bus.

The control bus makes possible the hierarchical structure
of the system. It is a single-master, asynchronous bus with the
control processor as its master. Each processor is assigned a
block of addresses on the control bus and the control processor

22

/

NAVTRAEQUIPCEN 79~-C-0096-1

may communicate with a given processor by addressing this block.
Communication with each processor is typically done by sending
ATM commands to it.

The shared-memory bus 1is wused to support the run-time
system. In the Phase I report two major functions were assigned
to the run-time system: the passing of parameters between tasks
and task synchronization and control. The original intent was
to use the critical region concept, as implemented by the shared
memory, to handle both functions. However, analysis during
Phase II showed that the efficiency and coupling of the systenm
would be greatly improved if these functions were handled by
separate buses. The shared-memory bus is then used for passing
data objects between tasks and a new bus, the instruction bus,
is wused to pass ATM commands between processors. The
instruction bus has the same structure as the shared memory bus,
the only difference being that the information is passed between

processors as opposed to between the shared memory and a
processor.

FEASIBILITY BREADBOARD SYSTEM IMPLEMENTATION DETAILS

The purpose of the feasibility breadboard is to demonstrate
and study the concept feasibility of the architecture and
control of a multiple-microcomputer system. For this reason,
and because of changes to the architecture during the design,
some of the features of the feasiblity breadboard are
implemented 1in a different fashion from what is anticipated for
a full scale multiple-microcomputer system. These differences
include:

a) ATM for the feasibility breadboard is implemented completely
in software, both for ease of modification and because the
use of the 8-bit microprocessor (6809) did not allow access
to microcode.

b) The shared memory bus arbitration at the processor end is
handled partially in software. The reason for this is again
the lack of access to the microcode of the machine. In a
full scale multiple-microcomputer system all arbitration
would be done by hardware and firmware.

23

NAVTRAEQUIPCEN 79-C-0096-1

c) The instruction bus is a virtual bus implemented by a system
program (the System Control Program) which runs on the
control processor. The actual transfers take place on the
control Dbus. The reason for this technique is that the
system bus structure had already been constructed when the
instruction bus was conceived.

The implementation of these functions in this fashion hes
allowed for easy modification and increases the utility of the
feasibility breadboard as a research and design tool. The
reduction in performance is of relatively little consequence
since the feasibility breadboard is a scaled-down version of &
multiple-microcomputer system.

THE HIGH-PERFORMANCE PROCESSOR

There are several important points about the implementation
of a multiple-microcomputer breadboard system which are not
addressed by the 8-bit processor modules. These points are as
follows:

a) A high performance multiple-microcomputer system would
depend upon the use of bipolar bit-sliced technology (or
equivalent) to implement compact processor modules . having
the computing power of present mid- and upper-range
minicomputers.

b) Much of the efficiency of the ATM will come from
implementation in microcode as opposed to software.

c) Some of the functions associated with the use of multiple
processors, such as communication at the bus level, will be
implemented in microcode and hardware to gain speed.

Because none of these points were addressed by the 8-bit
processor modules the decision was made to implement one
high-performance processor using 2900 series bit-sliced
microprocessor components and emulating the VAX-11/780
instruction set. The high-performance processor is a prototype
of an actual processor module that could be used to implement a
multiple-microcomputer system. The combination of it and the

24

NAVTRAEQUIPCEN 79-C-0096-1

8-bit based system allows the study of both the system control
concept and the target technology.

25/26

NAVTRAEQUIPCEN 79-C-0096-1

SECTION III

FEASIBILITY BREADBOARD SYSTEM HARDWARE

The feasibility breadboard hardware consists of four major
modules, which are the:

a) Chassis and Power Supply
b) System Services Module
c) Standard Processor Module
d) High-Performance Processor Module
The chassis and power supply are commercial units, the DEC
BA-11K with 1integral power supply. A smaller auxilary chassis
and power supply are provided for the high-performance
processor, allowing it to be operated separately if desired.
SYSTEM SERVICES MODULE

The System Services Board (SSB) is always 1located in
chassis slot zero. It provides general services for the entire

system and specific extensions to the control processor. This
board contains:

a) Bus Arbitration Logic (BAM)

b) System Shared Memory (8K)

c) Extra Memory for the Control Processor (16K)

d) Additional EPROM for the Control Processor (8K)

Approximately two-thirds of the board is presently used, leaving
room for expansion if required. A block diagram of the board is
shown in Figure 5.

The control processor has direct access to the additional

EPROM located on the system services module by way of the
backplane, thus now additional connections are regquired.

27

NAVTRAEQUIPCEN 79-C-0096-1

GLOBAL RESOURCES

-, S
=
I S oS TS T T T T T T T |
i |
i |
i |
| | |
| BUS GLOBAL]
| ARBITRATION SHARED |
i LOGIC MEMORY |
' l
| |
| |
I 1
| - e e = I |
SHARED MEMORY BUS
CONTROL PROCESSOR RESOURCES
_A

16K RAM 16K EPROM
MEMORY MEMORY

CONTROL PROCESSOR 1IBUS

Figure 5.

System Services Board (SSB)

28

NAVTRAEQUIPCEN 79-C-0096-1

STANDARD PROCESSOR MODULE

A block diagram of the feasibility breadboard standard
processor module 1is shown in Figure 6. The major sub-sections
of the processor module are as follows:

a) 6809 8-bit microprocessor.

b) Processor support circuitry.

c) Local memory (3k bytes EPROM, 20k bytes RAM).
d) Distributed cache memory (2k bytes RAM) .

e) Three 16-bit timers.

f) Expanded, prioritized, vectored interrupt circuitry.
g) Interfaces to the shared memory and control buses.

h) Two RS 232C serial interfaces.

All subsections of the processor module are interconnected
by the internal bus (IBUS), a 40-pin local bus designed to
readily accomodate the 6809 processsor. The IBUS 1is available
at the 40-pin connectors located at the top of the processor
modules and is used for off-board expansion and peripheral
interface.

Each processor has 16k-bytes of user memory, a 2k-byte
distributed cache memory, and the EPROM and RAM required to
support ATM. The ATM RAM is protected while the processor is in
the user state.

The processor modules require only DC power from the
backplane in order to operate, allowing them to function
independently. This makes it possible to test each processor
separately in or out of the chassis.

29

NAVTRAEQUIPCEN 79-C-0096-1

SN TOYINOD

e

AOVIYALINI
snd’
TOY.LNOD

SN¥ XNOWHW QIAVHS

AOVAMAINT
KAORTH

ATIVHS

XIINDYID XUOWEN (10944) (W)
IANTIAINT wﬁ%wmmeu AHOVD KIONAR EMORTH
aTd0IodA a3ILngTdIsId IVD01 VOO
@ h - % @
(sn¥I) snd TVNIAINI
X1INDYID XMIINOUID (2)
NOILIO3I0¥d Id0dans FOVIMAINT
KIORAR ¥0SSAI0Ud WA

— HossAI0dd

Processor Module Block Diagram

Figure 6.

30

NAVTRAEQUIPCEN 79-C-0096-1

HIGH PERFORMANCE PROCESSOR MODULE

The high-performance processor implements a portion of the
VAX-11/780 instruction set and all of its addressing modes. It
is constructed using the AMD 2900 series of bipolar bit-sliced
components. The system is divided into five different sections,
each of which is constructed on a separate wire-wrap board:
boards 1 and 2 contain the central processing unit (CPU); board
3 is the memory alignment unit (MAU); board 4 contains 2K-bytes
of read-only memory and 16K-bytes of read/write memory (which
can easily be expanded to 32K-bytes); board 5 contains the
control =store PROMs and a 112-bit pipeline register. A block
diagram of this system shown in Figure 7 indicates this system
- partitioning.

The design of the CPU subsystem centers around three internal
buses. The address bus accesses both local and shared memory.
Data is transmitted via a separate data bus, again with
provision for a path to either local or shared memory. The
control signals received or sent by the processor are handled by
a separate control bus.

The major paths of data flow in the CPU are through a set of
input registers and buffers. The information can come from
either the address bus or the data bus and is then passed to one
of 16 working registers. The VAX general purpose registers are
internal to the AMD 2903 chips. From any of these registers,
the data 1is sent to the arithmetic logic unit (ALU) where data
manipulation is performed. The output of the ALU is available
to either the address bus (via an address register) or the data
bus (via a data register). The ALU output can also be directed
to a program counter and a status register.

Instructions are fetched from the data bus four bytes at a time
and held in four opcode registers. One byte, denoting a
macro-instruction, is decoded as a starting address in the
control store. Addressing the control store is the function of
the microprogram sequencer. The output of the control store is
latched 1in a micro-instruction register to provide microcontrol
signals.

A memory alignment unit 1is required between the processor
module and the external system buses or memory modules because
the VAX instructions being emulated allow memory accesses on any
byte boundary, while the buses and memory are organized as
32-bit words. The configuration shown handles nonaligned
memory-read and memory-write operations. Two microcycles are

NAVTRAEQUIPCEN 79-C-0096-1

required for a nonaligned memory operation, compared to one
microcycle for a memory operation involving aligned data. To
avoid this execution time penalty, programmers must carefully
construct their algorithms to minimize the number of nonaligned
memory operations.

All connections between the CPU subsystem and the four major
buses of the multiple-microcomputer system are through the
memory alignment unit. The memory address space of the
high-performance processor is divided into segments which are
assigned to each of the buses. The three most-significant bits
of the 32-bit address sent out by the processor control the
access to these buses.

NAVTRAEQUIPCEN 79-C-0096-1

AR
N39MOAVILAYN
WYUK M08 WILSAS I avoq
" d |-
¥ILNNOY e
%3y

]
i |

|
_H !
3 | |
m_/‘ mIS9 —y vl
4 | __ Badv[————
g bl B)
= - o) _ __.1
P oo e — i
|3 A, e 2934 _ . _G
o [;R
vaval 2 AV e . A
5| _ o
| i | il».r::m D
K_ o * [
I L] ok
E} ! ! o Co®
- m :_:_ b
) 1w QB TR T — oo
— T |
| 43 !
[1 HVLS Loy) "
. > L _
: i
” 21 | “N».
l 6.&». __ u_il.wﬁ
! ¥
' _ A MY L Thi ._
K 2g) g3t |
i e — g
300083 1y _
! _ LNI 93y J _
' Niviwa |
A 3]

|

TS UA 76 SiA VIV gUSS 10T

v FIwmod T
aND
L i FO

Mdans
HAvod

HOTD

¥ Quvos R IR P
RS .
| at _ EEIEY ' _m
7 m REEN | wow N
2 I.b _ o v .
} Avonan | ~1 ong _ I Z_.__ w ! m
mm,u.;: VG; %_ " T._.zuu_“ “awi:i Wm
T
| A= = +
1 m: | : N,m__ :
I o tuling. el D SRR |
|| TR e viea dema
i & il P Y
! r Il Gt o |
. 7 HE
X | { O\H -A“Lm “ okt
v XA | Ig)+ |s40 ! pasvod
| | i #2
1 —d)
i..._n Lo L auyun “
| - Qo
" | n.l..un..u.h_k- 5B
, _ | 553K
| e WLd [S8
X ® m_.. _ | TOULNDY

High Performance Processor Block Diagram

Figure 7.

33/34

NAVTRAEQUIPCEN 79-C-0C96-1

SECTION 1V

FEASIBILITY BREADBOARD SYSTEM SOFTWARE

PURPOSE

The purpose of this section is to describe the operation,
structure and design rationale of the feasibility breadboard
system software.

SCOPE

The discussion of the feasibility breadboard system
software in this section is at a high level and is designed to
convey an overall understanding. The details required for
maintenance or extension of the feasibility breadboard software
are contained within the appropriate program description
documents and the code itself.

SOFTWARE TERMINOLOGY

In the discussion of the feasibility breadboard system
software a number of terms will be used for which the meanings
need to be well-defined. These terms include:

a) Program

b) Package

c) Task (Process)
d) Module

e) Procedure

f) Subroutine

g) Utility.

h) Primitive.

The terms PROGRAM and PACKAGE are strongly related in that both
are used to define a software unit which is separately
compilable. The difference is that a program is designed to be
used as an entity while a package may be invoked from another
software unit. Thus programs are always packages but the
reverse is not always true. A TASK is the smallest unit which

35

NAVTRAEQUIPCEN 79-C-0096-1

is capable of contending for resources in the
multiple—-microprocessor breadboard system. A program will be
composed of one or more tasks while a package will generally not
be organized as a task since it is designed to be invoked by
units which already have task organization.

MODULE, PROCEDURE, and SUBROUTINE refer to sub-units which
cannot, in general, be compiled separately. Procedures and
subroutines are identical and are callable modules. The term
module refers to a sub-unit without regard to the method of
implementation. It is possible for a package to also be a
module but this 1is not typically the case. A package is more
likely to contain a group of related modules, along with the
supporting data structures.

UTILITIES and PRIMITIVES are modules which perform
functions that are at a level which is much lower than the
function of the program in which they are involved. In general
they are used the same as extensions of the language in which
the program is being written. For this reason they must be
tightly coded and be ABSOLUTELY disjoint from any application
code. Either of them may modify a global variable if they are
the only module allowed to do so. The utility is typically
implementation-dependent while the primitive is
application-dependent, otherwise they are the same.

LEVEL CLASSIFICATION OF SOFTWARE COMPONENTS

The software components of the feasibility breadboard
system are classified as kernel-level, system-level, or
application-level components. kernel-level software components
implement structures which are fundamental to the system
architecture. An application programmer cannot distinguish the
difference between kernel-level software and hardware (or
firmware). System-level software components provide services
which are also application-independent but which are at a less
fundamental level than those provided by kernel-level
componhents. The application programmer may be aware of
system—level software components and interact with them in the
developement of application software.

The feasibility breadboard software components and their
level classification are as follows:

36

NAVTRAEQUIPCEN 79-C-0096-1

a) Kernel-level Components:
* Application Task Manager (ATM)
b) System-level Components:
Command Language Interpreter Program (CLIP)
System Control Program

Debug Package
Test Package

* * ¥ ¥

c) Application-level Components:

* Any Application Level Processing Program

STANDARD DOCUMENTATION FORMAT

Each feasibility breadboard component will be described
using ' a standard format which includes the following
information:

a) Component function and level
b) Required environment

c) Operation

d) Organization

The component function and level is a brief statement as to
the function and purpose of the component, the level at which it
is classified, and method of implementation.

The required environment is the condition required for
successful execution of the component,including amount of memory
used, packages and primitives used, and whether it uses ATM
commands.

The operation section details what the component does when
it executes. In general, the operation of the component is
described one level of the program structure at a time, starting
at the top. Where appropriate, flowcharts and pseudocode will
be used along with a narrative.

37

NAVTRAEQUIPCEN 79-C-0096-1

The organizaton section gives a description of the
structure of the component. Included are: the global variable
declarations (using PASCAL notation), hierarchical diagrams, and
descriptions of the major modules. As with the operation of the
component, the organization will normally be given by 1level,
beginning at the top.

APPLICATION TASK MANAGER

The operation and structure of the ATM were described in
detail in the final report for Phase I (NAVTRAEQUIPCEN
78-C-0157-1). The information given here is concentrated on the
refinements since that time and the details of the feasibility
breadboard implementation.

Background Information

The Application Task Manager (ATM) is the module used to
overcome the bottlenecks inherent to the Von Neumann
architecture used by the large majority of present computers.
The ATM may be implemented as hardware, firmware, or software.
Because the ATM is strongly involved with concurrent tasks the
most desirable implementation is in hardware. This follows
since hardware is inherently parallel. However this is also the
most difficult implementation. For the feasibility breadboard
there will be two separate implementations of ATM. One will be
in software and will be used to test the feasibility of the
concept. A software implementation will be used in this case
since this is the least risky technique. The second
implementation of ATM, in the high-performance processor, will
be in firmware and will be done to test the feasibility of the
firmware implementation as opposed to the ATM concept itself.

The specific tasks performed by ATM, regardless of the type
of implementation, are as follows:

a) Provide an environment for the execution of concurrent tasks

(processes) and to provide the tools for controlling these
tasks.

38

NAVTRAEQUIPCEN 79-C-0096-1

b) Implement the critical region for performing operations
which must be indivisible.

c) Provide the basic mechanism for communication between
processors or between processors and the outside world.

Concurrent tasks in ATM are disjoint with respect to processor
state and may be modelled by the concurrent Pascal COBEGIN-COEND
block as

COBEGIN Tl; T2; T3; Ti COEND;

where each task is a separate computational unit. The user has.
control over the allocation of processor resources to each task.
The ATM default is to run all equal priority tasks in
round-robin fashion.

ATM implements the «critical region by control of the
interrupt system. All system interrupts cause entry into ATM,
conversely this is the only method of entry. The interrupts are
disabled while in the ATM state such that any function performed
by ATM is indivisible. All functions which deal with resource
allocation or the passing of parameters are ATM functions which
means that these activities always take place 1in a critical
region.

The basic technique for communicating with ATM 1is by ATM
commands or system calls which act as enhancements to the
processors hative instruction set. The objects of these
commands, either tasks or memory locations, may reside in any
processor. If a task in one processor issues a command which
has as its object, a task in another processor, ATM
automatically vectors the command to the correct task. Commands
received externally via the control bus are processed in the
same manner as commands received from resident tasks. One of
the basic ATM concepts is the unified command set, i.e., use of
the same commands for both communication and control.

Perhaps the most obvious difference in comparison to the
typical operating system is the allocation of resources. The
present policy for the feasibility breadboard system is to use
hardware for allocation of key resources (the shared memory is a
good example) and to allow the user to allocate the rest. The
role of ATM 1is to provide the tools required for the various
tasks to arbitrate for system resources.

39

NAVTRAEQUIPCEN 79-C-0096-1

The smallest entity in the breadboard system which 1is
capable of 1issuing ATM commands is the. task (or process, for
this report the two will be considered to be the same). A task
is described to ATM by a task control block (TCB). The TCB is a
15-byte block of information about the task containing the
following items:

Queue Link (an address pointer)
Task ID

Task Priority

Task Privilege

Blocked by entry

Starting Address

State Flags

Time Limit (in 0.01 second units)
Time Remaining

Stack Pointer Value

NN N =N
[ex
=
et
)
0

ATM treats tasks as objects which have attributes as contained
in the TCB. The TCB contains two basic types of entries, those
which are accessible to the programmer during execution by way
of ATM commands and those which are used by ATM for state
information during operation. The first group contains the
priority, privilege, and time limit. These task attributes are
intended to be used by the programmer to control execution and
access. In general they are used to implement policy. The
remaining task entries are intended for ATM use during task
execution.

A task may exist in one of four states which are READY,
RUNNING, BLOCKED, and TERMINATED. A task is in the RUNNING
state if it is actually executing. Since ATM executes on a
single processor, only one task may be in the running state at
any given instant of time. A task is in the READY state 1if it
is in a "computable" state, that is if it "wishes" to run. If
an executing task performs a WAIT operation on a zero semaphore
it becomes BLOCKED until the semaphore 1is incremented by a
SIGNAL operation. When the task is unblocked it will be placed
in the READY state. A TERMINATED task is one which has either
never wished to run or has run and does not wish to run again.
The user may control the entry of a task into the READY or
TERMINATED states by use of commands provided by ATM. Only ATM
can place a task in the RUNNING or BLOCKED states. In addition
only ATM can remove a task from the BLOCKED state. A state
diagram for an ATM task is shown in Figure 8.

40

NAVTRAEQUIPCEN 79-C-0096-1

Figure 8.

ATM Task State Diagram

ATM may be in the user, executive, or communications state.
User tasks always execute in the user state.

In this state, the
memory protection circuitry is armed and access to ATM functions
is prohibited.

All local supervisor calls from the user state

41

NAVTRAEQUIPCEN 79-C-0096-1

are processed in the ATM executive state. All supervisor calls
originating from the outside world (i.e., from another processor
via the control bus) are processed in the communications state.
The memory protection circuitry is disabled for both states.
'"Normal' state transfer for an ATM exit is from the executive
state to the user state. External permission (presently from
the control processor) is needed for ATM to leave the
communications state to the executive state in preparation for a

"'normal' state transfer. The state diagram is illustrated in
Figure 9.

The ATM commands consist of an opcode and the required
arguments. Each opcode contains a local/external bit to
indicate if the object of the command resides in the same
processor or not. For tasks which are external, a unit number
is supplied with the opcode and is used by ATM to automatically
route the command to the proper processor.

ATM has a command table containing an entry for each
possible opcode in the ATM command space. The format of the
table is as follows:

ATM command_table = ARRAY[1..max opcode}l OF

RECORD

defined: BOOLEAN;
privileges BYTE;
input descriptor: BYTE;
output descriptor: BYTE;
END;

The Boolean variable, defined, is TRUE if the opcode is wvalid,
i.e., 1is currently assigned to an ATM command. The input and
output descriptors contain the information used by ATM to handle
the input and output arguments associated with the command.
Each user task runs at an assigned PRIVILEGE level. When a task
jssues an ATM command the task privilege is compared to the
privilege associated with the command. If the task privilege is
not equal to, or greater than, the command privilege, then
execution of the command is blocked and an exception is raised.
In the feasibility breadboard only the operator can release a
user task which has had a privilege violation.

42

NAVTRAEQUIPCEN 79-C-0096-1

Supervisor/call
local interrupnt

Communications

request
(external interrupt)

- ATM N
(Monitor) S
STATE

Con

inue

Figure 9. ATM Executive Kernal State Diagram

Function and Level

The Application Task Manager (ATM)
program which is wused to implement the
processors instruction set which are used to
distributed programs.

43

is a
extens
handle

kernel-level
ions to the
real-time,

NAVTRAEQUIPCEN 79-C-0096-1

Required Environment in the Breadboard

LANGUAGE: 6809 Assembler Language.

PROCESSOR: 6809.

MEMORY: 2.5K bytes

STACKSIZE: 100 bytes

SUPPORT: Hardware support, including expanded

interrupts, timer module, and memory
protection circuitry.

Operation

A flowchart of the operation of ATM is shown in Figure

10.

ATM has a CASE-like structure at the input with the CASE index
being determined by the interrupt vector rather than a program

variable. The interrupt hardware vectors directly to the
desired module and the Enter Atm module is called as a
subroutine. The effect, however, is the same as that shown in

Figure 9. The input modules and their function are as follows:

a)

b)

INITIALIZATION MODULE:

The initialization module provides the power up/cold-start
sequence. It initializes the task control blocks such that
the task count is one (the null task is inherent). All
timers are set to =zero and all queues assume an initiel
confiqguration.

PROCESS COMMUNICATIONS REQUEST:

The process communications request module runs 1in response
to the communications request interrupt. The applications

processors remain in the communications state until
specifically told to leave by the control processor. The
control processor exits under program control. The

communications state 1is used for all transactions on the
control bus. The ATM instruction set 1is used for all
communications state transactions.

44

NAVTRAEQUIPCEN 79-C-0096-1

—)
ASVL
WLV 11X3F | NOTIVDT1daY, oo
AINqEHS

SIANYYALNT
TIANDISSV

ANVWWQOD
HLY $Sd00dd

INOFHIL
ASVL

AWILTTIVM
SSA0EA

SSHO0Ud

Lsanbiad
NOILYD INNHROD
$sH00ud

NOTLVZI'IVITIN]
TIVIS-a100

HLYV ¥IINZ

Flowchart of ATM Operation

Figure 10.

45

NAVTRAEQUIPCEN 79-C-0096-1

c¢) PROCESS EVENT:

The process event module runs in response to an interrupt
from the event timer, signaling that the opcode on the top
of the event queue is to be processed.

d) WALLTIME UPDATE:

The walltime update module runs in response to an interrupt
from the walltime timer. The timer only has the capacity
for 10 minutes so the rest of the walltime 1is stored in

memory. Each time the walltime interrupt occurs the portion
stored in memory is updated and the timer is reset.

e) TASK TIMEOUT:

The task timeout module is executed whenever a user task has
exhausted its time slice. The task is placed on the ready
task queue.

f) ATM COMMAND PROCESSOR:

The ATM command processor executes as the result of a task
using an ATM command. It 1is entered as the result of a
software interrupt (SWI) rather than a hardware interrupt.

g) ASSIGNED INTERRUPT HANDLER:

The assigned interrupts are interrupts which are assigned to
specific system tasks. When these interrupts occur the
assigned interrupt handler places the appropriate system
task on the system task queue. Current examples of assigned
interrupts are to set breakpoints (software interrupt) and
to run the system control program (hardware interrupt).

Only one input module executes at each entry to ATM thus they
occupy the same slot in the ATM hierarchy and are multiplexed in
time. FEach input module may raise an exception, causing the
exception handler to run. Operation of the Exception Handler is
shown in Figure 11. The Exception Handler Iis entered by a
complete transfer of control (JUMP or BRANCH) from the module
where the exception occurred. When - the handling sequence 1is
complete, ATM enters the communications state waiting for
instructions from the control processor. In any event, the
module that decides - to <call the Exception Handler will not
receive any further attention.

46

NAVTRAEQUIPCEN 79-C-0096-1

5
[l
Z
2

PROGRAMS

=]
=

YES

EXCEPTION
EXCEPTION
HANDLER

g
i
2]

w0
wd
25
=
2

FROM

Figure 11. Operation of the ATM Exception Handler

47

NAVTRAEQUIPCEN 79-C-0096-1

Following the input modules, control is always passed to
the scheduler, which is composed of two parts. The first part
is the system task handler which causes all system tasks to run
which wish to do so. System tasks are executed in the order of
their ID number and run to completion. Since they execute in
the executive state they have total access to all system
functions. The second part of the scheduler is the application
task scheduler. Here the highest priority application task 1is
scheduled to run. It should be noted that, as opposed to system
tasks, the application tasks do not run in the executive state
but are scheduled to run in the user state.

The final block is the EXIT ATM module. When EXIT ATM
executes, it resets the memory protection and places the stack
pointer of the scheduled application task in the SP register.
The memory protection circuitry delays until after ATM has
actually been exited before arming itself.

Organization

A hierarchical diagram of ATM is shown in Figure 12. The
ATM data structures are presented, in detail, in the ATM Program
Description Document. The ready task queue (RTQ) is

representative and is shown in Figure 13. It is a singly-linked
1ist of task control blocks with the base pointer always
pointing to the null task. Since the base pointer is in EPROM
the null task cannot be removed from the RTQ. The null task is
linked to the highest priority task. If no user tasks are ready
to run then the null task is linked to itself. The blocked task
gueue has a similar structure.

A high percentage of the ATM code consists of utilities and
primitives. This 1is reasonable since it 1is a kernel-level
component and must deal with the system at the lowest level.

These utilities and primitives are described in the ATM Program
Description Document.

48

NAVTRAEQUIPCEN 79-C-0096-1

Enter ATM

- Command

- e v e me e ame we TR mw e M Gme o=

Process ATM ; Control Bus Assigned

Interrupt Interrupt

Communication§ Time
Interrupt § Interrupt

Executive Utilities
Main Primitives

Schedule

Application
Program

-—om e G v A me e = e = e e

Figure 12. ATM Hierarchical Diagram

49

NAVTRAEQUIPCEN 79-C-0026-1

@829 P e _

_ :3uyaspio £3710Tag

A31aotad
4 ysel |

Nurg-~b

v

d
£3Faotad

vV ysel

L3Faogad
Hsel
TTnu

aseq-Apeaa

Structure of the Ready Task Queue

Figure 13.

50

-

NAVTRAEQUIPCEN 79-C-0096-1

COMMAND LANGUAGE INTERPRETER PROGRAM

Component Level and Function

The Command Language Interpreter Program (CLIP) is a system
program which handles all operator input for the system. CLIP
is implemented as a single user task and executes on the control
processor.

Required Environment in the Breadboard

e e e e o o = = e " —— = e SR e hr S S e S S T

LANGUAGE: 6809 Assembler Languade.
PROCESSOR: 6809.

MEMORY: 8579 Bytes total.

STACKSIZE: Minimum of 32 bytes.

SUPPORT: Non-ATM Utilities Package.
OTHER: Must run in control processor.
Background

The purpose of this section is to give a brief description
of SCL, the input language to CLIP, as an aid to understanding
the operation and structure of CLIP. The basic unit of SCL is
the statement, a command followed (optionally) by an operand
string. The syntax of the SCL statement is given in Figure 14.
The commands currently-included in SCL are listed below:

a) SlIgnal

b) Wait

c) Initiate (STart)

d) Terminate (STOp, Halt)
e) OQuery (Display, SHow)

f) Set
g) Move
h) Get
i) Put

j) Continue
k) Execute
1) Default (WIth, Use)

51

NAVTRAEQUIPCEN 79-C-0096-1

== COMMAND 7 \

N\ TASK ID NUMBER /

UNIT NUMBER

N— OPERAND ———————’

‘ OPTION “_—‘/

TASK ID/UNIT NUMBER
#

— e NUMBER

OPERAND

——s== SYMBOL

DELIMITER ———i= NUMBER ——E

OPTION

——a~ | ——a=— - SYMBOL g NUMBER

Figure 14. SCL Syntax Diagramn

52

NAVTRAEQUIPCEN 79-C-0096-1

m) Vax

n) DOwnload
o) Remove

p) MAke

q) DISkload
r) Dlrectory
s) DElete

t) Format

The capital letters represent the minimum form of the command.
Any number of characters equal to, or greater than, this number
will be accepted as long as they are correct. In some instances
a command has one or more alternate names, shown in parentheses.

The operand string may contain a unit number (denoted by a
'*.'), a task ID (denoted by a pound sign), an operand (with an
optional value), and one or more options. CLIP remembers all
elements of the SCL statement with the exception of the command,
such that none of the operands have to be repeated wuntil they

are changed. For example the following two commands give the
same results

query .2 walltime
q

assuming they are used in the order given. The SCL operand
string may be 1in any desired sequence. However it must not
contain more than one operand as CLIP always uses the last

operand in decoding the statement. For instance the command

set memory=$fc54 value=$80

is intended to assign the value $80 to memory location $fc54.
It will, however, return an "improper operand for SET command"

error as value is not an allowable operand. For situations such
as this the option is provided. Restating the command as

set memory=$fc54/value=580

will work correctly as CLIP assigns a value to any parameter
preceded by the "/" without considering it as an operand.

SCL delimiters are space, comma, tab, and equals and may be
used interchangeably.

53

NAVTRAEQUIPCEN 79-C-0096-1

Operation

A flowchart of CLIP is shown in Figure 15, the pseudo-code
version of the main program in Figure 16. The REPEAT-FOREVER

format is derived from the fact that CLIP acts as the null task
and, therefore, never terminates.

The first activity within the loop is to output the prompt
(>), indicating that CLIP is ready to accept a command input.
All user input is handled by the keyboard monitor (KYBMON) which
stores all user input in a buffer until a carriage return (or
break character) is entered. The keyboard monitor provides
limited 1local editing and is modeled after the VAX VMS keyboard
monitor.

After the command line is entered, the first token, assumed
to be the command, is decoded. I1f the token is a carriage
return control is returned to the beginning of the loop to
receive the next command, otherwise the command table is
searched for a match with the token. If the token is not in the
table an exception is generated and control is passed to the
exception handler. If the command is wvalid, that 1is, it 1is
found in the table, then the token value is returned and control
is passed to the execute module.

The command processor handles the actual execution of . the
input commands. It is composed of an execute module for each
CLIP command. The portion of the command processor contained in
the main program implements a CASE structure, using the command
token value as the CASE index. A jump table (JMPTBL) is used to
transfer control to the appropriate execute module. All execute
modules issue one or more ATM commands and then return control
to the main program. There are two return points from the
execute modules, the label ENTRY for successful execution and
the 1label ERROR for an unsuccessful attempt at execution. The
ERROR returnh causes the exception handler (EXCEPT) to run,
causing the exception code and the state of the processor and
task to be displayed at the control console, along with the
exception code. .

The power-up initialization module (COLDST) sets the
default value of the unit number to the control processor,
initializes the execute area, and prints the power-up prompt.
The execute area must be in RAM because portions of it are
modified (the unit number) but the software interrupt opcode 1is
constant. The constant portions, along with default values for
the variable parts, are moved from EPROM to RAM at power-up.

54

NAVTRAEQUIPCEN 79-C-0086-1

(START)

\

INITIALIZATION
\
A

| PRINT PROMPT
ACCEPT INPUT

BREAK OR
ULL INP

- DECODE INPUT EXCEPTION
. COMMAND : HANDLER

EXECUTE
COMMAND
-

CORRECT

XECUTIO!
¥

Figure 15. CLIP Flowchart

55

BEGIN

NAVTRAEQUIPCEN 79-C-0096-1

system_ initialization;
forever := FALSE;

REPEAT
send_prompt;

accept_command_ input;

IF NOT break_
BEGIN

return THEN

get_command_token;

IF NOT

END
UNTIL forever
END.

Figure 16.

null THEN

BEGIN

decode_command_ token;

IF good_ command THEN
BEGIN
execute_command;
IF NOT good execution THEN

handle_exception;

END

ELSE
handle_exception

END

Pseudocode for CLIP Main Program

56

NAVTRAEQUIPCEN 79-C-0096-1

At the time the execute modules are called, the command
associated with the SCL statement has been extracted and decoded
and the input buffer pointer contains the address of the next
token in the statement. All of the execute modules first call a
parse routine (PARSE) to process the remainder of the SCL input
statement. PARSE uses the information contained in the operand
string to update the parse table (PARTBL).

Some of the execute modules, such as the INITIATE or
TERMINATE modules, perform a single operation in which case it
is sufficient to know the command. Other commands, such as
QUERY, may operate on multiple operands. It is necessary for
these modules to know WHICH operand was entered as well as the
VALUE of the operand. The solution to this problem is inherent
in the structure of the parse table. When the parse routine
finds a token in the operand table, the returned value for the
token is the offset for that operand in the parse table and is,
therefore, a unique velue which identifies the operand itself as
well as locating it in the parse table. The parse routine then
stores the operand's 1index value (i.e., its location in the
parse table) in the location associated with the symbol OPRAND
and stores the wvalue entered for the operand, if any, in the

parse table at the location assigned for that wvalue. Thus 1if
the command

set .2 walltime = 00,0150

were entered, the PARSE routine would place the value 20 ($14)
in the parse table for OPRAND and the value 00,0150 in the three
bytes assigned to the variable walltime (WTIME). When the
command is executed the SET execute module would fetch the wvalue
of OPRAND and determine -what was to be set. If the value stored
in OPRAND were not & legal object of SET then an exception would
be raised. 1In this case walltime is legal and execution would
proceed. The SET module would send the value stored under WTIME
to processor number 2. Since the processor number (.) has a
unique identifier, it is not indexed.

Organization

The CLIP global data structures consist of constants,
arrays (mostly buffers), the disk handler variables, and tables.
The global constants are given in Table 1. The global variables
are given in Table 2.

57

NAVTRAEQUIPCEN 79-C-0096-1

TABLE 1. CLIP GLOBAL CONSTANTS

CONSTANTS
MAXTOK: BYTE; -- maximum token size
MAXBUF: BYTE; -- size of input command buffer.
TCBADD: WORD; -- task control block base address.
SCBADD: WORD; -- system control block base address.
BP_TBL: WORD; -- breakpoint table address.
VAXBUF: WORD:; -- limits of formatted storage in the
XLIMIT: WORD; - host system code transfer buffer.

(* In addition there are mnemonic definitions of all ASCII
character constants which are used in the program, a list of
entry addresses, for the disk boot PROM, and the prompt
message strings. The disk entry addresses are copied
directly from the Motorola Exordisk II User's Guide. ¥*)

58

NAVTRAEQUIPCEN 79-C-0096-1

TABLE 2. CLIP GLOBAL VARIABLES

VARIABLES

CMDBUF :
TOKBUF :
INPBUF:
S_BUFF:
MEMBUF :
STGBUF :

ARRAY 1l..MAXBUF OF BYTE;
ARRAY 1l..MAXTOK OF BYTE;
ARRAY 1. .XLIMIT OF BYTE;
ARRAY 1..80 OF BYTE;
ARRAY 1..16 OF BYTE;
ARRAY 1..48 OF CHAR;

Buffer assignments:

CMDBUF :
TOKBUF:
INPBUF:
MEMBUF:
STGBUF :

Command input buffer.
Current token buffer.

Host system code transfer buffer.

Query memory buffer.
String buffer.

Disk Operating System Variables:

FILE:
FREPNT
PHSPNT

FILE:
FREPNT
PHSPNT

ARRAY 1..33 OF BYTE;
ARRAY 1..256 OF BYTE;
ARRAY 1..128 OF BYTE;

Current open file buffer.

Free directory image buffer.
Physical directory entry image

59

buffer.

* % * ¥

*

PARTBL
PRIOR
PRIV
SEMA_4
COUNT
VALUE
LINE
SOURCE
DESTIN
LIMIT
INTVAL
MEMORY
NOW
STRING
WTIME
BREAKP
DRIVE

DEFLT
*

*
*
*

UNIT

TASKID
OPRAND
SCOUNT

OPFLAG
*

*
*

NAVTRAEQUIPCEN 79-C-0096-1

TABLE 3. CLIP PARSE TABLE

PARSE TABLE (indexed values first):

variable/assignment:

EQU *

FCB $00 -~ priority

FCB $00 -- privilege

FCB $00 -- gsemaphore

FCB $00 -~ count

FCB $00 -- semaphore value
FCB $00 -- request line (SM)
FDB $00 -- source address

FDB S00 -- destination address
FDB $00 -- time_limit

RMB $03 -- time interval

FDB $01 -- memory vector.

FCB $00 -- now operand value.
FDB $00 -- string vector.

RMB $03 -- walltime value.
FDB $00 -- breakpoint address
FCB $00 -- current disk drive
FCB $00 -~ default operand

end of indexed values

(these variables are referenced directly):

index

00.
0l.
02.
03.
04.
05.
06.
08.
10
12
15
17
18
20
23
25
26

value:

(soa).
($0cC) .
(SOF) .
($11).
($12).
($14) .
($17).
($19).
($20).

FCB $00 —- current value of target unit.
FCB $00 -— current value of target task.
FCB $00 -~ value of current operand.

FCB $00 -— string count value.

FCB $00 -- type = BOOLEAN

end PARTBL.

60

NAVTRAEQUIPCEN 79-C-0096-1

CLIP contains three major tables, the command, operand, and
parse tables, and a Jjump table wused to implement the CASE
structure for the execute modules. The parse table (PARTBL) is
a collection of one, two, and three byte variables as given in
Table 3.

The command (CMDTBL) and operand (OPRTBL) tables are
strings of substrings and have the form:

(<tries>,<substring><null><offset>........
ee..<tries><substring><null><offset><stop>)

where tries is the minimum number of characters which must match
for a successful search, substring is the table entry, the null
is used to delimit individual entries, and the offset 1is the
value of the table entry. Stop delimits the table itself. This
format makes it ©possible to have an arbitrary number of
characters in a table entry and to readily expand the table with
no other changes.

A hierarchical diagram of CLIP is given in Fiqure 17. The
most complex module is the command processor as it contains all

of the execute routines. A hierarchical diagram of the command
processor is shown in Figure 18.

In addition to the modules in the hierarchy of the program,
CLIP contains a package of application primitives. This package
contains the following functions:

a) GET NEXT TOKEN PRIMITIVE (GTOKEN);

GTOKEN is used to extract tokens from the command buffer.
The returned token 1is placed in the token buffer. GTOKEN
also returns a value for the token class. These values are
as follows:

* (0: Carriage return (end of statement).

¥ 1: Unit number.
* 2 Task ID.

61

300230 ANV
1NdNT GNVIWOD

¥05S53204d ANVWWOD

NOTIVZITVILINI

NAVTRAEQUIPCEN 79-C-0096-1

Wyd90dd NIVW

CLIP Hierarchical Diagram

Figure 17.

62

NAVTRAEQUIPCEN 79-C-0096-1

— LINVARa —

avoT ASId

HAVH

chykcld

A40LOIATA

LVIRE04

JAOWIN

avoiNmoa

ANNTINOD

q100IX4d

10d

FAOH

Las

ht:k fote}

ATVNIWHAL —

dLVILINI

LIVM

TVNDIS

¥NSSADOUL
ANVHHGD

Command Processor Hierarchical Diagram

Figure 18.

63

b)

c)

d)

e)

NAVTRAEQUIPCEN 79-C-0096-1

3: Symbol.
Number.
5: Option.
6: Undefined token.

* & % *
=Y
ae

DECODE TOKEN (DECODE):

DECODE determines if the contents of the token buffer are
contained in the table pointed to by the U register at the
time of call. 1If so the token value is returned.

EVALUATE TOKEN (EVALTO):

EVALTO returns the numeric value (as a 16-bit integer) of
the contents of the current token buffer.

PARSE CCMMAND STATEMENT (PARSE):

PARSE evaluates all elements of the command statement
following the command itself and places the results in the
parse table.

KEYBOARD MONITOR (KYBMON) :

The keyboard'monitor-is used to handle 211 1input from the

control console keyboard. It 1is <classed as 2 primitive
because it is used at two different levels.

64

NAVTRAEQUIPCEN 79-C-0096-1
SYSTEM CONTROL PROGRAM

Function and Level

The system control program is a system task executing in
the control processor ATM which is used to:

a) Implement the instruction bus (as a virtual structure).
b) Handle exceptions raised by the application processors.

Required Environment in the Breadboard

e e e o o o = R A S o o A= S S S e S S S

LANGUAGE: 6809 Assembler Language.
PROCESSOR: 6809,
MEMORY: 1816 bytes .
(includes non-ATM utilities)
STACKSIZE: Uses ATM stack.
SUPPORT: Non-ATM utilities package.
Operation

A flowchart of the system control program is shown in
Figure 19. The system control program runs upon receiving a
communications interrupt from an application processor. The
program first polls the control bus to determine the source of
the interrupt and then inputs the opcode. If the opcode 1is an
exception code then the exception parameters are fetched and the
display program is queued to run. The display program 1is a
system task which formats the exception parameters and displays
them on the control console.

If the opcode is not an exception code then the unit number
for the target processor is fetched and compared to the number
of the processor which asserted the interrupt originally. If
they are the same then the unit is "talking to itself" and an
exception code is returned. Otherwise the address of the target

is calculated and the opcode and the operands, if any, are sent
to it.

After the target unit completes execution of the command it

will return an exception code. If the code is zero then the
execution was successful and the code, along with any arguments,

65

NAVTRAEQUIPCEN

‘ START '

POLL

GET OP

\

DISPLAY
EXCEPTION
PARAMETERS

BUS
CODE

79-C-0096-1

SAVE OPCODE
GET UNIT

NUMBER

YES
NO

SEND OPCODE
AN ARGUMENTS
TO TARGET UNIT
GET ERROR CODE

Figure 19.

YES Y
NO
HANDLE RETURNED Egggggiou
ARGUMENTS
Y
\
EXIT

System Control Program Flowchart

ce

NAVTRAEQUIPCEN 79-C-0096-1

are returned to the interrupting processor. If the execution
was not successful then the exception code is returned.

A macro, POLL, is used to determine the source of the
communications interrupt. It fetches the interrupt flag at the
control port of each application processor until the
interrupting processor is located. Since the polling begins at
processor number one, this gives the priority structure as a
daisy chain.

The routine used to fetch the exception parameters is also
a macro. It is a simple 27-byte block data move program. The
main reason for using the FETCH and POLL macros is to improve
the readability of the main program.

The routine used to display the exception parameters (DUMP)
is implemented as a system task. The FETCH routine used in the
main program puts the exception parameters in a buffer (EXBUFF) .
When the display program executes it takes the contents of this
buffer, adds labels, formats the information, and sends it to
the control console.

Several functions of the system control program have been
coded as primitives. These functions include:

a) CONTROL INPUT PRIMITIVE (CNLIN):

CNLIN is used to fetch information £from the control bus
current open port. The port address is passed in an index
register and the data byte is returned in an accumulator,
. both of which are specified in the macro invocation.

b) CONTROL OUTPUT PRIMITIVE (CNLOUT) :

CNLOUT has the same form as CNLIN except that the contents
of the specified accumulator are sent to the current-open
port.

c) OPEN CONTROL PORT PRIMITIVE (OPEN) :
OPEN is used to place a specified application processor in
the communications state. The address of the processor is

contained in an index register specified at the time of
call.

67

NAVTRAEQUIPCEN 79-C-0096-1

d) MOVE ARGUMENTS PRIMITIVE (MOVE) :

The MOVE primitive is used to pass arguments on the control
bus. It uses the descriptors of the current-open task and
the current-open ports as its input parameters.

Organization

The hierarchical diagram of the system control program is

given in Figure 20. The global variable declarations are given
below:

BPCODE = S7F; -— breakpoint code.

EXCODE = $1F; -— exception code.

SYSIDl = $01; —-— ID number of display task.

CONBUS = $E110; -- control bus base address.

CMDTBL = $E445; —-- base address of ATM command table.
QUESYS = $E418; -- address of queue system address.
EXBUFF = S$FC10; -- address of exception buffer.

68

NAVTRAEQUIPCEN 79-C-0096-1

d10NaoN
HOLEA

:91n3oni3s meidoag (@

ATNAOR
T10d

HVID0dd
NIVI

1pasn s90TAI9S LieTfxny (q

| AAOH “NAdO
‘INOTIND “NITIND
:SHAATLIWIAG

(AV14S1Q)
MSVI WALSXS

JOVAIVA
‘SATLITIIN
WLV-NON

— e e e o e e e e e e

System Control Program Hierarchical Diagram

Figure 20.

69

NAVTRAEQUIPCEN 79-C-0096-1

DERUG (BREAKPOINT) PACKAGE

Function and Level

The Debug Package is a system-level package consisting of
two system tasks which, in conjunction with CLIP, allow the
using of breakpoints in the feasibility breadboard system.

Required Environment in the Breadboard

LANGUAGE: 6809 Assembler Language.
PROCESSOR: 6809

MEMORY: 87 bytes.

STACKSIZE: Uses ATM stack.

SUPPORT: Uses ATM exception handler.
Operation

— - o ——

The debug package consists of two system tasks, debugl and
debug?2. Debugl handles the setting and removing of breakpoints
and debug2 handles processing the actual breakpoint. A
flowchart for debugl is shown in Figure 21. CLIP communicates
with the debug programs by use of a table area. When Jdebugl
runs, it first fetches the command from the designated area of
the table and determines if it 1is to remove or insert a
breakpoint. If the breakpoint is to be removed, a subroutine
REMOVE is called which restores the code which was . saved when
the breakpoint was inserted. The breakpoint flag in the table
is cleared at return.

If the breakpoint is to be inserted then the code at the
breakpoint address is saved in the table and the breakpoint is
inserted at the address given in the table. After inserting the
breakpoint, it 1is read back and then checked to see 1f the
address is in RAM memory. If the breakpoint cannot be read
back, an error flag is set. '

The information in the breakpoint table is supplied by
CLIP. All of the commands required for inserting, removing, and
querying breakpoints are already in CLIP. The user only
supplies functional information and is not aware of the
breakpoint table or any other of the implementation details.

70

NAVTRAEQUIPCEN 79-C-00926-1

COMMAND=8

CURRENT

COMMAND=1 BREAKPOINT
? ?
REMOVE 'SAVE CODE AT BREAK REMOVE
BRE AKPOINT PQINT ADDRESS BREAKPOINT
|
y
" INSERT
© BREAKPOINT
VM0 R AkPOINT
INSERTED
?
RAISE YES
EXCEPTION

i

‘ RETURN ’

Figure 21. Debug Program Flowchart

71

NAVTRAEQUIPCEN 79-C-0096-1

Debug2 runs when a breakpoint is encountered. Debug?2
removes the breakpoint and restores the original instruction,
gets the user state, sets the breakpoint exception code, and
returns with the exception flag raised. The normal CLIP
exception display program is used to display the results at the
control console.

Organization

Both of the debug programs are inline code except for the
REMOVE subroutine, used by both. The breakpoint table is as
shown below:

LOCATION: CONTENTS:

0: breakpoint/error flag.
1: input command.

2: breakpoint address.

4: saved code.

72

NAVTRAEQUIPCEN 79-C-0096-1

MEMORY TEST PROGRAM

Function and Level

The memory test program (MTEST) is an application-level
program designed to test the RAM memory of the feasibility
breadboard processor modules.

Required Environment in the Breadboard

LANGUAGE 6809 Assembler Language.
PROCESSOR: 6809

MEMORY: 130 bytes.

STACKSIZE: 32 bytes.

SUPPORT: Uses ATM exception handler.
Operation

MTEST consists of two separate test routines, a walking-1's
test (testl) and a checkerboard test (test2). Flowcharts for
the two routines are shown in Figures 22 and 23 respectively.
Testl returns an exception code of $61 if it finds an error.
The X register holds the location of the error. A successful
test will return a code of $91. The codes for test2 are $62 and
$92. Neither test calls any subroutines. For convenience the
tests are separate tasks.

Organization

Both of the memory test programs are inline code. Each
uses dynamic allocation of variables (on the stack), implemented
by the LEAS instruction at the beginning of the code. All stack
addresses as well as the test limits are given symbolically at
the beginning of the program. The tests both use the macro
EXCEPT to handle the ATM commands to the exception handler.

73

NAVTRAEQUIPCEN 79-C-0096-1

‘ START)
A

INITIALIZE THE START
AND STOP ADDRESSES

TEST
COMPLETE _
?

RETURN

NO

SAVE CONTENTS RESTORE CONTENTS
INITIALIZE THE NEXT LOCATION
BIT_COUNTER

Y
[

ALL BITS
TESTED
?

NO

FORM NEXT PATTERN WRITE/READ PATTERN

A

Yy

"REPCORT ERROR

l

Figure 22. Flowchart for Walking-1's Test

74

NAVTRAEQUIPCEN 79-C-0096-1

(START ,

\

INITIALIZE THE START
AND STOP ADDRESSES

Yy

TEST
COMPLETE
?

RETURN

SAVE CONTENTS
PATTERNT TEST

ERROR YES
?
RESTORE CONTENTS PATTERNZ
NEXT LOCATION TEST

A

ERROR
?

Figure 23. Flowchart for Checkerboard Test

75/76

NAVTRAEQUIPCEN 79-C-0096-1
SECTION V

CONCLUSIONS

There are two separate topics upon which to draw
conclusions, the multiple-microcomputer system concept and the
feasibility breadboard. The feasibility breadboard system will
be discussed first because it is the major focus of this effort.

FEASIBILITY BREADBOARD SYSTEM

The feasibility breadboard system has been designed,
implemented, and tested and has met the requirements set forth
in the specifications. Because the high-performance processor
represented an appreciable portion of the overall effort, it
will be discussed separately.

Favorable Aspects

During the implementation and testing of the feasibility
breadboard system,. several features proved to be quite
worthwhile. These features include:

a) Ease of operation

b) Extensibility of the system command language
c) ATM instruction set

d) The IBUS concept

e) Conservative design

The first and second features both relate to CLIP. CLIP was the
last major software component to be designed for the system. It
is better structured than any of the other components, probably
because of the previous experience gained by the design team.
This is fortunate because CLIP defines the operator access to
the system.

The ATM commands have proven to be powerful and easy to
use. An important aspect of the ATM commands is the ease with
which processor boundaries can be crossed. "This feature is made
possible by the use of the input and output descriptors, a
refinement made during Phase II.

77

NAVTRAEQUIPCEN 79-C-0096-1

The IBUS supported a modular structure for the processor
modules and has simplified the design of the peripheral
interfaces. It will also support future off-board expansion of
the processors. ‘

Most of the active components on the processor module are
rated for 2 Mhz operation, giving conservative operation using
the present 1 Mhz. clock. The major exceptions are the EPROMs
which are not rated for operation above 1.5 Mhz, although this
is still a reliable margin.

High Performance Processor

The function of the high-performance processor is as
follows:

a) Allow study 1in the target technology, i.e., bipolar
bit-sliced integrated circuits, and to determine if this
technology can be used to implement a processor having the
computation power of a middle or upper range minicomputer.

b) Determine the feasibility of implementing ATM in microcode.

The high-performance processor has accomplished both of these
goals. The cycle times for the high-performance processor are
0f the same order of magnitude for comparable instructions. In
addition the existence of the executive, i.e., ATM, in microcode
allows for fast context swaps to and from the executive mode.

MULTIPLE-MICRCCOMPUTER CONCEPT FEASIBILITY BREADBOARD

The conclusions of the Phase I Final Report, as stated on
page 7, were:

"The technical approach suggested by NATRAEQUIPCEN has been

evaluated and found to be a desirable architectural concept.”

After additional study of the concept, designing, implementing,
and testing the feasibility breadboard system, and implementing
a demonstration program, this opinion is still strongly held.
The architecture has been refined but is still fundamentally the
same as at the beginning of the Phase 1 effort.

78

NAVTRAEQUIPCEN 79-C-0096-1

The success of the feasibility breadboard system has
strengthened the credibility of the concept. While the design
should not be considered complete, the biggest need at present
appears to be the implementation of a more complex demonstration
program to thoroughly test the system.

79/80

NAVTRAEQUIPCEN 79-C-0096-1

APPENDIX A

ATM OPCODES

COMMAND OPCODE PRIVILEGE INPDES OUTDES
signal 00 4 1 0
wait 01 3 1 0
initiate (task) 02 7 1 0
jnitiate (after interval) 05 7 4 0
terminate 06 7 1 0
terminate (after interval) 09 7 4 0
query privilege OA 2 1 1
query priority 0B 2 1 1
query time limit ocC 2 1 2
query current task ID oD 2 0 1
query flags OE 2 0 1
set priority 10 7 2 0
set privilege 11 8 2 0
set time limit 12 7 3 0
set semaphore 13 5 2 0
set current time 14 7 3 0
set flags 15 4 2 0
move data shared 16 7 5 0
load data 17 6 5 131
store data 18 6 131 0
return (from comm state) 1¢9 8 ¢ 0
execute system task 1B 8 1 0
execute system task(after) 1E 7 4 0
report error 1iF 1 2 0

81

* % ¥ *

NAVTRAEQUIPCEN 79-C-0096-1

APPENDIX B

FEASIBILITY BREADBOARD SYSTEM EXCEPTION CODES

ERROR NO. ERROR DEFINITION
01: Undefined command.
02: Token length error in EVALTO.
03: Number too long in EVALTO.
04: Non-numeric character found

in EVALTO.
05: Symbol not. in table, PARSE.
06: PARSE found undesignated number.
07: PARSE found undefined number.
08: Operand not compatible with QUERY.
09: Operand not compatible with SET.
10: Checksum error during download.
These errors are generated by either hard
or soft disk errors.

$30: no errors
$31: data crc error
$32: disk write protected
$33: disk not ready
$34: read deleted data mark
$35: timeout
$36: invalid disk address
$37: seek error
$38: data mark error
$39: address mark crc error

82

* #* ¥ %

$3A:
$3R:

$3C:

S3D:
$3E:

$3F:

$50:
$51:

$52:
$53:
$54:

$55:
$56:

$57:
$58:

NAVTRAEQUIPCEN 79-C-0096-1

errors with codes above $39 are logical
errors from disk operations

duplicate file entry

invalid blocksize (ie not

8 sectors)

insufficient free space

left on disk

maximum file size exceeded (>64k)
filename does not exist as

entry in directory

EOF reached during cluster fetch

ATM ERROR DEFINITIONS:

No room in the event queue

The control unit attempts to
communicate with itself.

Out of range applications task ID
Out of range systems task ID
Invalid shared memory arbitration
line request

Attempt to write cache during
cache read.

Undefined opcode on event gueue
Undefined command

Calling task has insufficient
privilege for operation

83

NAVTRAEQUIPCEN 79-C-0096-1

APPENDIX C

SYSTEM COMMAND LANGUAGE

Commands to the system are given in System Control Language
(SCL) . The basic format of the SCL command is the STATEMENT,
consisting of a COMMAND and an optional OPERAND STRING, as shown
below: -

<command> <operand string> <CR>

The SCL command must precede the operand string. A very basic
feature of SCL 1is the manner in which the handling of the
operand string is decoupled from the operand. All SCL commands
get their operand values from a table (the parse table). The
effect of the operand string in the SCL statement 1is to cause
information to be added to the parse table. Because the parsing
of the operand string is independent of the operand it is. not
necessary that the information in the string relate to the
command in any way. The result is that SCL remembers the last
value assigned to each operand and the operand itself so that
default values may be used as desired.

SCL Syntax and Format

e ———— o — > = . = wen

The syntax and format of SCL are patterned after the VAX
VMS command language. The SCL syntax diagram is shown in Figure
C-1. The main features of SCL syntax are:

1. SCL delimiters are space, comma, tab, and equals. SCL does
not differentiate between these terms. Certain SCL
operators, the period and slash, also serve as delimiters
for convenience in entering commands.

2. vValues are assigned to operands by entering the operand, one

or more delimiters, and the value to be assigned. SCL
accepts base-10 or base-16 numbers to 65,535 in magnitude.

84

NAVTRAEQUIPCEN 79-C-0096-1

——————a= COMMAND .

UNIT NUMBER

TASK ID/UNIT NUMBER
i

<

N\ TASK ID NUMBER J

i iy OPERAND P —
L— OPTION '-——/

= —eee= NUMBER

OPERAND

——a SYMBOL

DELIMITER -——s= NUMBER

OPTION

—mme [———gme- SYMBOL —————g=- NUMBER

Figure C-1. SCL syntax diagram

85

NAVTRAEQUIPCEN 79-C-0026-1

For operands having 8-bit values only the lower 8 bits are
used if numbers larger than 255 are entered. Base-16
numbers are denoted by a "$" prefix. For 3-byte values two
entries separated by a delimiter are used.

3. SCL has four special prefixes, defined as follows:

* period ("."): The period is used to denote a unit
number (processor number) when used as a prefix. It may
also be used to delimit any SCL token.

* pound("#"): The pound sign prefix is used to denote a
task ID number.

* Slash ("/"): The slash 1is the OPTION operator,
indicating that the symbol following is to be assigned
value but is not to be used as an operand. Delimiters
may be used before or after the slash but are not
required. A slash must be used for each option in the
command statement.

* Up-Arrow ("""): The up-arrow is used as a prefix to a
symbol to denote a disk file name. File names may be up
to 31 characters long and may contain any printing ASCII
character not assigned a special meaning in SCL.

4. Within the operand string SCL statements have no position
dependence with one exception; the last symbol encountered
in the operand string is assumed to be the object of the
command (if one 1is required). The option operator may be

used to assign values to multiple operands.

SCL Commands

Most SCL commands deal with parameters which are unique in
each processor and therefore require that the unit number be
specified. Those commands which deal with parameters unique to
a task also require that the task ID be specified. All of the
following descriptions assume that the unit number and taesk 1ID
are given as required. The unit number and task 1ID may
positioned anywhere in the operand string. They follow the same
default rules as other SCL parameters.

86

for

NAVTRAEQUIPCEN 79-C-0096-1

The SCL disk commands must either have a value specified
the disk drive (the variable DRIVE) or use the current

default value. As delivered, with two drives, the legal values

for

drive are 0 and 1. A list of SCL commands, together with a

brief description of their operation, is given below:

1.

SIgnal:
'
Causes one to be added to the current semaphore.

Wait:

Causes one to be subtracted from the current semaphore if it
is non-zero, blocks the current task otherwise.

Initiate (STart):

Causes the current task to be ready to run. Initiate may be
for the current time (NOW) or after a specified interval
(AFTER <delimiter> <interval value>).

Terminate (STop, Halt):

Causes the current task to be halted. Terminate may be for
the current time.or after a specified interval.

Query (Display, SHow):

Query causes the value of the current operand to be
displayed at the control console if it is a legal object of
query. Legal objects of query are:

Priority

Privilege

Task time limit
Current active task
Walltime

Breakpoint location
Memory contents

* % % % * % *

The memory location queried is given by the contents of the
operand MEMORY.

Set

Set causes the current operand to be updated using the
current value of that parameter in the parse table. Legal

87

NAVTRAEQUIPCEN 79-C-0096-1

objects for set are:

Priority
Privilege

Task time limit
Semaphore
Memory

String
Breakpoint
Walltime
Default

% % % % % % ¥ * F

Objects have both address and location, semaphore and
memory, require the wuse of the variable VALUE to hold the
actual value to be stored in the jindicated 1location. As
with other SCL parameters, value is stored in the parse
table and a default value may be used.

Set string is a special case. When this command is
entered the keyboard monitor mode is entered, without
prompt. Numerical string values may then be entered

(separated by any delimiter) until the string is terminated
by a carriage return. This string is stored in the string
puffer and may be written into any location in memory using
the "put string" command, described later.

The command "set default" is used to enter operand
values without a command. Only the parse table is affected.

Move:

Move is used to transfer data to and from shared memory.
The move command transfers a string whose length is given by
COUNT from the location stored in SOURCE to the location
stored in DESTINATION. The request line to be used is
specified by the value of LINE (0-7).

Get/Put:

The get and put commands are similar to the move command
except that they are for normal memory as opposed to shared
memory. The get and put commands are the same except for a
reversal of the roles of source and destination.

Continue:

The continue command is used to allow a processor to leave

88

lo.

11.

12,

13.

14,

15.

16.

17.

NAVTRAEQUIPCEN 79-C-0096-1

the communication state.

Execute

The execute command causes the specified system task to be
executed. The execute command may be for the current time
(NOW) or after a specified interval (AFTER).

Default:

Same as set default.

Vax:

The vax command puts the control console in the "transparent
mode" to the host system. Exit from the transparent mode is
by entering an EOT (CNTL/D) character.

DOwnload:

The download command is used to load binary code from the
host system to the feasibility breadboard. Prior to
entering the download command the command will have been
entered to the host system to type the desired file to the
console, but without the carriage return. After exiting
from the transparent mode by entering CNTL/D, the download
command is entered.

Remove:

The remove command is used to remove the current breakpoint.

MAke:

The make file is used to make a diskfile from the host
system. The same technique 1is used as with the diskload
command.

DISkload:

The diskload command is used to download binary files from
the disk to memory. The same default rules apply to disk
file names as with other system parameters.

DIrectory:

The directory command causes a listing of all of the disk

89

18.

19.

20.

NAVTRAEQUIPCEN 79-C-0096-1

files.

DElete:

Delete is used to remove a file from the disk.
Format:

Format is used to initialize blank disks.
WIth, Use:

The with/use commands are used to enter default values for
any desired system parameters.

SCL Operands:

Listed below are the current legal SCL operands, together

with a brief description:

10.

11.

SEMaphore: Semaphore number (0?255).

After: Used to set the time delay interval.
PRIvilege: Task privilege (0-255).

PRIOrity: Task priority (0-255).

Limit: Task time limit (0-6553%5 centiseconds)
Walltime: Real time in centiseconds (XX, XXXX) .

CUrrent task: ID number of the current active task.

Count: Byte count for data move commands.
Source: Source address for data move commands.
DEstination: Data move destination address.

Value: Used with 2-operand commands.

90

NAVTRAEQUIPCEN 79-C-0096-1

12, LIne: Used to specify bus arbitration line.

13, Memory: Memory address.

14, Now: Dummy parameter used to clear AFTER.

15. STring: Address to which string is to be
written.

16, Breakpoint: Used to specify the breakpoint address.

17. Drive: Holds the value of disk drive.
18, DEFault: Used with the set command for no
action.

The NOW and AFTER operands do not have any storage space
assigned to them in the parse table and consequently cannot be
assigned values. They are used to set the value of OPRAND such
that the INITIATE, TERMINATE, and EXECUTE commands may determine
if they are to be done at the current time or after some
interval. These routines look for AFTER or not AFTER so the NOW
operand does not have to be used 1f the last operation was not
an AFTER.

91

NAVTRAEQUIPCEN 79-C-0096-1

APPENDIX D

FUNDAMENTAL DISK OPERATING SYSTEM

Imbedded in the Command Language Interpreter Program is a
real-time floppy disk operating system (FDOS) 1intended to
provide semi-independence from the host computer. The disk
operating system allows programs developed on the host computer
to be transferred to floppy disks for storage and later use on
the system. The FDOS provides only the barest of necessities in
disk handling functions.

FDOS Syntax and Format

Since the FDOS is imbedded in CLIP it uses the syntax
structure previously described in Appendix C, System Command
Language. Of special interest is the file designator tcr (up
arrow or circumflex). This designator marks the following
string as a filename to be manipulated by the FDOS.

FDOS Commands

The following commands are currently supported by FDOS:
(a) Format:

This command causes the current disk directory to be purged
and setup for file entry. Format must be used to configure
new floppy disks for use with FDOS. Since all directory
entries are purged, recovery of files on a disk which heas
been Formatted is unlikely. It is also unreasonable to
expect disks generated by another system to have information
in a reachable form by FDOS.

92

(b)

(c)

(d)

(e)

NAVTRAEQUIPCEN 79-C-0096-1

Directory:

Rational use of FDOS requires manipulation of files on a
disk. Directory shows all current valid file entries on a
disk at the system command console. Use of filenames of
less than six characters is not recommended since
interfacing to a universal terminal disallowed complete
handshaking. Some entries may be garbled in transmission.
Use of longer filenames ensures enough time between newline
characters for the terminal to recover.

Make:

New file entries can be created on a formatted disk by
loading the file from the host computer using the 'Make'
command. At the present, only Motorola format binary
records (S-records) can be loaded from the host computer.
These records are converted to T-records for integral-system
usage. The T-records are stored on the disk and used for
downloading code. 'Make' will check the new filename and
prevent entry of duplicate filenames.

Delete:

An existing file entry can be deleted using Delete. Only
the pointers to the physical directory entry are removed and
a null entered in the filename directory (logical

directory).
Diskload:

All executable files must be assembled on the host computer.
The T-record file can then be loaded into a processor or the
disk. Loading the file from the disk into processor memory
is accomplished by 'Diskload'. Blocks of code are moved
over the control bus in 128 byte packets.

Data Structures

- ————— o —_—————

There are three major data structures used in FDOS (Figure

93

NAVTRAEQUIPCEN 79-C-0096-1

PHYSICAL DIRECTORY STORAGE ARFA
(96 sectors)

| e r—— N

FREE DIRECTORY
(2 sectors)

CLUSTER

LOGICAL DIRECTORY
(24 sectors)

CLUSTER
s |
‘::iififff::f

Figure D1. Data structure for FDOS

N S T

94

NAVTRAEQUIPCEN 79-C-0096-1

(a) Free Directory:

This is a dense field directory which maps the sectors for
tracks 1 thru 77 inclusive onto a single bit per sector.
The status of the bit reflects the current allocation status
of its sector: bit = 0 means sector not currently allocated
and bit = 1 means sector currently allocated. A byte in
this table represents 1024 bytes (8 sectors) of disk space.
The free directory resides in the first two sectors of track
0.

(b) Logical Directory:

The logical directory resides on sectors 3 to 26 inclusive
on track 0. It consists of 96 entries which are 32 bytes in
length. The first 30 bytes contain the alphanumeric
filename entry. The last two bytes form a pointer to the
associated physical directory entry. An empty entry in the
logical directory is flagged by S$FFFF found in the first two
bytes of the entry. Files are entered in the first free
position found by a linear search starting from the
beginning of the directory. Filenames longer than 30 bytes
are truncated during entry.

(c) Physical Directory

The physical directory resides on 4 tracks (1 to 3) and
consists of 96 physical directory entries. Each entry
comprises 1 sector of actual disk space and has 64 2-byte
pointer slots which peint to 1K clusters on the data area of
the disk. All unused slots are set to SFFFF. The cluster
size accessed by the slots was chosen to compliment the 1K
data storage buffer used by CLIP. Access to the physical
directory is made from a pointer contained in the filename
entry of the Logical Directory. The maximum file size is
limited by the size of the physical directory.

Support

Disk operations need to be performed inside of a critical
region which prohibits interrupt of the operation. Since the
FDOS is implemented as a service of & user task in the control
processor, there is no interrupt protection naturally available.
Partial protection was provided by two system programs which
will disable the control processor timers during disk

95

NAVTRAEQUIPCEN 79-C-0096-1

operations. Unfortunately, there is no clean way of disabling
interrupts dgenerated by the applications processors during
requests for system services. It is recommended that the FDOS
be used only during periods when the state of the applications
processors can be held constant in Communications.

96

