MCC Technical Report Number ACA-AI/CAD-038-88

Formulating and Retrieving Knowledge
through Abstraction Extensions to
Explanation-Based Learning

Michael N. Huhns and Ramén D. Acosta

January 1988

|MCC Nonconfidential |

Microelectronics and Computer Technology Corporation
Advanced Computer Architecture and VLSI CAD Programs
3500 West Balcones Center Drive
Austin, TX 78759
(512) 343-0978

[Copyright ©1988 Microelectronics and Computer Technology Corporation.

All Rights Reserved. Shareholders of MCC may reproduce and distribute these materi-
als for internal purposes by retaining MCC'’s copyright notice, proprietary legends, and
markings on all complete and partial copies.

1 Introduction and Background

Explanation-based learning (EBL) [4,11] is a knowledge-intensive analytic
technique by which learning systems can capture and generalize problem-
solving experience from single training examples. Unfortunately, EBL gen-
eralizations are limited in that they arbitrarily give equal weight to all
portions of the examples, without regard to whether each portion is rele-
vant or important to solving future problems. To overcome this limitation,
several extensions to EBL have been incorporated into Argo, a tool for
building knowledge-based systems that reason analogically and nonmono-
tonically and improve with use. Argo extends EBL by 1) learning several
new rules, at different levels of abstraction, from each training example, 2)
using rules at these different levels of abstraction to solve new problems
that are not necessarily identical, but just analogous to those it has solved
previously, and 3) providing an abstraction-based strategy for efficiently
retrieving acquired knowledge.

Argo transfers experience from previous problem-solving efforts to new
problems via analogical reasoning methods. An analogy is a mapping from
a base domain to a target domain that allows the sharing of features be-
tween these domains. We classify analogies as being either ezact or inez-
act. Where there is an exact match between a past experience and a new
problem-solving situation, an exact analogy exists and the new problem can
be solved by reexecuting the solution plan from the past experience. Where
an exact match does not exist, the two problems that arise are 1) analogy
recognition: finding the most similar past experience, and 2) analogical
transformation: adapting this experience to the new problem situation.

Several techniques have been suggested for automatically recognizing
the most similar past experience. These include finding a past experi-
ence with either an identical first stage [3], the same causal connections
among its components {5,16,17], or the same purpose as the new problem-
solving situation [9]. The second problem, the adaptation of old experi-
ences to new problem situations, has been attempted previously by em-
ploying heuristically-guided incremental perturbations according to prim-
itive transformation steps [2], heuristic-based analogical inference [6], and
user interaction [13].

A fundamental hypothesis of our work is that inexact analogies at one

level of abstraction become exact analogies at a higher level of abstraction.
Thus, we have developed techniques within Argo for automatically com-
puting and storing increasingly abstract versions of plans and subsequently
employing them in solving new problems. The use of plan abstractions pro-
vides Argo with an effective means for analogy transformation and recog-
nition, and enables it to improve its problem-solving performance as it is
used.

2 Problem-Solving in Argo

Argo is a generic development environment for the use of analogical rea-
soning and learning in solving problems, particularly in search-intensive
domains such as design [1,7,8]. Derived from the Proteus expert system
tool [14], it represents knowledge using a combination of predicate logic
and frames within a justification-based truth-maintenance system. Argo’s
primary inference mechanisms are forward chaining, backward chaining,
multiple inheritance through the frame system, truth maintenance, and
contradiction resolution.

Argo executes a problem-solving strategy with two major phases: a
problem-solving phase followed by a learning phase. The control strategy
for the problem-solving phase is that of a standard production-system in-
terpreter, modified for analogical reasoning by requiring that only the most
specific rules from a partial order of forward rules (based on the abstraction
relation defined below) be matched and considered for execution.

3 Learning in Argo

Learning typically occurs after problem-solving has been successful. This
prevents the learning of results that might be subsequently invalidated due
to nonmonotonic reasoning triggered by dependency-directed backtracking.
Thus, plans that are learned do not incorporate failed lines of reasoning [10].

A problem-solving plan in Argo is the explanation for a training ex-
ample. It is represented by a rule-dependency graph: a directed acyclic
graph having nodes corresponding to forward rules and edges indicating
deductive dependencies between the rules of the plan. Argo implements a

2

type of derivational analogy [3,12] to solve new problems by making use of
abstracted rule-dependency graphs from previous problem-solving experi-
ences. In this vein, the primary function of the system’s learning phase is
to compute and store abstractions for the plan of a solved problem.

A number of domain-dependent and domain-independent techniques
for automatically generating plan abstractions are possible. These include
deleting rules from a plan, replacing a rule by a more general rule that refers
to fewer details of a problem (as in ABSTRIPS [15]), and generalizing a
macrorule for the plan without reference to the plan itself. Argo abstracts
a plan-by deleting all of its leaf rules, which are those having no outgoing
dependency edges. For many domains, the leaf rules trimmed from a plan
tend to be those that deal with details at the plan’s level of abstraction. In-
creasingly abstract versions of a plan are obtained by iteratively trimming
it until either one or zero nodes remain.

One possible drawback of Argo’s automatic abstraction scheme is that
deleting all leaf rules might eliminate potentially useful abstract plans in
which only some of the leaf rules should be deleted. Except for the very
smallest plans, however, it is clearly not practicable to generate macrorules
for all possible subgraphs of the rule-dependency graph. Also, the system
can always start with a plan’s previously computed abstraction, followed
by instantiations of some of the trimmed rules, to obtain the appropriate
“abstraction” required to solve a new problem.

Argo computes abstractions during its learning phase—after a problem
is solved. In contrast, it is possible to save a plan and only compute abstrac-
tions when necessary, i.e., when solving new problems in which an abstract
version of an original plan is applicable. There are difficulties with using
this approach, including identification of the most suitable previous plan
using some type of partial match procedure and analogical transformation
of the selected plan based upon the partial match results. Consequently,
Argo uses an a priori approach to generating abstractions.

During this learning phase, the plan or abstract plans for a solved prob-
lem are not explicitly learned by the system. Instead, an explanation-based
scheme is used to regress through the component rules of each plan, re-
sulting in a set of macrorules that embody the relevant preconditions and
postconditions of the plan. Applying a macrorule yields the same result
as executing a plan; in addition, a macrorule is more efficient and elimi-

3

nates the correspondence problem for plans described in [13]. Further, it
is difficult to index plans so that their appropriateness can be determined,
whereas macrorules can be integrated with the original rules in the system
in such a way that they are applied always and only when appropriate.

Argo’s use of rule-dependency graphs to represent plans contrasts with
the explanation-based learning mechanism in [11], in which explanations
consist of proof trees having edges between individual antecedents and con-
sequents of dependent rules. While only one macrorule is computed for the
technique presented in [11], Argo computes a set of one or more macrorules
for a given explanation. Although harder to compute, these macrorules can
be applied to situations differing structurally from the original problem.

The macrorules are organized into a partial order based on a relation
called abstraction. A plan P, is a mapping from a domain D;, determined
by the antecedents of the macrorule for P;, to a range R;, determined by the
consequents of the macrorule for P;. Intuitively, one plan is more abstract
than another if it applies to more situations and if its execution results in
fewer commitments. More precisely,

P, 3 P; & (D; > D;) A (R: = R;)

where 3, the abstraction relation, is to be read “is an abstraction of,” and
where

Definition 1 S; > S; & the set of possible worlds in which S; is true is o
subset of the set of possible worlds in which S; is true.

Abstraction is a transitive, reflexive, and antisymmetric relation: it thus
induces a partial order on a set of rules.

This partial order facilitates locating and applying previous problem-
solving experience. If a problem is given to the system that is exactly
analogous to an old problem, then the most specific macrorule is applied to
completely solve it. Alternatively, if the new problem is inexactly analogous
to an old one, the system follows specialization paths in the partial order
of forward rules in order to choose the least abstract macrorule that is
applicable, i.e., one that instantiates the largest number of details without
making incorrect inferences. By successively selecting the least abstract
rules, the system typically finds the shortest path to a valid solution.

4

4 Conclusions

The work reported here is based on developing the fundamental methodol-
ogy for a system, Argo [7], that reasons and learns by analogy for solving
problems in design. This methodology includes the use of problem-solving
plans to effect the analogical transfer of knowledge from a base problem to
a target problem, the use of abstract plans to allow the transfer of experi-
ence to inexactly analogous target problems, an algorithm for calculating
macrorules for a plan that allows the plan to be retrieved and applied ef-
ficiently, and the formal definition of an abstraction relation for partially
ordering plans.

Design is a knowledge-intensive problem-solving activity characterized
by a very large, incompletely-specified search space with many alternative
solutions and no metric. Optimal design is thus typically intractable. The
learning techniques in Argo are useful for such an intractable domain be-
cause they dramatically reduce the size of the search space and obviate the
need for exhaustive search. Traditional EBL techniques presume that the
same problems will be encountered again—an unlikely possibility in such
a large space. Argo’s abstract macrorules apply to general problem classes
and are much more likely to be reused.

In order to evaluate Argo, a knowledge-based system has been imple-
mented for designing VLSI digital circuits. This system refines behavioral
descriptions for circuits into structural descriptions by executing plans com-
posed of transformation, instantiation, and decomposition rules. The sys-
tem is typically used as follows: a designer trains it on a set of representative
examples by choosing solution paths and controlling backtracking, thereby
producing plans for achieving correct designs. Argo compiles these plans,
at various levels of abstraction, into a set of macrorules and maintains these
macrorules in its justification network. A knowledge-based contradiction-
resolution mechanism revises and updates this network, yielding nonmono-
tonic learning. Given a behavioral description for a new design, Argo ap-
plies the macrorules that require the fewest additional details to complete
the design, thus reducing the computation required to solve the problem.
We have demonstrated that with use, the system accumulates design knowl-
edge that produces better quality designs more efficiently [7].

Acknowledgement

We would like to thank Tom M. Mitchell for supplying many of the ideas
and insights upon which this research is based.

References

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

R. D. Acosta, M. N. Huhns, and S. Liuh, “Analogical Reasoning for
Digital System Synthesis,” Proceedings of the IEEE International Con-
ference on Computer-Aided Design, Santa Clara, CA, November 1986,
pp. 173-176.

J. G. Carbonell, “Learning by Analogy: Formulating and Generaliz-
ing Plans from Past Experience,” in Machine Learning, An Artificial
Intelligence Approach, Vol. I, R. S. Michalski, J. G. Carbonell, and T.
M. Mitchell, eds., Tioga Press, Palo Alto, CA, 1983, pp. 137-161.

J. G. Carbonell, “Derivational Analogy: A Theory of Reconstructive
Problem Solving and Expertise Acquisition,” in Machine Learning:
An Artificial Intelligence Approach, Vol. II, R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell, eds., Morgan Kaufmann, Los Altos,
CA, 1986, pp. 371-392.

G. DeJong and R. Mooney, “Explanation-Based Learning: An Alter-
native View,” Machine Learning, vol. 1, no. 2, 1986, pp. 145-176.

D. Gentner, “Structure Mapping: A Theoretical Framework for Anal-
ogy,” Cognitive Science, vol. 7, no. 2, April 1983, pp. 155-170.

R. Greiner, Learning by Understanding Analogies, Ph.D. Dissertation,
Stanford University, Technical Report STAN-CS-1071, Palo Alto, CA,
September 1985.

M. N. Huhns and R. D. Acosta, “Argo: An Analogical Reason-
ing System for Solving Design Problems,” MCC Technical Report
No. AI/CAD-092-87, Microelectronics and Computer Technology Cor-
poration, Austin, TX, April 1987.

M. N. Huhns and R. D. Acosta, “Argo: A System for Design by Anal-
ogy,” Proceedings of the Fourth IEEE Conference on Artificial Intelli-
gence Applications, San Diego, CA, March 1988.

S. T. Kedar-Cabelli, “Formulating Concepts According to Purpose,”
Proceedings of the Sizth National Conference on Artificial Intelligence,
Seattle, WA, July 1987, pp. 477—481.

6

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Liuh and M. N. Huhns, “Using a TMS for EBG,” MCC Techni-
cal Report No. AI-445-86, Microelectronics and Computer Technology
Corporation, Austin, TX, December 1986.

T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli, “Explanation-
Based Generalization: A Unifying View,” Machine Learning, vol. 1,
no. 1, 1986, pp. 47-80.

J. Mostow, “Automated Replay of Design Plans: Some Issues in
Derivational Analogy,” submitted to Artificial Intelligence Journal,
March 1987.

J. Mostow and M. Barley, “Automated Reuse of Design Plans,”

Proceedings of the International Conference on Engineering Design,
Boston, MA, August 1987.

C. J. Petrie, D. M. Russinoff, and D. D. Steiner, “PROTEUS: A De-
fault Reasoning Perspective,” Proceedings of the 5th Generation Com-
puter Conference, National Institute for Software, Washington, D.C.,
October 1986.

E. D. Sacerdoti, “Planning in a Hierarchy of Abstraction Spaces,”
Artificial Intelligence, vol. 5, no. 2, 1974, pp. 115-135.

P. H. Winston, “Learning New Principles from Precedents and Exer-
cises,” Artificial Intelligence, vol. 19, no. 3, November 1982, pp. 321-
350.

P. H. Winston, “Learning by Augmenting Rules and Accumulating
Censors,” in Machine Learning, An Artificial Intelligence Approach,
Vol. 1I, Morgan Kaufman, Los Altos, CA, 1985, pp. 45-61.

