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Abstract  
 
Sperner’s lemma is a simple but powerful combinatorial result that can be used to solve problems 
in multiagent resource allocation. This paper discusses the applicability of Sperner’s lemma in a 
multiagent system framework. We discuss the mechanics of how Sperner’s lemma works, and 
then discuss an earlier result (Su 1999) that uses the lemma to attain an approximate envy-free 
solution. Next, an alternative way of applying Sperner’s lemma to the multiagent resource 
allocation problem is put forth that has lower communication costs. This result is not approximate 
envy-free, but it is approximate-fair. We discuss the conditions under which such solutions exist. 
A tougher problem to crack has been to come up with a constructive algorithm that can find 
efficient allocations. Finally, we discuss the problems that need to be solved before Sperner’s 
lemma can be fruitfully used in multiagent resource allocation problems.  

  

1. The Mechanics of Sperner’s Lemma  
 
Sperners lemma is a simple but powerful combinatorial result first stated by Sperner 
(Sperner 1928). A good explanation of the intuition behind Sperner’s lemma is presented 
by Francis Edward Su (Su 1999). It is repeated here in a more concise fashion to create 
the context for later sections of this paper. It can be stated as: 
 
Sperner’s Lemma for Triangles 
Any Sperner labeled triangulation of a triangle T must contain an odd number of 
elementary triangles possessing all labels. Specifically, at least one such elementary 
triangle must exist.  
 
Refer to Figure 1. The standard triangle is called the 2-simplex. A 3-simplex would be a 
tetrahedron, whereas a 1-simplex would be a line. The “triangle” mentioned in the lemma 
can be generalized to any n-simplex. The n-simplex is defined as follows: 
“An n-simplex is the convex hull of n+1 affinely independent points.” 
A simple example of “affinely independent points” are three points u, v, and w, which 
have non-zero x, y, and z coordinates. In vector notation: 
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The convex hull of u, v, and w therefore forms a two-dimensional triangle (i.e., a 2-
simplex) embedded in three-dimensional Euclidean space, as shown in Figure 2. 
Similarly, a 3-simplex would be a tetrahedron embedded in 4-dimensional space. Thus 
one can embed an n-simplex in n+1-dimensional space. We use the 2-simplex (triangle) 
as a running example to explain various concepts of Sperner’s lemma.  
 

 
Figure 1.  Triangulation of a 2-simplex (triangle) into elementary simplices. The (1,2,3) represent Sperner 
labeling of the triangulation. 

 
Figure 2. An example of a 2-simplex (triangle) embedded in 3-dimensional Euclidean space. 
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1.1. Triangulation  
 
The interior of any n-simplex can be divided into smaller elementary n-simplices. The 
interior is to be covered exhaustively in this manner and elementary simplices should not 
intersect with each other except in a common face (if they are neighboring simplices). 
Such a set up is called the triangulation of the n-simplex. Figure 1 shows the 
triangulation of the 2-simplex into many smaller elementary simplices.  
 
An n-simplex can be built up inductively as an assembly of n+1 n-1-simplices, which 
form it’s “facets.” Thus a 4-simplex (tetrahedron) can be assembled from four 3-
simplices as its facets. Each 3-simplex (triangle), in turn is built from three 2-simplices as 
its facets. Finally, each 2-simplex (line) is built from two 1-simplices (i.e., vertex points). 
The power of Sperner’s Lemma derives from the fact that one can inductively transmit 
properties known to be true in lower dimensions upward to higher dimensions. Similarly, 
the process of triangulating an n-simplex automatically triangulates each n-1-simplex that 
forms its facet.  
 

1.2. Sperner Labeling  
 
Once the n-simplex has been triangulated, one can apply Sperner labeling to all the 
vertices as follows: 

1. The vertices of the main n-simplex are uniquely labeled. Denote the main vertices 
as: 1,,2,1, += niVi L   

2. The interior of any k-simplex – formed as a convex hull of k+1 main vertex points 
(Vk ) – can be labeled with any of the k+1 labels carried by the vertices.   

 
Any elementary n-simplex that carries all n+1 labels on its vertices is called a fully 
labeled elementary simplex. Sperner’s lemma states that there is at least one such simplex 
and, more generally, an odd number of such simplices exist. They are shown by the 
shaded elementary triangles in Figure 1. The Sperner’s lemma for any n-simplex can 
therefore be stated as: 
 
“Any Sperner-labelled triangulation of an n-simplex must contain an odd number of fully 
labeled elementary n-simplices. In particular, there is at least one.” (Su 1999) 
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Figure 3. An arbitrary triangulation of a triangle. The vertices are labeled as per Sperner labeling rules 
 
A constructive proof for this has been elegantly explained by Su (Su 1999). Finally, note 
that since Sperner’s lemma is a topological result, the geometric shape of the triangles 
does not matter. Similarly, the elementary simplices that subdivide the main simplex can 
be triangles of arbitrary shape and size. Thus, any arbitrary triangulation will do. Figure 3 
shows such an example, along with the associated Sperner labeling. The fully labeled 
elementary triangle is shaded.  
 
Note that the Sperner labeling can be applied inductively; i.e., to Sperner-label an n-
simplex, one needs to ensure that the n+1 n-1-simplices that form its facets are Sperner-
labeled first. Thus first begin by applying Sperner-labeling to a 0-simplex (the vertex 
point), then proceed to higher dimensions until one finally gets the Sperner-labeling for 
the n-simplex. Consider the triangle in Figure 1. The three main vertices are the 0-
simplices. Sperner labeling can be achieved trivially by labeling them 1, 2, and 3 
respectively. Next, the lines 1-2, 2-3 and 1-2 (i.e., the 1-simplices) will have their interior 
vertices labeled with one of labels belonging to their facets (i.e., the main vertices). 
Hence every vertex in the interior of line 1-2 will be labeled as a 1 or 2, but not 3. 
Vertices in the interior of lines 2-3 and 1-3 will be labeled similarly. Finally, the interior 
vertices of the triangle 1-2-3 can carry any one of the three labels.  
 

1.3. Procedure for Locating a Fully Labeled Elementary Simplex  
 
At least one fully labeled elementary simplex needs to be located. It is explained later in 
this paper how such an elementary simplex provides an approximate-fair solution to the 
problem of resource allocation in a multiagent system. The procedure is outlined through 
the example shown in Figure 1. Formal descriptions of the procedure are provided by 
Kuhn (Kuhn 1968) and Cohen (Cohen 1967). Note also that Sperner’s lemma also applies 
inductively. Thus in case of the example in Figure 1, the triangle (2-simplex) will have an 
odd number of full labeled elementary triangles. Similarly, the lines (1-simplex) 
bounding the triangle, will have an odd number of fully labeled elementary line 
segments. Specifically, note that there are three line segments with the label 1-2 for line 
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1-2. Finally, for the case of the three main vertex points (0-simplex), Sperner’s lemma is 
trivially true.  
 
The procedure for locating a fully labeled elementary triangle then can be applied as 
follows: 
 
get triangulated n-simplex Γn 

for each fully labeled elementary 1-simplex τ1 in Γ1  

(Γ1 is the 1-simplex labeled 1-2) 
set k to 2  (k denotes the dimension number) 
while k<n  

call compute-k-simplex with τk-1 returning τk  
(τk-1 will have labels 1-2-…-k) 
if τk is fully labeled (i.e., τk is labeled 1-2-…-k-k+1) 
 set τk-1 to τk 
 increment k  
else 

set τk-1 to the other facet of τk with label 
1-2-…-k 
endif 

endwhile 
endfor 
 
The procedure “compute-k-simplex” has the following pseudocode: 
 
get k-1-simplex τk-1 
if τk-1 lies on Γk-1 (Γk-1 is a facet of Γn and lies on its “surface” 
 set τk to null 
endif 
set τk to the elementary k-simplex which has τk-1 as its 
facet 
set newVertex to the vertex in τk but not in τk-1 
if label of newVertex is not one of (1, 2, …, k)  
 set τk to null 
endif 
return τk 
 
Figure 4 visualizes the procedure. Note that not every fully labeled elementary simplex is 
accessible through this procedure. In section 3, we discuss in greater detail the various 
issues associated with the simplices found by this procedure.  
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Figure 4. Kuhn’s procedure to locate a fully labeled elementary simplex. 
 

2. Applying Sperner’s Lemma to Multiagent Resource Allocation  
 
Su (Su 1999) presented a scheme to exploit the properties of Sperner’s lemma to enable 
resource allocation among n players. This result is immediately applicable to multiagent 
resource allocation problems by changing some of the terminology. Although Su’s 
solution was proposed for humans competing for scarce resources, one can easily modify 
the terms and apply it towards problems in multiagent systems. Specifically, the 
following assumptions made by Su are relevant to multiagent systems: 
1. People (agents) are selfish. 
2. People (agents) are autonomous. 
3. People (agents) can misrepresent their true preferences (i.e. lying). 
The resource is commonly modeled as rectangular cake which is infinitely divisible and 
recombinable. The resource is heterogeneous (for example: different parts of the cake 
have different icings) and agent preferences for these portions vary as we move along the 
cake. Mathematicians have worked on this problem from at least 1948, when Steinhaus 
(Steinhaus 1948) proposed the divide-and-choose method to apportion the cake between 
two people. Since then many procedures have been proposed to solve various facets of 
the resource allocation problem. Mathematicians have clubbed all this discussion together 
into the domain of “cake-cutting procedures”. These procedures are tailored to fulfill 
various criteria that would create satisfactory portions for agents. One criterion that is 
commonly fulfilled by these procedures is fairness. A procedure is fair if every agent 
believes that it has received at least 1/n of the total resource allocated. On the other hand, 
a procedure is envy-free if every agent believes that the portion it has received is at least 
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as large as the largest piece allotted to any agent. A detailed discussion of these criteria is 
presented in (Iyer and Huhns Feb 2007). 
 

2.1. Conventions and Assumptions  
 
Before beginning a formal description of cake-cutting procedures using Sperner’s lemma, 
we describe some conventions and assumptions. A knife – held parallel to one pair of 
edges of a rectangular cake – is moved slowly over it from the left edge of the cake to the 
right edge. The total size of the cake is 1 and the absolute measure of the i-th piece is xi. 
By absolute measure we mean some metric like the “size,” “area,” or “length” of the cake 
that is universally agreed upon by agents as a way to determine the quantity of the 
resource. Thus: 111 =+++ nxxx L  and each 0≥ix . Su’s proposal therefore requires the 
resource to be Lebesgue measurable (Bartle 1995). Other assumptions are that the utility 
functions of the players be non-atomic, positive, and additive. Atomicity deals with the 
aspect that however small a resource may be sliced, it must have some positive value for 
every agent, i.e., there should be no “atoms” in the resource, where portions smaller than 
the “atom” are of zero value to the agent. We also assume that the utility function is 
positive at all points along the cake. This ensures that players prefer any finite-sized piece 
to an empty piece of the cake. Additivity for utility functions can be stated as:  
 

( ) ( ) ( )BvAvBAv +=∪  
 
i.e., incrementally adding to a portion should increase its value by a proportional amount.  
 

2.2. Approximate Envy-free Procedure for Multiagent Resource Allocation  
 
The following procedure is due to Su (Su 1999). We now show how, given the 
assumptions and conventions about the agents, one can map the agent preferences into a 
correct Sperner labeling of the triangulation of an n-1-simplex. Once that is obtained, it 
will be shown how a fully labeled simplex represents an approximate envy-free allocation 
of the resource to various agents. An allocation is approximate envy-free if no agent 
thinks its portion is smaller by ε than the largest portion in the allocation.  
 
The space of possible allocations with the constraint 111 =+++ nxxx L  forms a 
standard n-1-simplex in n-dimensional Euclidean space as shown in Figure 2. Each 
vertex’s “ownership” is assigned to each of the n agents by using agent names as labels. 
Next, triangulate the simplex into many smaller elementary n-1-simplices. Label the 
interior vertices of the n-1-simplex by agent names and follow the rules of Sperner 
labeling. Although the labels in the interior of the n-1-simplex can be any of the ones on 
the main vertices of the simplex, the possibilities are further constrained in such a manner 
that every elementary simplex is completely labeled. For example, consider the case 
when n=3 agents. They can be represented as the three vertices of the triangle (2-



 8   

simplex). Figure 5 shows the necessary labeling of the vertices with A, B, and C being 
the agent names. Note that every elementary simplex carries all three labels.  

  
Figure 5. Labeling of the triangulated 2-simplex with agent names. A, B and C denote the names of the 
agents 
 
One can then achieve the auxiliary labeling of the elementary n-1-simplices in the 
following manner: ask the owner of each vertex which piece it would prefer out of the set 
of pieces of the resource corresponding to the location of the vertex. Thus for some 
vertex kv , its co-ordinates will be ),,,( 21

k
n

kk vvv L and piece j will be of size k
jj vx = . If the 

owner of the vertex, picks j as its preferred piece (because it views it as the largest) then 
that vertex is labeled j. Note that the auxiliary labels determined this way obeys the rules 
of Sperner labeling. Thus, each of the main vertices will be uniquely labeled by one of 
the  j=1,…,n labels. The facets of the n-1-simplex, would carry one of the labels of the k 

)1( nk ≤≤ main vertices spanned by that facet.  Figure 1 shows the example of such a 
Sperner labeling for n=3 agents. By Sperner’s lemma one is guaranteed that there exists 
at least one fully labeled elementary simplex in this triangulation. Each such elementary 
simplex represents an approximate envy-free allocation of portions to agents. In order to 
ensure that no agent thinks its portion is smaller by ε than the largest portion in the 
allocation, simply set the mesh size of the triangulation to be some small finite value, 
δ>0, such that if the absolute measure of a piece is less than δ, then each player values it 
less than ε. The flowchart for the various processes that occur to generate the 
approximate envy-free allocation is shown in Figure 6. The scheme of enquiring the 
owner of each vertex about its preferred piece is shown as the thick rectangle labeled ‘1’ 
in Figure 6 part B.  
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Figure 6 part A. Flowchart of approximate envy-free / approximate-fair procedure to allocate resources. 
Figure continues in part B below. 
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Figure 6 part B. Flowchart of approximate envy-free / approximate-fair procedure to allocate resources 
(contd.).  The preferred piece can be determined by (1) enquiring the owner of vertex Vk as per Su (Su 
1999) or (2) by computing from  the owner’s marks on the resources 
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2.3. Approximate-fair Procedure for Multiagent Resource Allocation 
 
In this section, we present an alternative method of applying Sperner’s lemma to solve  
multiagent resource allocation problems. This idea modifies some parts of the work done 
by Su, to reduce the costs of agent-mediator communication. The resulting solution is 
however approximate-fair. An allocation is approximate fair if each agent gets a piece 
that is at most ε smaller than 1/n of the total resource allotted. Approximate fairness is 
weaker condition than approximate envy-freeness. Every allocation that is approximate 
envy-free is approximate fair, but the converse is not necessarily true. A more detailed 
discussion of the relationships between various such criteria was presented in (Iyer and 
Huhns Feb 2007). The agents are expected to adhere to the following protocol:  
 
Protocol 
If there are n agents participating, each agent should make n-1 marks on the linear 
resource, creating n equal portions of the resource by its valuation. 
 
While considering the intervals marked out by each agent, the start and end points of the 
resource are taken as the first and last mark, respectively. The mediator collects the marks 
submitted by each agent and uses it to evaluate the appropriate allocation of the resource. 
If all agents adhere to the protocol, then the procedure can guarantee each agent will be 
allotted a subset of the portion created by the agent itself. The subset will be smaller by at 
most ε than the portion from which it came. The early parts of this procedure are similar 
to the one put forth by Su. Figure 6 shows the flowchart for the procedure. The procedure 
can be broken down into two phases: 

1. The initialization phase which determines the number of agents, n, participating in 
the allocation. The value of grid size δ, is also determined. It is used to set the size 
of the elementary triangles forming the triangulation of the n-1-simplex. 

2. The iterative phase, when the procedure ‘visits’ the vertices of the triangulation. 
Each vertex kv  is a “guess” of a feasible approximate-fair solution. If this guess is 
not approximate-fair to every agent, then label kv with label j, ),,2,1( nj L∈ . 
Su’s procedure required that one determine j by asking the owner of the vertex 
which piece in the cut-set it prefers. In this procedure, one determines the label as 
follows: Look up the list of marks submitted by the owner of vertex kv . Find a 
portion in the cut-set that is a superset of one of the pieces marked by the owner. 
Let this be portion j. The owner would think that value of portion j is fair and 
hence one can set the auxiliary label for vertex kv as j. Next, using Kuhn’s 
procedure, compute the new value of kv  (Kuhn’s procedure requires auxiliary 
labels to compute the new vertex) and repeat step 2. 

 
The following example clarifies the labeling process. Consider 3 agents A, B, and C, that 
are trying to get an approximate-fair share of the resource. Let vertex kv have coordinates 
(0.22,0.33,0.45). If agent A is the owner of the vertex, the mediator pulls up the list of 
A’s marks. Figure 7 shows the how the portions created by agent A overlap with the 
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mediator’s portions. Notice that M3 is a superset of A3 and hence the auxiliary label for 
vertex kv  is 3.  
 

 
 
Figure 7.  An example showing how the label of a vertex is determined. M1, M2, and M3 are the 
coordinates of the vertex at (0.22, 0.33, 0.45). A1, A2, and A3 are the owner’s marks respectively. In this 
example, the vertex would be labeled 3 since M3 is a superset of A3. 
 
A couple of points need to be mentioned. The procedure does away with polling the 
owner of each vertex as it travels through the simplex. This reduces communication costs 
and agents are free to finish other tasks. Also, the computation time for the approximate 
fair solution will be less compared to the approximate envy-free solution. This is because, 
generally, the latency for sending and receiving messages between agents will be much 
larger than computing the labels locally using the list of agent marks.  
 
Note that the labeling of a vertex requires the presence of at least one piece marked by 
the agent that is a subset of a piece in the cut-set, determined by the coordinates of vertex 

kv . We present a proof that shows the existence of at least one such agent piece.    
 
Consider an agent and mediator, each of which makes n-1 marks on a linear resource, 
creating n portions of a linear resource. Moving from left to right, label the set of agent 
marks as a1, a2, ... , an-1. Similarly the set of mediator marks will be labeled m1, m2, ... , mn-1. 
The start and end points of the resource will be labeled s and e respectively. The marks 
delineate intervals as follows: 
A1=s-a1, i.e., A1 is the interval between the start point (s) and the first mark of the agent 
(a1). Also, Ak= ak-1-ak and An= an-1-e. Similarly, one can write the following for the 
mediator: M1= s-m1, Mk= mk-1-mk and finally, Mn= mn-1-e. Note that s and e are the only 
points that intervals in A and M have in common. We assume that no point ai coincides 
with mj, for all )1,,2,1(, −∈ nji L . This assumption is only used to simplify arguments. 
One can then state the following: 
 

M3M2M1 

A1 A2 A3



 13   

Theorem 1. Given two sets of intervals (A1, A2,..., An ) and (M1, M2,..., Mn ) that 
partition a linear resource R, then ji MA ⊂  for some )1,,2,1(, −∈ nji L . 
That is, there will be at least one interval Ai that will be a subset of some interval Mj. 
This property is needed in order to guarantee an auxiliary label for every vertex point.  
 
Proof: We prove this theorem by contradiction. Let us assume that there exists no 
interval Ai that is a subset of some Mj. What does it mean when one says, ji MA ⊂ ? 
This means that moving from the start to the end point of the resource, one must 
encounter a sequence of points ordered in the following manner: 
mj-1-[ai-l-… - ai-2]- ai-1- ai-[ ai+1-…- ai+p]- mj  
The above sequence shows that in order for ji MA ⊂  , one must find a pair of 
consecutive m-points that enclose two or more a-points, i.e., one encounters two or more 
consecutive a-points that do not enclose any m-points, somewhere on the line.  Since it is 
assumed there is no ji MA ⊂  for some )1,,2,1(, −∈ nji L , one can conclude that any 
two consecutive a-points must be necessarily separated by at least one m-point. Since any 
two consecutive a-points make up an A-interval, it can be concluded that every A-interval 
should enclose at least one m-point. Create a scoring function Δ that denotes how many 
m-points are enclosed by an interval. Since the entire resource is the interval R: Δ(R)=n-
1, i.e., the entire resource contains n-1 m-points. Next, compute the value of Δ(Ak). 
Calculate the value of Δ for the first and last A-interval (A1 and An respectively) 
separately. Note that the s is start point of the first M-interval and the first A-interval, i.e., 
s=a0=m0. Similarly, e=an=mn. Thus, a0 and m0 coincide and hence it is required that the 
points should have the following ordering: s-m1-[m2-mi]-a1, i.e., there should be at least 
one m-point before one encounters a1. Thus Δ(A1) ≥ 1, similarly for the last A-interval 
one gets: Δ(An) ≥ 1. Since every A-interval in the interior contains at least one m-point 
one can state: Δ(Ak) ≥ 1 for all ),,2,1( nk L∈ . Summing over all the A intervals one gets, 

∑
=

≥Δ
n

k
k nA

1

)(  

 
The A-intervals all put together will give the entire resource R.  

RA
n

k
k =∑

=1
 and since 1)( −=Δ nR , one gets ∑

−

Δ≠Δ
n

k
k RA

1
)()( i.e., the sum of the m-

points over all A-intervals is not the same as the number of m-points over the entire 
resource R. This is a contradiction. Therefore the assumption that no ji MA ⊂  for some 

)1,,2,1(, −∈ nji L , is false.                  □ 
 

3. Discussion  
 
This section is split into two parts. In the first part, we study the implications of Sperner’s 
lemma in more detail. The second part, “Devising algorithms for exhaustive search” 
discusses the various issues that were encountered in coming up with a suitable algorithm 
to locate every fully labeled elementary simplex.  
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3.1. Improving the Efficiency of Allocation 
 
Recall that Sperner’s lemma states that given a suitably labeled triangulation of an n-
simplex, there will be an odd number of fully labeled elementary simplices. Kuhn’s 
procedure terminates when it finds one such fully labeled elementary simplex (FLES). In 
fact, Kuhn’s procedure cannot reach every FLES in the triangulation. Consider a suitably 
labeled 2-simplex as shown in Figure 8. We introduce notation in order to explain some 
concepts.  
 

 
Figure 8. A Sperner labeled triangulation of an 2-simplex. The shaded triangles are the fully labeled 
elementary simplices, σ2 , and the 1-2 segments are  σ1 . 
 
Let Гn denote the n-simplex that is triangulated into many smaller elementary n-simplices 
τn. Also every τn-1 is a facet of some τn. If τn is fully labeled, denote it as σn. Each σn will 
have exactly one facet σn-1. i.e., every fully labeled elementary n-simplex will have 
exactly one fully labeled elementary n-1-simplex as its facet. However σn-1 can also occur 
as facets of some τn. Figure 8 shows various possible combinations in which σn

 and σn-1 
can exist. Kuhn’s procedure can only find those σn that are connected to the facet Гn-1 (Гn-

1 forms the “edge” of Гn) by a sequence of σn-1. Starting from a facet of the n-simplex, it 
finds each σn-1, then moves into the interior of Гn along a path of σn-1’s. These paths can 
terminate in one of two ways: 

1. The path terminates in σn. 
2. The path terminates on another σn-1 present on the facet Гn-1. 

Notice that there exist σn’s in the interior of Гn that can never be reached by Kuhn’s 
procedures. These σn’s come in pairs and are connected to each other by a path of σn-1’s. 
Every σn represents an alternative allocation that can be approximate fair (or approximate 

1 

1 

3 

1 

1 

3 

1 2 

1 3 

2 1 
2 

1 2 

2 
1 

1 

2 

2 

V1 

V2 

V3 

3 



 15   

envy-free, based on how the problem is set up). Note that every point in Гn (including all 
vertices) represents an allocation of the resource. By definition, if x is a point in Гn with 
x=(x1, x2, … , xn), then:  

1
1

=∑
=

n

i
ix  

 
Thus every possible allocation is pareto-efficient. One cannot move from one point to 
another in Гn without making at least one agent worse off in the process. Efficiency, 
however, defined in terms of maximization of social welfare can be different for each 
allocation x. The σn found by Kuhn’s procedure may not be the most efficient. It makes 
sense therefore to devise a procedure that can find every σn in Гn. Then by comparison, 
one can find an allocation that is not only approximate-fair (or approximate envy-free), 
but also the most optimal with respect to the chosen social welfare function.  
 

3.2. Devising Algorithms for Exhaustive Search 
 

 
Figure 9. NFA for a 1-simplex (line). The desired final state is shown in bold and the λ-transitions are 
shown by the dotted lines. 
 
A number of issues were encountered while devising a procedure for exhaustive search of 
Гn. One can imagine finding σn while “traveling” through every τn in Гn, as reaching the 
desired state in a finite state automaton (FSM). What will the automaton for a 1-simplex 
(line) look like? The facets of the line – which are the 0-simplexes (points) – will 
represent the events in a FSM. The line segments that triangulate the 1-simplex represent 
states in the FSM. The NFA for such a procedure is shown in Figure 9.  
 
Next, the NFA for a 2-simplex (triangle) is constructed. Each final state is labeled and the 
desired final state is circled in bold. The desired final state will have a label 1-2-3, viz. 
the labels of a fully labeled elementary simplex. The triangles can have any of the 
following labels: 

1-1

1-2

2-2

1

2

1

1

2

2
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1-1-1, 1-1-2, 1-1-3, 1-2-2, 1-2-3, 1-3-3, 2-2-2, 2-2-3, 2-3-3, 3-3-3.  
The final states will therefore also use the above labels. Note that in any n-simplex, each 
vertex will be connected to every other vertex by a facet. Hence the ordering of the labels 
is not important. Thus the following labels are equivalent: 1-1-2 1-2-1 2-1-1 and 
all of them are represented by the state labeled 1-1-2. Figure 10 shows the NFA for the 2-
simplex. The events are the elementary n-1-simplices that form the facets of the 
elementary n-simplices. The dotted lines show the λ-transition, which is used to non-
deterministically return to the start state.  The rationale for the λ-transition is as follows:  
 
In order to determine all the labels of a particular triangle, one needs the labels of at least 
two of its facets. Every input to the NFA represents one facet of the triangle. Thus two 
inputs are needed before the labeling of a triangle can be deduced. However, every input 
to the FSM has two interpretations: 

1. It may be the second input for a particular triangle. If so, then the labeled final 
state denotes the label of the triangle. 

2. It may be the first input for a new triangle. If so, the λ-transition takes the FSM to 
the start state to account for such a “guess.” 

 
A NFA representation of the FSM is therefore, more natural. Any NFA can be converted 
to a DFA, but may have exponentially greater states than the NFA in the worst case. It 
can be observed from Figure 9 and Figure 10 that the complexity of the FSM grows 
quickly as the dimensionality of the simplex increases. In order to get an idea of the 
complexity, it is instrumental that the number of labeled states for a generic n-simplex is 
determined. We state the sub-problem in the following section. 
 

3.2.1. Sub-problem: How Many Labeled States Exist for an n-Simplex? 
 
We proceed by using the 3-simplex (tetrahedron) as an example to understand the issues 
involved. The 3-simplex has 4 vertices that can be labeled in 35 ways. They are 
enumerated in Figure 11. 
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Figure 10. The NFA for a 2-simplex (triangle). The labeled states represent the types of labeled elementary 
simplices. The bold circle shows the FLES and is the “success” state. The dotted line shows the λ-
transitions. 
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Figure 11. Computing the combination of labels that can be applied on an elementary 3-simplex. A total of 
35 ways are possible.  
 
The labels were generated based on the logic described below. Moving from all 4 vertices 
having the same label to all of the vertices having distinct labels (i.e., none of the vertices 
have the same label), the following scenarios arise: 
1. 4 vertices have the same label: Thus the four vertices can be replaced with one 

placeholder and one can label in 4C1 = 4 ways. 
2. 3 vertices have the same label: Thus 3 vertices can be replaced with one placeholder. 

The vertex with the distinct label will get its own placeholder. Since ordering of the 
labels assigned to placeholders is important, one gets 4C1 ×  3C1 =12 ways of labeling. 

3. 2 vertices have the same placeholder: Thus 2 vertices will be replaced with one 
placeholder. The following sub-cases occur: 
3.1. The other 2 vertices have the same label (They will be different from the first 2 

vertices though). These 2 vertices will be replaced with 1 placeholder. Thus 4 
labels can put in 2 placeholders in 4C2 = 6 ways. Note that the ordering of the 
labels is not important in this case. 

Number of vertices with same label 

4 vertices (4) 
1,1,1,1 
2,2,2,2 
3,3,3,3 
4,4,4,4 

3 vertices (12) 
1,1,1,2 
1,1,1,3 
1,1,1,4 
2,2,2,1 
2,2,2,3 
2,2,2,4 
3,3,3,1 
3,3,3,2 
3,3,3,4 
4,4,4,1 
4,4,4,2 
4,4,4,3 

2 vertices (12+6) 
1,1,2,3 
1,1,2,4 
1,1,3,4 
2,2,1,3 
2,2,1,4 
2,2,3,4 
3,3,1,2 
3,3,1,4 
3,3,2,4 
4,4,1,2 
4,4,1,3 
4,4,2,3 
1,1,2,2 
1,1,3,3 
1,1,4,4 
2,2,3,3 
2,2,4,4 
3,3,4,4

None (1) 
1,2,3,4 



 19   

3.2. The other 2 vertices have distinct labels. Thus there will be 3 placeholders. But 
because of the way the placeholders were created, one can place 4 labels in 3 
placeholders in 4C1 ×  3C2 = 4 ×  3 = 12 ways. 

4. None of the vertices have the same label. Thus 4 labels can be placed in 4 
placeholders in 4C4 = 1 way. 

 
The formulas for calculating the number of label combinations is based on the specific 
situation encountered. We explain the logic with the following example: 
 
Consider a particular sequence of numbers that may label a simplex, – 1,1,2,2,2,3,4. Each 
of the repeated labels can be replaced by a single placeholder, which will give us the 
following sequence: 1,2,3,4. The underlined placeholder (UP) acts as a stand-in for 
multiple vertices having the same label. The normal placeholder (NP) is used for each 
vertex that is distinctly labeled. The ordering of UP s is important. For example:  
1,2,3,4=1,1,2,2,2,3 is different from 2,1,3,4=2,2,1,1,1,3,4. So permutations are used while 
accounting for ordering of UP s. The ordering of NP s is not important. For example: 
1,2,3,4=1,1,2,2,2,3,4 is the same as 1,2,4,3=1,1,2,2,2,4,3. Hence combinations are used 
for NP s. The above sequence of numbers was used to label a 6-simplex (7 vertices). The 
vertices can “bunch” together in the following ways: 
 
(7) 
(6,1) 
(5,2) (5,1,1) 
(4,3) (4,2,1) (4,1,1,1) 
(3,3,1) (3,2,2) (3,2,1,1) (3,1,1,1,1)  
(2,2,2,1) (2,2,1,1,1) (2,1,1,1,1,1) 
(1,1,1,1,1,1,1) 
 
Thus there are 15 ways in which the vertices bunch together.  This brings us to a sub-
problem of the current problem, i.e., a sub-sub-problem. 

3.2.2. Sub-sub-problem: Given a number n, how many distinct sets of numbers 
can be created, such that the members in each set add up to n? 

 
We previously showed the various sets that are generated when n=7. We list three 
different approaches that were attempted to construct a procedure to generate such sets. 
 
Approach 1: Using recursive rules.  
We generate the sets for n using the sequence already generated for n-1. The following 
rules are applied to decipher the sequence for n: 

1. The first set in n is (n). 
2. Append 1 to every set in (n-1). 
3. If n is even, add the set (n/2,n/2). If n is odd, add the set ((n+1)/2,(n-1)/2). If such 

a set already exists due to rules 1 and 2, then do not add this set. 
Based on the above rules the following sets are generated when n=7: 
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n Rule 1 Rule 2 Rule 3 Skipped sets
1 1 - - - 
2 (2)  (1,1) - - 
3 (3) (2,1)(1,1,1)  - 
4 (4) (3,1) (2,1,1)(1,1,1,1) (2,2) - 
5 (5) (4,1)(3,1,1)(2,1,1,1)(1,1,1,1,1)(2,2,1) (3,2) - 
6 (6) (5,1)(4,1,1)(3,1,1,1)(2,1,1,1,1)(1,1,1,1,1,1) 

(2,2,1,1)(3,2,1) 
(3,3) (4,2)(2,2,2) 

7 (7) (6,1)(5,1,1)(4,1,1,1)(3,1,1,1,1)(2,1,1,1,1,1) 
(1,1,1,1,1,1,1)(2,2,1,1,1)(3,2,1,1)(3,3,1)(2,2,2,1)(4,2,1) 

(4,3) (5,2)(3,2,2) 

 
Table 1. Generating number sets using recursive rules. The last column shows the sets that have been 
missed by the rules. 
 
As can be seen from Table 1 the three rules together are not sufficient to generate all the 
possible sets. The sets that fail to be generated are mentioned in the “Skipped sets” 
column. In fact, even if one includes the missing sets of n-1 while generating sets for n, 
the rules still miss a few sets of n. Thus if one generates a sequence for n just by using the 
three rules, the number of skipped sets will grow quickly. The three rules are necessary 
but not sufficient to generate all the sets. It is clear that more rules need to be defined for 
generating all the sets. Among the issues that need to be resolved are: 

• Is the number of rules bounded? 
• How many more rules are needed? 
• What are those rules? 

 
Approach 2: Divide the coins 
Another approach attempted was what we term “Divide the coins.” Imagine holding n 
identical coins that need to be put in various slots. Each slot can hold multiple coins. The 
number of slots varies from 1 to n. We try to determine how many different ways the 
coins can be distributed given the number of slots. Table 2 describes the approach for 
n=8. B(n) is a function that calculates the number of sets that n will generate. For the 
example shown in Table 2, B(8)=22. We do not have an analytical formula for B(n). 
F(n,k) represents the number of sets that are generated, given the number is n and k is the 
number of slots available. Thus, 

∑
=

≤≤=
n

k

nkknFnB
1

)1(),()(  

From Table 2, it is known that  
 

2/)(),( nkifknBknF ≥−=  
 
 
 
 

slots rem  Number of ways 
 
8 

 
0 

 
1 1 1 1 1 1 1 1  

 
F(8,8)=B(0)=1 
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7 1 2 1 1 1 1 1 1  F(8,7)=B(1)=1 
 
6 

 
2 

 
3 1 1 1 1 1 
2 2 1 1 1 1  

 
F(8,6)=B(2)=2 

 
5 

 
3 

 
4 1 1 1 1 
3 2 1 1 1 
2 2 2 1 1  

 
F(8,5)=B(3)= 3 

 
4 

 
4 

 
5 1 1 1 
4 2 1 1 
3 3 1 1 
3 2 2 1 
2 2 2 2  

 
F(8,4)=B(4)=5 

 
3 

 
5 

 
6 1 1 
5 2 1 
4 3 1 
4 2 2 
3 3 2  

 
F(8,3)=.(.) = 5 
 

 
2 

 
6 

 
7 1 
6 2 
5 3 
4 4  

 
F(8,2)= .(.) = n/2 = 4 
 

 
1 

 
7 

 
8  

 
F(8,1)= .(.) = 1 (for all n) 

 
Table 2. Generating number sets by determining the combinations in which the coins can be put in slots. 
When the number of slots available is 2 or 3, the function F(n.k) is unknown. 
 
Also 

nnF ∀=1)1,(  
and 

⎣ ⎦ n
n

nF ∀=
2

)2,(  

 
But the analytic function is unknown for 2<k<n/2. Hence B(n) cannot be computed. 
 
Approach 3: Generation of sets through trial and error. 
The third approach was to attempt to create a program that would generate all the sets for 
a given number. If this was possible then one could simply count the sets generated for 
each n and then try to fit an equation onto the graph of n vs. B(n). Using recursive 
functions calls we were able to create such a procedure. The code, written in Java, is 
shown below: 
 



 22   

 
The output of the program for n=8 is shown in Figure 12. 

import java.io.*; 
public class genSets{ 
int count = 1; 
public static void main(String[] args){ 
int n = Integer.parseInt(args[0]); 
String str = ""; 
genSets gs = new genSets(); 
gs.comp(str,n,n,0,true); 
} 
public void comp(String prefix,int base_n,int n, int rem_n,boolean 
finalRes){ 
if(rem_n>n){ 
  String tempPrefix = prefix; 
  prefix = prefix+","+n; 
  comp(prefix,base_n-n,n,rem_n-n,false); 
  if(n==1); 
  else{ 
  n=n-1; 
  rem_n=base_n-n; 
  comp(tempPrefix,base_n,n,rem_n,false); 
  }} 
 else{  
  String tempPrefix = prefix; 
  if(rem_n>0){ 
   System.out.println(prefix+","+n+","+rem_n); 
   count++; 
   prefix = prefix+","+n; 
   comp(prefix,base_n-n,rem_n,0,false); 
   if(n==1); 
   else{ 
   n=n-1; 
   rem_n=base_n-n; 
   comp(tempPrefix,base_n,n,rem_n,false); 
   }} 
  else{ //rem_n==0 
       if(n==1) ; 
       else{ //n>1 
       n=n-1; 
     rem_n=base_n-n; 
    comp(tempPrefix,base_n,n,rem_n,false); 
    }}}}} 
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Figure 12. The number sets generated by the java program based on the trial and error approach. 
 
The algorithm is able to exhaustively generate all sets. We then used the algorithm to find 
the values of B(n) for values of n from 1 to 100. The computation time was roughly 4 hrs 
on a 1.2 GHZ Celeron processor with 256 MB RAM. Table 3 shows the values of n vs. 
B(n) and Figure 13 shows the graph of the rise of B(n) with respect to n.  
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n B(n) 
1 1 
2 2 
3 3 
4 5 
5 7 
6 11 
7 15 
8 22 
9 30 

10 42 
11 56 
12 77 
13 101 
14 135 
15 176 
16 231 
17 297 
18 385 
19 490 
20 627 
21 792 
22 1002 
23 1255 
24 1575 
25 1958 
26 2436 
27 3010 
28 3718 
29 4565 
30 5604 
31 6842 
32 8349 
33 10143 
34 12310 
35 14883 
36 17977 
37 21637 
38 26015 
39 31185 
40 37338 
41 44583 
42 53174 
43 63261 
44 75175 
45 89134 
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n B(n) 
46 105558 
47 124754 
48 147273 
49 173525 
50 204226 
51 239943 
52 281589 
53 329931 
54 386155 
55 451276 
56 526823 
57 614154 
58 715220 
59 831820 
60 966467 
61 1121505 
62 1300156 
63 1505499 
64 1741630 
65 2012558 
66 2323520 
67 2679689 
68 3087735 
69 3554345 
70 4087968 
71 4697205 
72 5392783 
73 6185689 
74 7089500 
75 8118264 
76 9289091 
77 10619863 
78 12132164 
79 13848650 
80 15796476 
81 18004327 
82 20506255 
83 23338469 
84 26543660 
85 30167357 
86 34262962 
87 38887673 
88 44108109 
89 49995925 
90 56634173 
91 64112359 
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n B(n) 
92 72533807 
93 82010177 
94 92669720 
95 104651419
96 118114304
97 133230930
98 150198136
99 169229875
100 190569292

  
Table 3. Values of B(n) for 1 ≤ n ≤ 100 generated by the java program. 
 
The curve of B(n) is be fitted with an exponential curve with an R-squared value of 
0.9494. Curve fitting with other types of curves like the polynomial or power-law type 
curves gives poorer results. 
 
Finally, we present a “trackback” (Figure 14) to give a perspective of the issues that need 
to be resolved in order to allow for efficient allocation of a resource. 
 

 
Figure 13. The relationship of B(n) vs. n. An exponential curve with the values shown in the figure gives 
the best fit. 
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Figure 14. A “trackback” that shows the dependency of the various problems that need to be solved before 
an algorithm can be devised to do en exhaustive search of a triangulated n-simplex 
. 

4. Conclusion  
 
This paper discusses the applicability of Sperner’s lemma for solving multiagent resource 
allocation problems. First the lemma was explored, whereby the concepts of triangulation 
and Sperner labeling are explained. After stating the lemma as applicable to any n-
simplex, We explain how Kuhn’s procedure helps in locating a fully labeled elementary 
simplex. It is then shown that a resource allocation problem can be mapped onto an 
appropriately labeled triangulation of an n-simplex. An approximate envy-free allocation 
mechanism as proposed by Su is mentioned first. Using appropriate conventions and 
assumptions, it is shown how one can apply the mathematical result to solve a multiagent 
resource allocation problem. Next, an allocation mechanism is proposed that has better 
communication efficiency than Su’s procedure. However this result is only approximate 
fair (which is a weaker condition than approximate envy-free). Every fully labeled 
elementary simplex is efficient in the pareto-optimal sense. If efficiency is studied in 
terms of social welfare however, one elementary simplex may represent a more efficient 
allocation than another. Kuhn’s procedure does not locate every possible fully labeled 
elementary simplex. Constructing a procedure that locates every fully labeled elementary 
simplex is however non trivial. Modeling the procedure as a finite state machine, it was 
observed that the number of final states grows quickly as the number, n, of agents 
increases. The number of final states depends on the combination of labels that can be 
applied to an elementary simplex. This in turn depends on the number of ways the labels 
can “bunch” together. We present three approaches to solve these problems. 
Unfortunately, none of them are sufficient to completely solve the problems. We believe 

Formulate an analytic expression for B(n) 

Given B(n), compute label combinations 

Given label combinations, compute Finite State Machine (FSM) 

Given FSM, devise algorithm to locate all FLES 

Given all FLES, determine the FLES that maximizes efficiency 
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that the simple yet powerful combinatorial property of Sperner’s lemma can be adapted 
for solving multiagent resource allocation problems elegantly, but the many open 
problems discussed in this paper need to be solved first.  
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