MCC Technical Report Number Carnot-148-93

Global Information Management
via Local Autonomous Agents

Michael N. Huhns, Munindar P. Singh,
Tomasz Ksiezyk, and Nigel Jacobs

November 1993

MCC/ISD Nonconfidential

Abstract

In this report we describe how a set of autonomous computational
agents can cooperate in providing coherent management of information
in environments where there are many diverse information resources. The
agents use models of themselves and of the resources that are local to
them. Resource models may be the schemas of databases, frame systems
of knowledge bases, domain models of business environments, or process
models of business operations. Models enable the agents and information
resources to use the appropriate semantics when they communicate with
each other. This is accomplished by specifying the semantics in terms of
a common, aggregate ontology. We discuss the contents of the models,
where they come from, and how the agents acquire them. We then de-
scribe a set of agents for telecommunication service provisioning and show
how the agents use such models to cooperate. The agents implement vir-
tual state machines, and interact by exchanging state information. The
resultant interaction produces an implementation of relaxed transaction
processing.

Microelectronics and Computer Technology Corporation
Information Systems Division
3500 West Balcones Center Drive
Austin, TX, U.S.A. 78759-65609
(512) 338-3651 or huhns@mcc.com

Copyright ©1993 Microelectronics and Computer Technology Corporation.}

All Rights Reserved. Shareholders of MCC may reproduce and distribute these materials for
internal purposes by retaining MCC’s copyright natice, proprietary legends, and markings on
all complete and partial copies.

1 Introduction

Business operations, including sales, marketing, manufacturing, and design, can
no longer be done in isolation, but must be done in a global context, i.e., as part
of an enterprise. A characteristic of such enterprises is that their information
systems are large and complex, and the information is in a variety of forms,
locations, and computers. The topology of these systems is dynamic and their
content is changing so rapidly that it is difficult for a user or an application pro-
gram to obtain correct information, or for the enterprise to maintain consistent
information.

Some of the techniques for dealing with the size and complexity of these
enterprise information systems are modularity, distribution, abstraction, and
intelligence, i.e., being smarter about how you seek and modify information.
Combining these techniques implies the use of intelligent, distributed modules—
a distributed artificial intelligence approach. In accord with this approach,
we distribute and embed computational agents throughout an enterprise. The
agents are knowledgeable about information resources that are local to them,
and cooperate to provide global access to, and better management of, the in-
formation. For the practical reason that the systems are too large and dynamic
(i.e., open) for global solutions to be formulated and implemented, the agents
need to execute autonomously and be developed independently. To cooperate
effectively, the agents must either have models of each other and of the available
information resources or provide models of themselves. We focus on the latter
in this report.

For such an open information environment, the questions arise: what should
be modeled, where do models come from, what are their constituents, and how
should they be used? We discuss the types of models that might be avail-
able in an enterprise and how agents can acquire them. We use the ontology
developed for the large knowledge-based system, Cyc, for semantic ground-
ing of the models. This provides a common ontology. We then describe a
set of agents for telecommunication service provisioning—a scheduling agent, a
schedule-repairing agent, a schedule-processing agent, and an interface agent—
and describe their models and how they use them to cooperate. We also describe
the use of actors [Agha 1986]—one per agent—who manage communications
among the agents. Each actor independently maintains the relationship be-
tween its agent and the common ontology (in the form of articulation axioms),
and updates that relationship as the ontology changes or the agent itself evolves.

1

o STEP (Standard for the Exchange of Product model data) schemas, writ-
ten in Express, are produced from component and physical process mod-
eling,.

Although it might appear that interoperability would require all of these models
to be merged into a single, homogeneous, global model, this is not the case in our
approach and there are instead good reasons for retaining the many individual
models: 1) they are easier to construct than a single large model; 2) enter-
prises may be formed dynamically through mergers, acquisitions, and strate-
gic alliances, and the resultant enterprises might have inherited many existing
models; 3) because enterprises are geographically dispersed, their resources are
typically decentralized; and 4) as enterprises (and thus models) evolve, it is
easier to maintain smaller models.

Unfortunately; the models are often mutually incompatible in syntax and
semantics, not only due to the different things being modeled, but also due to
mismatches in underlying hardware and operating systems, in data structures,
and in corporate usage. In attempting to model some portion of the real world,
information models necessarily introduce simplifications and inaccuracies that
result in semantic incompatibilities. However, the individual models must be re-
lated to each other and their incompatibilities resolved [Sheth and Larson 1990],
because

o A coherent picture of the enterprise is needed to enable decision makers
to operate the business efficiently and designers to evaluate information
flows to and from their particular application.

o Applications need to interoperate correctly across a global enterprise. This
is especially important due to the increasing prevalence of strategic busi-
ness applications that require intercorporate linkage, e.g., linking buyers
with suppliers, or intracorporate integration, e.g., producing composite
information from engineering and manufacturing views of a product.

o Developers require integrity validation of new and updated models, which
must be done in a global context.

e Developers want to detect and remove inconsistencies, not only among

models, but also among the underlying business operations that are mod-
eled.

e MCC’s RAD or NASA’s CLIPS for agent models.

Cyc’s knowledge about metamodels for these formalisms and the relationships
among them enables transactions to interoperate semantically between, for ex-
ample, relational and object-oriented databases.

The relationship between a domain concept from a local model and one or
more concepts in the common context is expressed as an articulation axiom
[Guha 1990]: a statement of equivalence between components of two theories.
Each axiom has the form ist(G ¢) < ist(C; ¢), where ¢ and % are logical ex-
pressions and st is a predicate that means “is true in the context.” This axiom
says that the meaning of ¢ in the common context G is the same as that of ¢
in the local context C;. Models are then related to each other—or translated
between formalisms—via this common context by means of the articulation ax-
ioms, as illustrated in Figure 1. For example, an application’s query about
Automobile would result in subqueries to DB1 about Car, to DB2 about Auto,
and to KBl about car. Note that each model can be added independently,
and the articulation axioms that result do not have to change when additional
models are added. Also note that applications and resources need not be mod-
ified in order to interoperate in the integrated environment. The Appendix
contains a description of the graphical tool, MIST, that we have built to aid in
the construction of articulation axioms.

Figure 2 shows a logical view of the execution environment. During in-
teroperation, mediators [Wiederhold 1992], which are implemented by Rosette
actors {Tomlinson et al. 1991], apply the articulation axioms that relate each
agent or resource model to the common context. This performs a translation of
message semantics. At most n sets of articulation axioms and n mediators are
needed for interoperation among n resources and applications. The mediators
also apply a syntax translation between a local data manipulation language,
DML;, and the global context language, GCL. GCL is based on extended first-
order logic. A local data manipulation language might be, for example, SQL
for relational databases or OSQL for object-oriented databases. The number
of language translators between DML; and GCL is no greater than n, and may
be a constant because there are only a small number of data manipulation lan-
guages that are in use today. Additional details describing how transactions are
processed semantically through the global and local views of several databases
can be found in [Woelk et al. 1992].

The mediators also function as communication aides, by managing commu-

Application

Local View 1
(DML 1)

DML1 --> GCL

Rule-Based Application

Local View m
(KMLm)

KMLm --> GCL
|

Local-to-common Semantic Translation
by Articulation Axioms

Local-to-common Semantic Translation

by Articulation Axioms

Mediator for application

Application

\iedialor for resource

Common
Enterprise-wide View

Mediator for agent

Common-to-local Translation
by Articulation Axioms

Common-to-local Translation
by Articulation Axioms

Common-to-local Translation
by Articulation Axioms

GCL --> DMLI1

Local Schema 1 Local Schema n Local Frame Syst
[] [] [] []] L]

i
Knowledge Base
i

Database 1

GCL --> DMLn

Database n

GCL --> KMLi

Figure 2: Logical view of the execution environment, showing how mediating
agents apply articulation axioms to achieve semantic interoperation

16 different database systems. Our goals were to reduce this time to less than
two hours and to provide a way in which new services could be introduced more
easily. Our strategy for accomplishing these goals was to 1) interconnect and
interoperate among the previously independent systems, 2) replace serial op-
erations by concurrent ones by making appropriate use of relaxed transaction
processing [Bukhres et al. 1993, Elmagarmid 1992, Ansari et al. 1992], and 3)
automate previously manual operations, thereby reducing the incidence of errors
and delays. The transaction processing is relaxed in that some subsystems are
allowed to be temporarily inconsistent, although eventual consistency is guaran-
teed. Relaxing the consistency requirements allows increased concurrency and,
thus, improved throughput and response time.

The architecture of the agents used to implement relaxed transaction pro-
cessing is shown in Figure 4. The agents operate as follows. The graphical-
interaction agent helps a user fill in an order form correctly, and checks inven-
tories to give the user an estimate of when the order will be completed. It also
informs the user about the progress of the order.

The transaction-scheduling agent constructs the schedule of tasks needed
to satisfy an order. The tasks are scheduled with the maximum concurrency
possible, while still satisfying precedence constraints among themselves. Some of
the rules that implement the schedule are shown in Figure 5. These particular
rules, -when appropriately enabled, generate a subtransaction to update the
database for customer billing. When executing such rules, the transaction-
scheduling agent behaves as a finite-state automaton, as shown in Figure 6.
The resultant schedule showing the commit dependencies among the tasks for
all such automata is shown in Figure 7.

The schedule-processing agent maintains connections to the databases in-
volved in telecommunication provisioning, and implements transactions on them.
It knows how to construct the proper form for a transaction, based on the re-
sults of other transactions. The transactions are processed concurrently, where
appropriate. If something goes wrong during the processing of a transaction
that causes it to abort or fail to commit, the schedule-repairing agent provides
advice on how to fix the problem and restore consistency. The advice can be
information on how to restart a transaction, how to abort a transaction, how to
compensate for a previously committed transaction, or how to clean-up a failed
transaction. The integrity knowledge that is stored in the schedule repairing
agent comes from a comparison of the models, as expressed in terms of the
common ontology.

:; Execute an external program that translates an Access Service Request
;; into a command file to update the database for customer billing. Execute
;: the command file and then check for completion. Note that the scheduling
:; agent, due to its truth-maintenance system, stops processing this

:: subtransaction whenever an abort of the global transaction occurs.
HH

IL

~e me we W

?2gtid denotes the global transaction identifier.
L-prepare:
If (service-orderx(?gtid)
new-tid(?subtid)
unless(abort(?gtid)))
then (do(,run-shell-program
("asr2bill"
:input ("asr-?gtid.out")
soutput "cabs-?gtid.sql”))
bill(?gtid ?subtid)
tell(GIAgent "Task ?gtid BILLING ready"))

W me =

BILL-execute:
If (bill(?gtid ?subtid)
logical-db(?db))
then (tell(SchedProcAgent "“task-execute ?subtid BILL ?db cabs-?gtid.sql")
tell(GIAgent "Task ?gtid BILLING active"))

BILL-completion:
If (success(?subtid)
bill(?gtid ?subtid))
then (tell(GIAgent "Task ?gtid BILLING done"))

BILL-failure:
If (failure(?subtid)
excuse(bill(?gtid ?subtid)))
then (abort(?gtid)
tell(GIAgent "Task ?gtid BILLING failed"))

Figure 5: Some of the rules used by the transaction-scheduling agent to generate
a schedule for DS-1 workflow

11

1 - Service Request
2 - Span in Place?
3 - Service Order

Figure 7: Workflow for telecommunication service provisioning generated by the
transaction-scheduling agent. Note that multiple such service requests can be
processed concurrently

13

DS-1 Access Service Request

OrderID Date

Customer Name : Phone

Quantity

Circuit Information

ALocation | ZLocation Type

Figure 9: User interface form (simplified) corresponding to the declarative
knowledge of the graphical-interaction agent

15

DB

(V)
subtrans
ompensat, '
status i

Figure 11: Semantic model for the schedule-repairing agent

abort
ompensate

Agent

17

include in a query: there is no global schema to provide advice about semantics.
Also, each database must maintain knowledge about the other databases with
which it shares information, e.g., in the form of models of the other databases
or partial global schemas [Ahlsen and Johannesson 1990]. For n databases, as
many as n(n — 1) partial global schemas might be required, while n mappings
would suffice to translate between the databases and a common schema.

We base our methodology on the composite approach, but make three changes
that enable us to combine the advantages of both approaches while avoiding
some of their shortcomings. First, we use an ezisting common schema or con-
text. In a similar attempt, [Sull and Kashyap 1992] describes a method for
integrating schemas by translating them into an object-oriented data model,
but this method maintains only the structural semantics of the resources.

Second, we capture the mapping between each model and the common con-
text in a set of articulation axioms. The axioms provide a means of translation
that enables the maintenance of a global view of all information resources and,
at the same time, a set of local views that correspond to each individual re-
source. An application can retain its current view, but use the information in
other resources. Of course, any application can be modified to use the global
view directly to access all available information.

Third, we consider knowledge-based systems (KBSs), process models, and
applications, as well as databases.

Our use of agents for interoperating among applications and information
resources is similar to the uses of mediators described in [Wiederhold 1992].
However, we also specify a means for semantic translation among the agents, as
well as an implemented prototype. Other applications of similar agents, such as
the Pilot’s Associate developed by Lockheed et al. [Smith and Broadwell 1988],
handcrafted their agents. This is not possible for large “open” applications:
the agents must be such that they can be developed independently and execute
autonomously.

Our architecture employs two kinds of computational agents: finer-grained,
concurrent actors and coarser-grained, knowledge-based systems. The actors
are used to control interactions among the components of the architecture. The
knowledge-based agents are used where reasoning is needed, such as in deciding
what tasks should be performed next or how to repair the environment when a
task has failed. This seems to be a natural division of responsibilities for our
example application. However, we took an engineering, rather than a scientific,
approach, in that we did not investigate any alternative architectures.

19

They help specify and maintain the semantics of an organization’s integrated
information resources.

Extensions of our work are focused on developing additional information-
system applications for agents, including

e intelligent directory service agents

e negotiating electronic data interchange (EDI) agents
o database triggers—making passive databases active
e rule-based database applications

e database administration agents

o intelligent information retrieval agents.

Our most important future work is centered on ways in which agents can
acquire and maintain models of each other in order to improve their interactions.

References

[Agha 1986] Gul Agha, Actors: A Model of Concurrent Computation in Dis-
tributed Systems, MIT Press, Cambridge, MA, 1936.

[Ahlsen and Johannesson 1990] Matts Ahlsen and Paul Johannesson, “Con-
tracts in Database Federations,” in S. M. Deen, ed., Cooperating Knowledge
Based Systems 1990, Springer-Verlag, London, 1991, pp. 293-310.

[Ansari et al. 1992] Mansoor Ansari, Marek Rusinkiewicz, Linda Ness, and
Amit Sheth, “Executing Multidatabase Transactions,” Proceedings 25th
Hawaii International Conference on Systems Sciences, Janaury 1992.

[Bukhres et al. 1993] Omran A. Bukhres, Jiansan Chen, Weimin Du, Ahmed K.
Elmagarmid, and Robert Pezzoli, “InterBase: An Execution Environment
for Heterogeneous Software Systems,” IEEE Computer, Vol. 26, No. 8, Aug.
1993, pp. 57-69.

[Buneman et al. 1990] O. P. Buneman, S. B. Davidson, and A. Watters,
“Querying Independent Databases,” Information Sciences, Vol. 52, Dec.
1990, pp. 1-34.

21

[Sheth and Larson 1990] Amit P. Sheth and James A. Larson, “Federated
Database Systems for Managing Distributed, Heterogeneous, and Au-
tonomous Databases,” ACM Computing Surveys, Vol. 22, No. 3, Sept. 1990,
pp. 183-236.

[Smith and Broadwell 1988] David Smith and Martin Broadwell, “The Pilot’s
Associate—an overview,” Proceedings of the SAE Aerotech Conference, Los
Angeles, CA, May 1988.

[Sull and Kashyap 1992] Wonhee Sull and Rangasami L. Kashyap, “A Self-
Organizing Knowledge Representation Scheme for Extensible Heteroge-
neous Information Environment,” IEEE Transactions on Knowledge and

Data Engineering, Vol. 4, No. 2, April 1992, pp. 185-191.

[Tomlinson et al. 1991] Chris Tomlinson, Mark Scheevel, and Vineet Singh,
“Report on Rosette 1.1,” MCC Technical Report Number ACT-OODS-
275-91, Microelectronics and Computer Technology Corporation, Austin,

TX, July 1991.

[Wiederhold 1992] Gio Wiederhold, “Mediators in the Architecture of Future
Information Systems,” IEEE Computer, Vol. 25, No. 3, March 1992, pp.
38-49.

[Woelk et al. 1992] Darrell Woelk, Wei-Min Shen, Michael N. Huhns, and
Philip E. Cannata, “Model-Driven Enterprise Information Management in
Carnot,” in Charles J. Petrie Jr., ed., Enterprise Integration Modeling:

Proceedings of the First International Conference, MIT Press, Cambridge,
MA, 1992.

23

View Micro Filter Info Integration Suggestions Inconsistencies File Color
>>> Create Articulation Axiom: # % address

postalAddress 1x%

instanceOf Slot Articulation axiom created for address:

alllnstanceOf BinaryRelation

makesSenseFor Agent ERMASS35Mt::

entrylsA AddressTheFormat MASSInfo.address

inverse postalAddressOf <--->

entryFormat SetTheFormat LodgingOrganization.postalAddress

allGenlSlots postalAddress

allSpecSlots postalAddress ntelligentAgent

Clear Kill File Misc

*** Using pointer
over panning area,
place object in
graph inspector

L - creale new node and place 1t under pointer

/E] String
amenityCode

Integer

Amenitylnfo

address

MassInfo

Integer

AmenityInfo

MassAmenity

Figure 12: MIST displays an information model both before and after it is
integrated, and shows the mappings (aﬁiculation axioms) that it constructs

