
 1

1. On the Applicability of Sperner’s Lemma for Multiagent
Resource Allocation

Karthik Iyer IYERK@ENGR.SC.EDU
Michael N. Huhns HUHNS@ENGR.SC.EDU
Department of Computer Science and Engineering
University of South Carolina
Columbia, SC 29208 USA

Abstract

Sperner’s lemma is a simple but powerful combinatorial result that can be used to solve problems
in multiagent resource allocation. This paper discusses the applicability of Sperner’s lemma in a
multiagent system framework. We discuss the mechanics of how Sperner’s lemma works, and
then discuss an earlier result (Su 1999) that uses the lemma to attain an approximate envy-free
solution. Next, an alternative way of applying Sperner’s lemma to the multiagent resource
allocation problem is put forth that has lower communication costs. This result is not approximate
envy-free, but it is approximate-fair. We discuss the conditions under which such solutions exist.
A tougher problem to crack has been to come up with a constructive algorithm that can find
efficient allocations. Finally, we discuss the problems that need to be solved before Sperner’s
lemma can be fruitfully used in multiagent resource allocation problems.

1. The Mechanics of Sperner’s Lemma

Sperners lemma is a simple but powerful combinatorial result first stated by Sperner
(Sperner 1928). A good explanation of the intuition behind Sperner’s lemma is presented
by Francis Edward Su (Su 1999). It is repeated here in a more concise fashion to create
the context for later sections of this paper. It can be stated as:

Sperner’s Lemma for Triangles
Any Sperner labeled triangulation of a triangle T must contain an odd number of
elementary triangles possessing all labels. Specifically, at least one such elementary
triangle must exist.

Refer to Figure 1. The standard triangle is called the 2-simplex. A 3-simplex would be a
tetrahedron, whereas a 1-simplex would be a line. The “triangle” mentioned in the lemma
can be generalized to any n-simplex. The n-simplex is defined as follows:
“An n-simplex is the convex hull of n+1 affinely independent points.”
A simple example of “affinely independent points” are three points u, v, and w, which
have non-zero x, y, and z coordinates. In vector notation:

 2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

;
0
1
0

;
0
0
1

wvu

The convex hull of u, v, and w therefore forms a two-dimensional triangle (i.e., a 2-
simplex) embedded in three-dimensional Euclidean space, as shown in Figure 2.
Similarly, a 3-simplex would be a tetrahedron embedded in 4-dimensional space. Thus
one can embed an n-simplex in n+1-dimensional space. We use the 2-simplex (triangle)
as a running example to explain various concepts of Sperner’s lemma.

Figure 1. Triangulation of a 2-simplex (triangle) into elementary simplices. The (1,2,3) represent Sperner
labeling of the triangulation.

Figure 2. An example of a 2-simplex (triangle) embedded in 3-dimensional Euclidean space.

1

3

1

1

1

3

11

1 1

2 2
2

2 2

22

2

2

3

V1

V2

V3

x

y

z

u (1,0,0)

v (0,1,0)

w (0,0,1)

2-simplex
(triangle)

 3

1.1. Triangulation

The interior of any n-simplex can be divided into smaller elementary n-simplices. The
interior is to be covered exhaustively in this manner and elementary simplices should not
intersect with each other except in a common face (if they are neighboring simplices).
Such a set up is called the triangulation of the n-simplex. Figure 1 shows the
triangulation of the 2-simplex into many smaller elementary simplices.

An n-simplex can be built up inductively as an assembly of n+1 n-1-simplices, which
form it’s “facets.” Thus a 4-simplex (tetrahedron) can be assembled from four 3-
simplices as its facets. Each 3-simplex (triangle), in turn is built from three 2-simplices as
its facets. Finally, each 2-simplex (line) is built from two 1-simplices (i.e., vertex points).
The power of Sperner’s Lemma derives from the fact that one can inductively transmit
properties known to be true in lower dimensions upward to higher dimensions. Similarly,
the process of triangulating an n-simplex automatically triangulates each n-1-simplex that
forms its facet.

1.2. Sperner Labeling

Once the n-simplex has been triangulated, one can apply Sperner labeling to all the
vertices as follows:

1. The vertices of the main n-simplex are uniquely labeled. Denote the main vertices
as: 1,,2,1, += niVi L

2. The interior of any k-simplex – formed as a convex hull of k+1 main vertex points
(Vk) – can be labeled with any of the k+1 labels carried by the vertices.

Any elementary n-simplex that carries all n+1 labels on its vertices is called a fully
labeled elementary simplex. Sperner’s lemma states that there is at least one such simplex
and, more generally, an odd number of such simplices exist. They are shown by the
shaded elementary triangles in Figure 1. The Sperner’s lemma for any n-simplex can
therefore be stated as:

“Any Sperner-labelled triangulation of an n-simplex must contain an odd number of fully
labeled elementary n-simplices. In particular, there is at least one.” (Su 1999)

 4

Figure 3. An arbitrary triangulation of a triangle. The vertices are labeled as per Sperner labeling rules

A constructive proof for this has been elegantly explained by Su (Su 1999). Finally, note
that since Sperner’s lemma is a topological result, the geometric shape of the triangles
does not matter. Similarly, the elementary simplices that subdivide the main simplex can
be triangles of arbitrary shape and size. Thus, any arbitrary triangulation will do. Figure 3
shows such an example, along with the associated Sperner labeling. The fully labeled
elementary triangle is shaded.

Note that the Sperner labeling can be applied inductively; i.e., to Sperner-label an n-
simplex, one needs to ensure that the n+1 n-1-simplices that form its facets are Sperner-
labeled first. Thus first begin by applying Sperner-labeling to a 0-simplex (the vertex
point), then proceed to higher dimensions until one finally gets the Sperner-labeling for
the n-simplex. Consider the triangle in Figure 1. The three main vertices are the 0-
simplices. Sperner labeling can be achieved trivially by labeling them 1, 2, and 3
respectively. Next, the lines 1-2, 2-3 and 1-2 (i.e., the 1-simplices) will have their interior
vertices labeled with one of labels belonging to their facets (i.e., the main vertices).
Hence every vertex in the interior of line 1-2 will be labeled as a 1 or 2, but not 3.
Vertices in the interior of lines 2-3 and 1-3 will be labeled similarly. Finally, the interior
vertices of the triangle 1-2-3 can carry any one of the three labels.

1.3. Procedure for Locating a Fully Labeled Elementary Simplex

At least one fully labeled elementary simplex needs to be located. It is explained later in
this paper how such an elementary simplex provides an approximate-fair solution to the
problem of resource allocation in a multiagent system. The procedure is outlined through
the example shown in Figure 1. Formal descriptions of the procedure are provided by
Kuhn (Kuhn 1968) and Cohen (Cohen 1967). Note also that Sperner’s lemma also applies
inductively. Thus in case of the example in Figure 1, the triangle (2-simplex) will have an
odd number of full labeled elementary triangles. Similarly, the lines (1-simplex)
bounding the triangle, will have an odd number of fully labeled elementary line
segments. Specifically, note that there are three line segments with the label 1-2 for line

1

1
2 2 2

3

3

3

3

 5

1-2. Finally, for the case of the three main vertex points (0-simplex), Sperner’s lemma is
trivially true.

The procedure for locating a fully labeled elementary triangle then can be applied as
follows:

get triangulated n-simplex Γn

for each fully labeled elementary 1-simplex τ1 in Γ1

(Γ1 is the 1-simplex labeled 1-2)
set k to 2 (k denotes the dimension number)
while k<n

call compute-k-simplex with τk-1 returning τk
(τk-1 will have labels 1-2-…-k)
if τk is fully labeled (i.e., τk is labeled 1-2-…-k-k+1)
 set τk-1 to τk
 increment k
else

set τk-1 to the other facet of τk with label
1-2-…-k
endif

endwhile
endfor

The procedure “compute-k-simplex” has the following pseudocode:

get k-1-simplex τk-1
if τk-1 lies on Γk-1 (Γk-1 is a facet of Γn and lies on its “surface”
 set τk to null
endif
set τk to the elementary k-simplex which has τk-1 as its
facet
set newVertex to the vertex in τk but not in τk-1
if label of newVertex is not one of (1, 2, …, k)
 set τk to null
endif
return τk

Figure 4 visualizes the procedure. Note that not every fully labeled elementary simplex is
accessible through this procedure. In section 3, we discuss in greater detail the various
issues associated with the simplices found by this procedure.

 6

Figure 4. Kuhn’s procedure to locate a fully labeled elementary simplex.

2. Applying Sperner’s Lemma to Multiagent Resource Allocation

Su (Su 1999) presented a scheme to exploit the properties of Sperner’s lemma to enable
resource allocation among n players. This result is immediately applicable to multiagent
resource allocation problems by changing some of the terminology. Although Su’s
solution was proposed for humans competing for scarce resources, one can easily modify
the terms and apply it towards problems in multiagent systems. Specifically, the
following assumptions made by Su are relevant to multiagent systems:
1. People (agents) are selfish.
2. People (agents) are autonomous.
3. People (agents) can misrepresent their true preferences (i.e. lying).
The resource is commonly modeled as rectangular cake which is infinitely divisible and
recombinable. The resource is heterogeneous (for example: different parts of the cake
have different icings) and agent preferences for these portions vary as we move along the
cake. Mathematicians have worked on this problem from at least 1948, when Steinhaus
(Steinhaus 1948) proposed the divide-and-choose method to apportion the cake between
two people. Since then many procedures have been proposed to solve various facets of
the resource allocation problem. Mathematicians have clubbed all this discussion together
into the domain of “cake-cutting procedures”. These procedures are tailored to fulfill
various criteria that would create satisfactory portions for agents. One criterion that is
commonly fulfilled by these procedures is fairness. A procedure is fair if every agent
believes that it has received at least 1/n of the total resource allocated. On the other hand,
a procedure is envy-free if every agent believes that the portion it has received is at least

1

3

1

1

1

3

1 1

1 1

2 2
2

2 2

2
2

2

2

3

V1

V2

V3

 7

as large as the largest piece allotted to any agent. A detailed discussion of these criteria is
presented in (Iyer and Huhns Feb 2007).

2.1. Conventions and Assumptions

Before beginning a formal description of cake-cutting procedures using Sperner’s lemma,
we describe some conventions and assumptions. A knife – held parallel to one pair of
edges of a rectangular cake – is moved slowly over it from the left edge of the cake to the
right edge. The total size of the cake is 1 and the absolute measure of the i-th piece is xi.
By absolute measure we mean some metric like the “size,” “area,” or “length” of the cake
that is universally agreed upon by agents as a way to determine the quantity of the
resource. Thus: 111 =+++ nxxx L and each 0≥ix . Su’s proposal therefore requires the
resource to be Lebesgue measurable (Bartle 1995). Other assumptions are that the utility
functions of the players be non-atomic, positive, and additive. Atomicity deals with the
aspect that however small a resource may be sliced, it must have some positive value for
every agent, i.e., there should be no “atoms” in the resource, where portions smaller than
the “atom” are of zero value to the agent. We also assume that the utility function is
positive at all points along the cake. This ensures that players prefer any finite-sized piece
to an empty piece of the cake. Additivity for utility functions can be stated as:

() () ()BvAvBAv +=∪

i.e., incrementally adding to a portion should increase its value by a proportional amount.

2.2. Approximate Envy-free Procedure for Multiagent Resource Allocation

The following procedure is due to Su (Su 1999). We now show how, given the
assumptions and conventions about the agents, one can map the agent preferences into a
correct Sperner labeling of the triangulation of an n-1-simplex. Once that is obtained, it
will be shown how a fully labeled simplex represents an approximate envy-free allocation
of the resource to various agents. An allocation is approximate envy-free if no agent
thinks its portion is smaller by ε than the largest portion in the allocation.

The space of possible allocations with the constraint 111 =+++ nxxx L forms a
standard n-1-simplex in n-dimensional Euclidean space as shown in Figure 2. Each
vertex’s “ownership” is assigned to each of the n agents by using agent names as labels.
Next, triangulate the simplex into many smaller elementary n-1-simplices. Label the
interior vertices of the n-1-simplex by agent names and follow the rules of Sperner
labeling. Although the labels in the interior of the n-1-simplex can be any of the ones on
the main vertices of the simplex, the possibilities are further constrained in such a manner
that every elementary simplex is completely labeled. For example, consider the case
when n=3 agents. They can be represented as the three vertices of the triangle (2-

 8

simplex). Figure 5 shows the necessary labeling of the vertices with A, B, and C being
the agent names. Note that every elementary simplex carries all three labels.

Figure 5. Labeling of the triangulated 2-simplex with agent names. A, B and C denote the names of the
agents

One can then achieve the auxiliary labeling of the elementary n-1-simplices in the
following manner: ask the owner of each vertex which piece it would prefer out of the set
of pieces of the resource corresponding to the location of the vertex. Thus for some
vertex kv , its co-ordinates will be),,,(21

k
n

kk vvv L and piece j will be of size k
jj vx = . If the

owner of the vertex, picks j as its preferred piece (because it views it as the largest) then
that vertex is labeled j. Note that the auxiliary labels determined this way obeys the rules
of Sperner labeling. Thus, each of the main vertices will be uniquely labeled by one of
the j=1,…,n labels. The facets of the n-1-simplex, would carry one of the labels of the k

)1(nk ≤≤ main vertices spanned by that facet. Figure 1 shows the example of such a
Sperner labeling for n=3 agents. By Sperner’s lemma one is guaranteed that there exists
at least one fully labeled elementary simplex in this triangulation. Each such elementary
simplex represents an approximate envy-free allocation of portions to agents. In order to
ensure that no agent thinks its portion is smaller by ε than the largest portion in the
allocation, simply set the mesh size of the triangulation to be some small finite value,
δ>0, such that if the absolute measure of a piece is less than δ, then each player values it
less than ε. The flowchart for the various processes that occur to generate the
approximate envy-free allocation is shown in Figure 6. The scheme of enquiring the
owner of each vertex about its preferred piece is shown as the thick rectangle labeled ‘1’
in Figure 6 part B.

C

A

B

C

B

A

AC

C B

A B
B

A C

AC

A

C

B

V1 (1,0,0)

V2 (0,1,0)

V3 (0,0,1)

B

 9

Figure 6 part A. Flowchart of approximate envy-free / approximate-fair procedure to allocate resources.
Figure continues in part B below.

• Create an n-1-simplex
• Triangulate simplex with grid size < δ

Determine number of agents, n

Set counter i=1
Set δ to small positive value

Does
agent[i] value portion of size δ

≤ ε ?
Reduce δ

Increment i

Is i<n?
Yes

Yes

No

No

Sperner-label elementary simplices with
agent names. Each elementary simplex
should be fully labeled

1

 10

Figure 6 part B. Flowchart of approximate envy-free / approximate-fair procedure to allocate resources
(contd.). The preferred piece can be determined by (1) enquiring the owner of vertex Vk as per Su (Su
1999) or (2) by computing from the owner’s marks on the resources

1

Are portions
approximate fair for every

agent?
Done

No

Yes

Set Vk to a main vertex (chosen arbitrarily).
Vk will have coordinates k

n
kk VVV ,,, 21 L

Divide resource into portions such that
piece j will be of size k

jV

Determine the piece j that will superset
one of the pieces marked by the owner
of vertex Vk

Set auxillary label of vertex Vk to j

Compute new value of Vk using
Kuhn’s procedure

Determine the piece j that is preferred
by the owner of vertex Vk

1 2

 11

2.3. Approximate-fair Procedure for Multiagent Resource Allocation

In this section, we present an alternative method of applying Sperner’s lemma to solve
multiagent resource allocation problems. This idea modifies some parts of the work done
by Su, to reduce the costs of agent-mediator communication. The resulting solution is
however approximate-fair. An allocation is approximate fair if each agent gets a piece
that is at most ε smaller than 1/n of the total resource allotted. Approximate fairness is
weaker condition than approximate envy-freeness. Every allocation that is approximate
envy-free is approximate fair, but the converse is not necessarily true. A more detailed
discussion of the relationships between various such criteria was presented in (Iyer and
Huhns Feb 2007). The agents are expected to adhere to the following protocol:

Protocol
If there are n agents participating, each agent should make n-1 marks on the linear
resource, creating n equal portions of the resource by its valuation.

While considering the intervals marked out by each agent, the start and end points of the
resource are taken as the first and last mark, respectively. The mediator collects the marks
submitted by each agent and uses it to evaluate the appropriate allocation of the resource.
If all agents adhere to the protocol, then the procedure can guarantee each agent will be
allotted a subset of the portion created by the agent itself. The subset will be smaller by at
most ε than the portion from which it came. The early parts of this procedure are similar
to the one put forth by Su. Figure 6 shows the flowchart for the procedure. The procedure
can be broken down into two phases:

1. The initialization phase which determines the number of agents, n, participating in
the allocation. The value of grid size δ, is also determined. It is used to set the size
of the elementary triangles forming the triangulation of the n-1-simplex.

2. The iterative phase, when the procedure ‘visits’ the vertices of the triangulation.
Each vertex kv is a “guess” of a feasible approximate-fair solution. If this guess is
not approximate-fair to every agent, then label kv with label j,),,2,1(nj L∈ .
Su’s procedure required that one determine j by asking the owner of the vertex
which piece in the cut-set it prefers. In this procedure, one determines the label as
follows: Look up the list of marks submitted by the owner of vertex kv . Find a
portion in the cut-set that is a superset of one of the pieces marked by the owner.
Let this be portion j. The owner would think that value of portion j is fair and
hence one can set the auxiliary label for vertex kv as j. Next, using Kuhn’s
procedure, compute the new value of kv (Kuhn’s procedure requires auxiliary
labels to compute the new vertex) and repeat step 2.

The following example clarifies the labeling process. Consider 3 agents A, B, and C, that
are trying to get an approximate-fair share of the resource. Let vertex kv have coordinates
(0.22,0.33,0.45). If agent A is the owner of the vertex, the mediator pulls up the list of
A’s marks. Figure 7 shows the how the portions created by agent A overlap with the

 12

mediator’s portions. Notice that M3 is a superset of A3 and hence the auxiliary label for
vertex kv is 3.

Figure 7. An example showing how the label of a vertex is determined. M1, M2, and M3 are the
coordinates of the vertex at (0.22, 0.33, 0.45). A1, A2, and A3 are the owner’s marks respectively. In this
example, the vertex would be labeled 3 since M3 is a superset of A3.

A couple of points need to be mentioned. The procedure does away with polling the
owner of each vertex as it travels through the simplex. This reduces communication costs
and agents are free to finish other tasks. Also, the computation time for the approximate
fair solution will be less compared to the approximate envy-free solution. This is because,
generally, the latency for sending and receiving messages between agents will be much
larger than computing the labels locally using the list of agent marks.

Note that the labeling of a vertex requires the presence of at least one piece marked by
the agent that is a subset of a piece in the cut-set, determined by the coordinates of vertex

kv . We present a proof that shows the existence of at least one such agent piece.

Consider an agent and mediator, each of which makes n-1 marks on a linear resource,
creating n portions of a linear resource. Moving from left to right, label the set of agent
marks as a1, a2, ... , an-1. Similarly the set of mediator marks will be labeled m1, m2, ... , mn-1.
The start and end points of the resource will be labeled s and e respectively. The marks
delineate intervals as follows:
A1=s-a1, i.e., A1 is the interval between the start point (s) and the first mark of the agent
(a1). Also, Ak= ak-1-ak and An= an-1-e. Similarly, one can write the following for the
mediator: M1= s-m1, Mk= mk-1-mk and finally, Mn= mn-1-e. Note that s and e are the only
points that intervals in A and M have in common. We assume that no point ai coincides
with mj, for all)1,,2,1(, −∈ nji L . This assumption is only used to simplify arguments.
One can then state the following:

M3M2M1

A1 A2 A3

 13

Theorem 1. Given two sets of intervals (A1, A2,..., An) and (M1, M2,..., Mn) that
partition a linear resource R, then ji MA ⊂ for some)1,,2,1(, −∈ nji L .
That is, there will be at least one interval Ai that will be a subset of some interval Mj.
This property is needed in order to guarantee an auxiliary label for every vertex point.

Proof: We prove this theorem by contradiction. Let us assume that there exists no
interval Ai that is a subset of some Mj. What does it mean when one says, ji MA ⊂ ?
This means that moving from the start to the end point of the resource, one must
encounter a sequence of points ordered in the following manner:
mj-1-[ai-l-… - ai-2]- ai-1- ai-[ai+1-…- ai+p]- mj
The above sequence shows that in order for ji MA ⊂ , one must find a pair of
consecutive m-points that enclose two or more a-points, i.e., one encounters two or more
consecutive a-points that do not enclose any m-points, somewhere on the line. Since it is
assumed there is no ji MA ⊂ for some)1,,2,1(, −∈ nji L , one can conclude that any
two consecutive a-points must be necessarily separated by at least one m-point. Since any
two consecutive a-points make up an A-interval, it can be concluded that every A-interval
should enclose at least one m-point. Create a scoring function Δ that denotes how many
m-points are enclosed by an interval. Since the entire resource is the interval R: Δ(R)=n-
1, i.e., the entire resource contains n-1 m-points. Next, compute the value of Δ(Ak).
Calculate the value of Δ for the first and last A-interval (A1 and An respectively)
separately. Note that the s is start point of the first M-interval and the first A-interval, i.e.,
s=a0=m0. Similarly, e=an=mn. Thus, a0 and m0 coincide and hence it is required that the
points should have the following ordering: s-m1-[m2-mi]-a1, i.e., there should be at least
one m-point before one encounters a1. Thus Δ(A1) ≥ 1, similarly for the last A-interval
one gets: Δ(An) ≥ 1. Since every A-interval in the interior contains at least one m-point
one can state: Δ(Ak) ≥ 1 for all),,2,1(nk L∈ . Summing over all the A intervals one gets,

∑
=

≥Δ
n

k
k nA

1

)(

The A-intervals all put together will give the entire resource R.

RA
n

k
k =∑

=1
 and since 1)(−=Δ nR , one gets ∑

−

Δ≠Δ
n

k
k RA

1
)()(i.e., the sum of the m-

points over all A-intervals is not the same as the number of m-points over the entire
resource R. This is a contradiction. Therefore the assumption that no ji MA ⊂ for some

)1,,2,1(, −∈ nji L , is false. □

3. Discussion

This section is split into two parts. In the first part, we study the implications of Sperner’s
lemma in more detail. The second part, “Devising algorithms for exhaustive search”
discusses the various issues that were encountered in coming up with a suitable algorithm
to locate every fully labeled elementary simplex.

 14

3.1. Improving the Efficiency of Allocation

Recall that Sperner’s lemma states that given a suitably labeled triangulation of an n-
simplex, there will be an odd number of fully labeled elementary simplices. Kuhn’s
procedure terminates when it finds one such fully labeled elementary simplex (FLES). In
fact, Kuhn’s procedure cannot reach every FLES in the triangulation. Consider a suitably
labeled 2-simplex as shown in Figure 8. We introduce notation in order to explain some
concepts.

Figure 8. A Sperner labeled triangulation of an 2-simplex. The shaded triangles are the fully labeled
elementary simplices, σ2 , and the 1-2 segments are σ1 .

Let Гn denote the n-simplex that is triangulated into many smaller elementary n-simplices
τn. Also every τn-1 is a facet of some τn. If τn is fully labeled, denote it as σn. Each σn will
have exactly one facet σn-1. i.e., every fully labeled elementary n-simplex will have
exactly one fully labeled elementary n-1-simplex as its facet. However σn-1 can also occur
as facets of some τn. Figure 8 shows various possible combinations in which σn

 and σn-1
can exist. Kuhn’s procedure can only find those σn that are connected to the facet Гn-1 (Гn-

1 forms the “edge” of Гn) by a sequence of σn-1. Starting from a facet of the n-simplex, it
finds each σn-1, then moves into the interior of Гn along a path of σn-1’s. These paths can
terminate in one of two ways:

1. The path terminates in σn.
2. The path terminates on another σn-1 present on the facet Гn-1.

Notice that there exist σn’s in the interior of Гn that can never be reached by Kuhn’s
procedures. These σn’s come in pairs and are connected to each other by a path of σn-1’s.
Every σn represents an alternative allocation that can be approximate fair (or approximate

1

1

3

1

1

3

1 2

1 3

2 1
2

1 2

2
1

1

2

2

V1

V2

V3

3

 15

envy-free, based on how the problem is set up). Note that every point in Гn (including all
vertices) represents an allocation of the resource. By definition, if x is a point in Гn with
x=(x1, x2, … , xn), then:

1
1

=∑
=

n

i
ix

Thus every possible allocation is pareto-efficient. One cannot move from one point to
another in Гn without making at least one agent worse off in the process. Efficiency,
however, defined in terms of maximization of social welfare can be different for each
allocation x. The σn found by Kuhn’s procedure may not be the most efficient. It makes
sense therefore to devise a procedure that can find every σn in Гn. Then by comparison,
one can find an allocation that is not only approximate-fair (or approximate envy-free),
but also the most optimal with respect to the chosen social welfare function.

3.2. Devising Algorithms for Exhaustive Search

Figure 9. NFA for a 1-simplex (line). The desired final state is shown in bold and the λ-transitions are
shown by the dotted lines.

A number of issues were encountered while devising a procedure for exhaustive search of
Гn. One can imagine finding σn while “traveling” through every τn in Гn, as reaching the
desired state in a finite state automaton (FSM). What will the automaton for a 1-simplex
(line) look like? The facets of the line – which are the 0-simplexes (points) – will
represent the events in a FSM. The line segments that triangulate the 1-simplex represent
states in the FSM. The NFA for such a procedure is shown in Figure 9.

Next, the NFA for a 2-simplex (triangle) is constructed. Each final state is labeled and the
desired final state is circled in bold. The desired final state will have a label 1-2-3, viz.
the labels of a fully labeled elementary simplex. The triangles can have any of the
following labels:

1-1

1-2

2-2

1

2

1

1

2

2

 16

1-1-1, 1-1-2, 1-1-3, 1-2-2, 1-2-3, 1-3-3, 2-2-2, 2-2-3, 2-3-3, 3-3-3.
The final states will therefore also use the above labels. Note that in any n-simplex, each
vertex will be connected to every other vertex by a facet. Hence the ordering of the labels
is not important. Thus the following labels are equivalent: 1-1-2 1-2-1 2-1-1 and
all of them are represented by the state labeled 1-1-2. Figure 10 shows the NFA for the 2-
simplex. The events are the elementary n-1-simplices that form the facets of the
elementary n-simplices. The dotted lines show the λ-transition, which is used to non-
deterministically return to the start state. The rationale for the λ-transition is as follows:

In order to determine all the labels of a particular triangle, one needs the labels of at least
two of its facets. Every input to the NFA represents one facet of the triangle. Thus two
inputs are needed before the labeling of a triangle can be deduced. However, every input
to the FSM has two interpretations:

1. It may be the second input for a particular triangle. If so, then the labeled final
state denotes the label of the triangle.

2. It may be the first input for a new triangle. If so, the λ-transition takes the FSM to
the start state to account for such a “guess.”

A NFA representation of the FSM is therefore, more natural. Any NFA can be converted
to a DFA, but may have exponentially greater states than the NFA in the worst case. It
can be observed from Figure 9 and Figure 10 that the complexity of the FSM grows
quickly as the dimensionality of the simplex increases. In order to get an idea of the
complexity, it is instrumental that the number of labeled states for a generic n-simplex is
determined. We state the sub-problem in the following section.

3.2.1. Sub-problem: How Many Labeled States Exist for an n-Simplex?

We proceed by using the 3-simplex (tetrahedron) as an example to understand the issues
involved. The 3-simplex has 4 vertices that can be labeled in 35 ways. They are
enumerated in Figure 11.

 17

Figure 10. The NFA for a 2-simplex (triangle). The labeled states represent the types of labeled elementary
simplices. The bold circle shows the FLES and is the “success” state. The dotted line shows the λ-
transitions.

1-1

1-2

1-3

2-2

2-3

3-3

1-1-2

1-1-3

1-2-2

1-2-3

3-3-3

2-3-3

2-2-2

2-2-3

1-1-1
1-1

1-2

1-3

1-2

2-1

1-3/2-3

1-1/3-1

1-2/3-2

1-3-3

1-3/3-3

2-2

2-1

2-3

2-1/3-1

2-2/3-2

2-3/3-3

3-1

3-2

3-3

 18

Figure 11. Computing the combination of labels that can be applied on an elementary 3-simplex. A total of
35 ways are possible.

The labels were generated based on the logic described below. Moving from all 4 vertices
having the same label to all of the vertices having distinct labels (i.e., none of the vertices
have the same label), the following scenarios arise:
1. 4 vertices have the same label: Thus the four vertices can be replaced with one

placeholder and one can label in 4C1 = 4 ways.
2. 3 vertices have the same label: Thus 3 vertices can be replaced with one placeholder.

The vertex with the distinct label will get its own placeholder. Since ordering of the
labels assigned to placeholders is important, one gets 4C1 × 3C1 =12 ways of labeling.

3. 2 vertices have the same placeholder: Thus 2 vertices will be replaced with one
placeholder. The following sub-cases occur:
3.1. The other 2 vertices have the same label (They will be different from the first 2

vertices though). These 2 vertices will be replaced with 1 placeholder. Thus 4
labels can put in 2 placeholders in 4C2 = 6 ways. Note that the ordering of the
labels is not important in this case.

Number of vertices with same label

4 vertices (4)
1,1,1,1
2,2,2,2
3,3,3,3
4,4,4,4

3 vertices (12)
1,1,1,2
1,1,1,3
1,1,1,4
2,2,2,1
2,2,2,3
2,2,2,4
3,3,3,1
3,3,3,2
3,3,3,4
4,4,4,1
4,4,4,2
4,4,4,3

2 vertices (12+6)
1,1,2,3
1,1,2,4
1,1,3,4
2,2,1,3
2,2,1,4
2,2,3,4
3,3,1,2
3,3,1,4
3,3,2,4
4,4,1,2
4,4,1,3
4,4,2,3
1,1,2,2
1,1,3,3
1,1,4,4
2,2,3,3
2,2,4,4
3,3,4,4

None (1)
1,2,3,4

 19

3.2. The other 2 vertices have distinct labels. Thus there will be 3 placeholders. But
because of the way the placeholders were created, one can place 4 labels in 3
placeholders in 4C1 × 3C2 = 4 × 3 = 12 ways.

4. None of the vertices have the same label. Thus 4 labels can be placed in 4
placeholders in 4C4 = 1 way.

The formulas for calculating the number of label combinations is based on the specific
situation encountered. We explain the logic with the following example:

Consider a particular sequence of numbers that may label a simplex, – 1,1,2,2,2,3,4. Each
of the repeated labels can be replaced by a single placeholder, which will give us the
following sequence: 1,2,3,4. The underlined placeholder (UP) acts as a stand-in for
multiple vertices having the same label. The normal placeholder (NP) is used for each
vertex that is distinctly labeled. The ordering of UP s is important. For example:
1,2,3,4=1,1,2,2,2,3 is different from 2,1,3,4=2,2,1,1,1,3,4. So permutations are used while
accounting for ordering of UP s. The ordering of NP s is not important. For example:
1,2,3,4=1,1,2,2,2,3,4 is the same as 1,2,4,3=1,1,2,2,2,4,3. Hence combinations are used
for NP s. The above sequence of numbers was used to label a 6-simplex (7 vertices). The
vertices can “bunch” together in the following ways:

(7)
(6,1)
(5,2) (5,1,1)
(4,3) (4,2,1) (4,1,1,1)
(3,3,1) (3,2,2) (3,2,1,1) (3,1,1,1,1)
(2,2,2,1) (2,2,1,1,1) (2,1,1,1,1,1)
(1,1,1,1,1,1,1)

Thus there are 15 ways in which the vertices bunch together. This brings us to a sub-
problem of the current problem, i.e., a sub-sub-problem.

3.2.2. Sub-sub-problem: Given a number n, how many distinct sets of numbers
can be created, such that the members in each set add up to n?

We previously showed the various sets that are generated when n=7. We list three
different approaches that were attempted to construct a procedure to generate such sets.

Approach 1: Using recursive rules.
We generate the sets for n using the sequence already generated for n-1. The following
rules are applied to decipher the sequence for n:

1. The first set in n is (n).
2. Append 1 to every set in (n-1).
3. If n is even, add the set (n/2,n/2). If n is odd, add the set ((n+1)/2,(n-1)/2). If such

a set already exists due to rules 1 and 2, then do not add this set.
Based on the above rules the following sets are generated when n=7:

 20

n Rule 1 Rule 2 Rule 3 Skipped sets
1 1 - - -
2 (2) (1,1) - -
3 (3) (2,1)(1,1,1) -
4 (4) (3,1) (2,1,1)(1,1,1,1) (2,2) -
5 (5) (4,1)(3,1,1)(2,1,1,1)(1,1,1,1,1)(2,2,1) (3,2) -
6 (6) (5,1)(4,1,1)(3,1,1,1)(2,1,1,1,1)(1,1,1,1,1,1)

(2,2,1,1)(3,2,1)
(3,3) (4,2)(2,2,2)

7 (7) (6,1)(5,1,1)(4,1,1,1)(3,1,1,1,1)(2,1,1,1,1,1)
(1,1,1,1,1,1,1)(2,2,1,1,1)(3,2,1,1)(3,3,1)(2,2,2,1)(4,2,1)

(4,3) (5,2)(3,2,2)

Table 1. Generating number sets using recursive rules. The last column shows the sets that have been
missed by the rules.

As can be seen from Table 1 the three rules together are not sufficient to generate all the
possible sets. The sets that fail to be generated are mentioned in the “Skipped sets”
column. In fact, even if one includes the missing sets of n-1 while generating sets for n,
the rules still miss a few sets of n. Thus if one generates a sequence for n just by using the
three rules, the number of skipped sets will grow quickly. The three rules are necessary
but not sufficient to generate all the sets. It is clear that more rules need to be defined for
generating all the sets. Among the issues that need to be resolved are:

• Is the number of rules bounded?
• How many more rules are needed?
• What are those rules?

Approach 2: Divide the coins
Another approach attempted was what we term “Divide the coins.” Imagine holding n
identical coins that need to be put in various slots. Each slot can hold multiple coins. The
number of slots varies from 1 to n. We try to determine how many different ways the
coins can be distributed given the number of slots. Table 2 describes the approach for
n=8. B(n) is a function that calculates the number of sets that n will generate. For the
example shown in Table 2, B(8)=22. We do not have an analytical formula for B(n).
F(n,k) represents the number of sets that are generated, given the number is n and k is the
number of slots available. Thus,

∑
=

≤≤=
n

k

nkknFnB
1

)1(),()(

From Table 2, it is known that

2/)(),(nkifknBknF ≥−=

slots rem Number of ways

8

0

1 1 1 1 1 1 1 1

F(8,8)=B(0)=1

 21

7 1 2 1 1 1 1 1 1 F(8,7)=B(1)=1

6

2

3 1 1 1 1 1
2 2 1 1 1 1

F(8,6)=B(2)=2

5

3

4 1 1 1 1
3 2 1 1 1
2 2 2 1 1

F(8,5)=B(3)= 3

4

4

5 1 1 1
4 2 1 1
3 3 1 1
3 2 2 1
2 2 2 2

F(8,4)=B(4)=5

3

5

6 1 1
5 2 1
4 3 1
4 2 2
3 3 2

F(8,3)=.(.) = 5

2

6

7 1
6 2
5 3
4 4

F(8,2)= .(.) = n/2 = 4

1

7

8

F(8,1)= .(.) = 1 (for all n)

Table 2. Generating number sets by determining the combinations in which the coins can be put in slots.
When the number of slots available is 2 or 3, the function F(n.k) is unknown.

Also

nnF ∀=1)1,(
and

⎣ ⎦ n
n

nF ∀=
2

)2,(

But the analytic function is unknown for 2<k<n/2. Hence B(n) cannot be computed.

Approach 3: Generation of sets through trial and error.
The third approach was to attempt to create a program that would generate all the sets for
a given number. If this was possible then one could simply count the sets generated for
each n and then try to fit an equation onto the graph of n vs. B(n). Using recursive
functions calls we were able to create such a procedure. The code, written in Java, is
shown below:

 22

The output of the program for n=8 is shown in Figure 12.

import java.io.*;
public class genSets{
int count = 1;
public static void main(String[] args){
int n = Integer.parseInt(args[0]);
String str = "";
genSets gs = new genSets();
gs.comp(str,n,n,0,true);
}
public void comp(String prefix,int base_n,int n, int rem_n,boolean
finalRes){
if(rem_n>n){
 String tempPrefix = prefix;
 prefix = prefix+","+n;
 comp(prefix,base_n-n,n,rem_n-n,false);
 if(n==1);
 else{
 n=n-1;
 rem_n=base_n-n;
 comp(tempPrefix,base_n,n,rem_n,false);
 }}
 else{
 String tempPrefix = prefix;
 if(rem_n>0){
 System.out.println(prefix+","+n+","+rem_n);
 count++;
 prefix = prefix+","+n;
 comp(prefix,base_n-n,rem_n,0,false);
 if(n==1);
 else{
 n=n-1;
 rem_n=base_n-n;
 comp(tempPrefix,base_n,n,rem_n,false);
 }}
 else{ //rem_n==0
 if(n==1) ;
 else{ //n>1
 n=n-1;
 rem_n=base_n-n;
 comp(tempPrefix,base_n,n,rem_n,false);
 }}}}}

 23

Figure 12. The number sets generated by the java program based on the trial and error approach.

The algorithm is able to exhaustively generate all sets. We then used the algorithm to find
the values of B(n) for values of n from 1 to 100. The computation time was roughly 4 hrs
on a 1.2 GHZ Celeron processor with 256 MB RAM. Table 3 shows the values of n vs.
B(n) and Figure 13 shows the graph of the rise of B(n) with respect to n.

 24

n B(n)
1 1
2 2
3 3
4 5
5 7
6 11
7 15
8 22
9 30

10 42
11 56
12 77
13 101
14 135
15 176
16 231
17 297
18 385
19 490
20 627
21 792
22 1002
23 1255
24 1575
25 1958
26 2436
27 3010
28 3718
29 4565
30 5604
31 6842
32 8349
33 10143
34 12310
35 14883
36 17977
37 21637
38 26015
39 31185
40 37338
41 44583
42 53174
43 63261
44 75175
45 89134

 25

n B(n)
46 105558
47 124754
48 147273
49 173525
50 204226
51 239943
52 281589
53 329931
54 386155
55 451276
56 526823
57 614154
58 715220
59 831820
60 966467
61 1121505
62 1300156
63 1505499
64 1741630
65 2012558
66 2323520
67 2679689
68 3087735
69 3554345
70 4087968
71 4697205
72 5392783
73 6185689
74 7089500
75 8118264
76 9289091
77 10619863
78 12132164
79 13848650
80 15796476
81 18004327
82 20506255
83 23338469
84 26543660
85 30167357
86 34262962
87 38887673
88 44108109
89 49995925
90 56634173
91 64112359

 26

n B(n)
92 72533807
93 82010177
94 92669720
95 104651419
96 118114304
97 133230930
98 150198136
99 169229875
100 190569292

Table 3. Values of B(n) for 1 ≤ n ≤ 100 generated by the java program.

The curve of B(n) is be fitted with an exponential curve with an R-squared value of
0.9494. Curve fitting with other types of curves like the polynomial or power-law type
curves gives poorer results.

Finally, we present a “trackback” (Figure 14) to give a perspective of the issues that need
to be resolved in order to allow for efficient allocation of a resource.

Figure 13. The relationship of B(n) vs. n. An exponential curve with the values shown in the figure gives
the best fit.

n vs B(n)

y = 80e0.1505x
2

 R2= 0.9494

0

50000000

100000000

150000000

200000000

250000000

300000000

0 20 40 60 80 100 120
n

B(n)
B(n)
Exponential curve

 27

Figure 14. A “trackback” that shows the dependency of the various problems that need to be solved before
an algorithm can be devised to do en exhaustive search of a triangulated n-simplex
.

4. Conclusion

This paper discusses the applicability of Sperner’s lemma for solving multiagent resource
allocation problems. First the lemma was explored, whereby the concepts of triangulation
and Sperner labeling are explained. After stating the lemma as applicable to any n-
simplex, We explain how Kuhn’s procedure helps in locating a fully labeled elementary
simplex. It is then shown that a resource allocation problem can be mapped onto an
appropriately labeled triangulation of an n-simplex. An approximate envy-free allocation
mechanism as proposed by Su is mentioned first. Using appropriate conventions and
assumptions, it is shown how one can apply the mathematical result to solve a multiagent
resource allocation problem. Next, an allocation mechanism is proposed that has better
communication efficiency than Su’s procedure. However this result is only approximate
fair (which is a weaker condition than approximate envy-free). Every fully labeled
elementary simplex is efficient in the pareto-optimal sense. If efficiency is studied in
terms of social welfare however, one elementary simplex may represent a more efficient
allocation than another. Kuhn’s procedure does not locate every possible fully labeled
elementary simplex. Constructing a procedure that locates every fully labeled elementary
simplex is however non trivial. Modeling the procedure as a finite state machine, it was
observed that the number of final states grows quickly as the number, n, of agents
increases. The number of final states depends on the combination of labels that can be
applied to an elementary simplex. This in turn depends on the number of ways the labels
can “bunch” together. We present three approaches to solve these problems.
Unfortunately, none of them are sufficient to completely solve the problems. We believe

Formulate an analytic expression for B(n)

Given B(n), compute label combinations

Given label combinations, compute Finite State Machine (FSM)

Given FSM, devise algorithm to locate all FLES

Given all FLES, determine the FLES that maximizes efficiency

 28

that the simple yet powerful combinatorial property of Sperner’s lemma can be adapted
for solving multiagent resource allocation problems elegantly, but the many open
problems discussed in this paper need to be solved first.

References

Bartle, R. G. (1995). The Elements of Integration and Lebesgue Measure. New York,
Wiley-Interscience.

Cohen, D. I. A. (1967). "On the Sperner lemma." J. Combin. Theory 2: 585-587.

Iyer, K. and M. N. Huhns (Feb 2007). Negotiation Criteria for Multiagent Resource
Allocation. USC CSE Technical Report, Department of Computer Science and
Engineering, University of South Carolina.

Kuhn, H. W. (1968). "Simplicial Approximation of Fixed Points." Proc. Nat. Acad. Sci.
U.S.A. 61: 1238-1242.

Sperner, E. (1928). "Neuer Beweis fur die Invarianz der Dimensionszahl und des
Gebietes." Abh. Math. Sem. Hamburg. Univ. 6: 265-272.

Steinhaus, H. (1948). "The problem of fair division." Econometrica 16: 101-104.

Su, F. E. (1999). "Rental harmony: Sperner's lemma in fair division." American
Mathematical Monthly 106: 930-942.

