MCC Technical Report Number ACT-AI-378-89

Distributed Reasoning among Expert Systems
Natraj Arni and Michael N. Huhns

QOctober 1989

|MCC Nonconfidential |

Abstract

This report describes the process and result of converting a con-
ventional expert system shell to one that enables distributed reason-
ing. The resultant shell, Antares, can be used to construct individual
expert systems that communicate and cooperate with each other in
solving problems.

Microelectronics and Computer Technology Corporation
Artificial Intelligence Laboratory
3500 West Balcones Center Drive
Austin, TX 78759-6509
 (512) 338-3651
huhns@MCC.COM

Copyright ©1989 Microelectronics and Computer Technology Corporation.

All Rights Reserved. Shareholders of MCC may reproduce and distribute these materi-
als for internal purposes by retaining MCC’s copyright notice, proprietary legends, and
markings on all complete and partial copies.

1 Introduction

After more than a decade of successful exploitation of knowledge-based sys-
tems, we have hit a barrier in the size and complexity of the problems that can
be solved with current technology. Larger problems cannot be solved because
the requisite systems are too complex to build and maintain. The system
described herein will make it possible to solve larger, more complex reason-
ing problems. Our strategy is to provide novel technology for distributed
reasoning among multiple knowledge-based systems. Distributed reasoning
enables the systems to cooperate in problem solving, negotiating conflicts as
necessary. Users can then exploit a divide-and-conquer approach to develop-
ment: they will be able to build smaller, more manageable knowledge-based
systems that cooperate in solving complex problems. These smaller systems
can also be reused in different combinations for solving other problems in the
future.

In this report we describe the primitives and features that a tool for
building knowledge-based systems needs in order to support distributed rea-
soning. The following is a typical scenario for the use of such a tool: there
is a loosely-coupled network of experts, each being an expert in a particular
field, and there is a problem that these experts must solve that is beyond
the capabilities of any one of the experts. More specifically, there exists
a number of identically-structured® knowledge-based systems (agents), each
having its own domain specific knowledge. There may or may not be a user
associated with each one of these agents. A problem to be solved, or a goal
to be satisfied, is given to one of these agents by a user. This agent does one
of the following three things:

1. Solves the problem or satisfies the goal itself, using local knowledge and
inherent reasoning mechanisms.

2. Decomposes the problem or goal into subgoals, distributes each one of
these subgoals to an appropriate agent, and then integrates the solu-
tions returned by the other agents.

3. Tries to solve the problem itself, but discovers a subproblem it can-
not solve. It distributes that subproblem to another agent, and then
incorporates that agent’s solution into its own.

1At least for now.

MCC Nonconfidential 1 Artificial Intelligence Laboratory

In any case, the agent reports the final solution to the user.

The features required for distributed reasoning include a communication
channel among the agents, a communication protocol for exchanging goals
and solutions on this channel, and a reason-maintenance system that enables
globally-coherent solutions to be achieved. We have incorporated these fea-
tures into Antares, a full-featured shell for building knowledge-based systems.
Antares supports a forward and backward rule-based inferencing mechanism,
a frame system for knowledge representation, a justification-based truth-
maintenance system [Doyle 1979, Petrie 1989], and a high-performance im-
plementation derived from the Warren Abstract Machine [Warren 1983}, as
well as the distributed reasoning mechanisms.

2 Model for Distributed Reasoning

Antares’ model for distributed reasoning among multiple knowledge-based
systems is based on the interactions between a user and a single, conventional
knowledge-based system. In this model, a user can query and make assertions
to the knowledge-based system, to which the system responds with either an
answer or an acknowledgement, as appropriate. As a side-effect of forward or
backward inferencing, the system can independently inform or make a request
of a user, who must answer all requests. This model permits interactions to
be either user-initiated or system-initiated.

Antares extends this model to the multiple agent case by enabling system-
initiated interactions to be directed to another agent, as well as to a local
user. For this purpose, a destination field is added to each query or assertion.
A value for this field, i.e., the name of an agent who should receive the query
or assertion, can then be the subject of a reasoning process in the originating
agent. Since an assertion can now come from several sources, its justification
must be modified to record a source. An agent must also record the agents
to whom it sent an assertion, so that it can inform them in case its belief in
that assertion ever changes.

MCC Nonconfidential 2 Artificial Intelligence Laboratory

3 System Architecture

The agents exist in a fully distributed environment. Each agent can make
queries of other agents and also serve as a knowledge base for other agents.
That is, each agent works in a Client-Server mode. It is a Client when it
requests other agents to solve a problem or satisfy a goal. It is a Server when

it satisfies goals for other agents. Each agent has the following state variables
associated with it:

1. System-Lock (LOCKED OPEN)
Input-Buffer

Status (WAIT BUSY FREE)
Input-Buffer-Lock

Authorization-Lookup-Table

o o R W N

Priority-List

When an agent queries another agent, it can either go into a WAIT state
until it receives a result or dispatch the request and carry on with other
chores. The first choice refers to a serial way of solving problems and the
second one refers to a parallel way of solving problems. In the current imple-
mentation, the agents operate serially. When an agent is in the WAIT state,
it should not permit other agents to perform either destructive operations
on it or make queries of it, as this may lead to a potential deadlock. This
deadlock issue is resolved by a time-out mechanism. Hence, a proof attempt
on an agent that is either in a WAIT or a BUSY state will feil. An agent
also has multiple channels open to some or all other agents. Agents can also
assert facts on remote agents. In Antares, this is allowed only when an agent
obtains a lock on another agent whose database it is trying to alter. The
reason for locking is obvious: as long as an agent holds a lock on another
agent, no other agent can either query or assert facts on the locked agent.
This is necessary to keep the database consistent and the query processing
deterministic. A user can utilize the windowing system to view and edit the
knowledge base of a remote agent from the user’s terminal.

The following are the salient issues in distributed reasoning:

MCC Nonconfidential 3 Artificial Intelligence Laboratory

Remote queries

Remote justifications (to enable the implementation of a distributed
~ JTMS [Mason and Johnson 1989])

Negotiation

Multiple users

We discuss each of these issues briefly, giving examples as we go along. This
is not an exhaustive list and there are also some unresolved issues.

3.1 Remote Queries

This is one of the most basic operations in Antares. An agent or user can
make queries of other agents. The queries could be either simple queries,
i.e., queries at the user-interface level, or proof attempts of a literal of a
rule at a remote agent. The goal to be proved is sent to the remote host
(the server) along with a Client Id. This way we register a request at the
Server. If the server is free and its lock is open, an attempt is made to
prove this goal. If a succesful proof is obtained, a datum [Proteus 1989]
of the type Server-Datum is created. This datum has the justifications for
the proof of the goal. This datum also has a field to store the Client Id.
For this datum, a tag is generated. The datum thus generated is stored in
a local associative table, the tag being the associative key. Note that this
datum participates “normally” in the local TMS. For each succesful proof,
we perform the operations described above. Finally all the bindings and their
corresponding datum tags are sent back to the client. An example of a query
to and a reply from “Agentl” is shown below.

Query: (remote-query ‘‘Agenti’’ (foo 7x ?y))

Receive: (‘‘((:bindings ((?x 10) (?7y 20)))
(:datum-tag Server_Tag_Agentl_65624)
(:status ’IN)

(:server ‘‘Agent1’’))
((:bindings ((?x a) (?7y b)))
(:datum-tag Server_Tag_Agentl_65623)

MCC Nonconfidential 4 Artificial Irt- Yigence Laboratory
&~

e e

(:status 'IN)
(:server ‘‘Agenti’’))

The predicate, remote-query, translates to a low level query to the remote
agent with the goal and the client as the arguments.

The Client now creates a datum of the type Client-Datum for each proof
received from the server. This is an “image” of the server datum. Information
about the server is stored in this datum. This datum is given a remote
justification, which is a special kind of justification [Proteus 1989]. Finally,
this datum is stored in a local associative table at the client with the tag
being the associative key. Note that this datum participates in the client’s
TMS. Hence, the query could be a part of a rule. This datum is a special kind
of datum, whose status (IN/OUT) depends not only on local justifications,
but also on proofs from remote agents. This is the justification for the above
bindings. Finally, this datum is assigned the status IN.

3.2 Remote Justifications and Distributed TMS

Remote data and justifications are created as described in the previous sec-
tion. When the remote agent changes its belief about a datum, i.e., changes
its belief status, and this datum happens to be of type Server-Datum, then
the corresponding Client, which is responsible for the creation of this datum,
is notified. At the receipt of this message at the client, the “image” datum
at the client is accessed. It is this datum that needs to be acted upon. If
the transition is from an OUT to an IN, a new remote justification is created
at the Client and is pushed in to the justifications of the client datum and
the status of the datum is made IN. If the transition is from an IN to an
OUT, the client datum is made OUT by an ERASE opertaion. Again, the
justification for the ERASE is a newly created remote justification. The in-
formation about the agents causing the above changes is stored in the remote
justifications. The Client also has an option of ignoring the messages from
its servers, when the remote data it depends on change their status. This
can easily be set by a flag.

Note that the above discussion on remote justifications is necessary only
for proofs whose justifications are needed. This may exclude simple user-
level queries, whose proof tree (or justification information) is transient. An

MCC Nonconfidential) Artificial Intelligence Laboratory

example where the justification is needed is remote proof attempts on one
or more antecedents of a forward rule. These remote justifications will have

to be entered in the justification of any assertion of the consequents of this
forward rule.

3.3 Example

Suppose there are two agents called Agentl and Agent2, and Agentl would
like some help from Agent2 in choosing a stock to buy. Agentl’s query to
Agent2 about this initiates the exchange of information depicted in Figure
1. In this example, Agentl knows what it can afford, but it does not have
any knowledge about what stocks it would be wise to buy. It does know,
however, that Agent2 knows about this problem. So it attempts to solve this
subgoal by sending a query to Agent2.

Agent2 does have some general knowledge about what stocks to rec-
ommend and about what stocks it can afford. It is interesting to note
that Agentl and Agent2 have different and even conflicting knowledge, e.g.,
Agentl believes XCorp is affordable, while Agent2 does not. But because
Agentl and Agent2 do not choose to interrogate each other on this issue,
their differences of belief do not matter. These agents represent two different
viewpoints about the world that are not easily modeled by a single, conven-
tional expert system. Further, we see that two agents can cooperate to solve
a problem even if their beliefs are not identical.

When Agent?2 receives Agentl’s query, it attempts to find an answer by
applying its rules. It succeeds and binds ?x to XCorp. It also creates a
server datum for this conclusion. This datum (labeled Server-Agent2-12
in the figure) contains the conclusion, the justification for the conclusion
(namely rules 1 and 2), and a pointer to the agent to whom this conclusion
was reported (in this case Agentl). Agent2 then reports its conclusion to
Agentl.

Now Agentl can continue its attempt to apply its rule 1. It succeeds at
that, with ?x bound to XCorp, and it generates the assertion (buy XCorp).
It justifies this with rule 1, fact 3 (that XCorp is affordable), and a client
datum (Client 5) that records the fact that Agent2 recommended XCorp. No
further interaction between Agentl and Agent2 is necessary at this point.

Agent2 does, however, retain a commitment to notify Agentl if its belief
in the affordability of XCorp changes. The client and server data that have

MCC Nonconfidential 6 Artificial Intelligence Laboratory

-

—

been constructed provide a means of doing that in case the need arises. In
that case, Agentl will retract its decision to buy XCorp.

3.4 Negotiation

There is no requirement for two agents to agree completely. That is, each
agent maintains a locally consistent set of beliefs using its own justification-
based truth-maintenance system, but global consistency among the agents
is not required. However, when two or more agents disagree about belief in
a datum and when this disagreement is encountered during problem solving,
then negotiation among the agents will ensue to resolve the disagreement.
The negotiation is necessary to ensure that the global solutions to the prob-
lems posed to the agents are coherent.

The negotiation procedure involves an exchange of justifications among
the agents. For example, if there is a disagreement about belief in datum
D, then the agents exchange the justifications for their belief or disbelief in
D,. The agents then compare these justifications. If there is a disagreement
about belief in any datum in the justifications, then the justifications for this
disputed datum are exchanged, and the process recurses. It is expected, but
not yet proven, that resolution of all disagreements among two agents in a
consistent world will be achieved by one agent informing another of some
explicit knowledge that the other is missing. The negotiation process is an
active area of research at MCC and will be described further in a forthcoming
technical report.

3.5 Multiple Users

Antares allows multiple users, but, for safety, there can be only one user at
any one time; the locking mechanism described in Section 3.1 prevents this.
Alternatively, Antares may someday be made reentrant for true multitasking.

3.6 Protocol for Message Passing

On the Symbolics, we use the Chaosnet [Symbolics 1988] as the medium of
communication. A protocol, called Remote-Eval-Server, is then defined on
this medium. This gives us the ability to send Lisp forms across the network,

MCC Nonconfidential 7 Artificial Intelligence Laboratory

Agent 1

: (afford XCorp)
ri: ((buy ?x)

‘_
(remote-query

(afford ?x))

(recommend ?x))

Agent 2

? (recommend ?x)+

Agent 1

f1: (not (afford XCorp))

f2: (cash-rich XCorp)

ri: (recommend ?x)
(takeover-bid ?x)

r2: (takeover-bid ?x) <€
(cash-rich ?x)

13:
ri:

(afford XCorp)

((buy ?x)
-
(remote-query

(afford ?x))

(recommend 7?x))

Agent 2

(recommend XCorp)
et

f1: (not (afford XCorp))
f2: (cash-rich XCorp)

ri: (recommend 7x) «¢
(takeover-bid ?x)

(takeover-bid ?x)<€
{cash-rich ?x)

r2:

Agent 1

Server-Agent2-12 (recommend
XCorp)
Agent1
IN
(f2 r1 r2)

: {(afford XCorp)

ri: ((buy ?x)
-

(remote-query

(afford ?x))

{buy XCorp)
Just: (r1 {3 Client 5)

(recommend ?x))

Agent 2

Time

f1: (not (afford XCorp))
f2: (cash-rich XCorp)

ri: (recommend 7x) «¢
(takeover-bid ?x)

r2: (takeover-bid ?x)<&
{cash=rich 7x)

Agent 2
IN

Client5 Server-Agent2-12

Server-Agent2-12 (recommend
XCorp)

Agent1

IN

(f2 r1 r2)

Figure 1: The steps involved in processing a remote query. Note the justifi-
cation tables built by both the server and the client agents.

MCC Nonconfidential

8

Artificial Intelligence Laboratory

P

packed in a string. These strings are unpacked at a remote machine, decoded
and executed. The values are returned using a similar method.

For a UNIX environment, we use the Inter Process Communication (IPC)
primitives [UNIX]. Multiple agents communicate with each other using sock-
ets and pipes. The protocol is TCP/IP.

Messages between agents are passed using strings. These strings contain
TOKENS separating various fields in the message. It is assumed that all the
agents understand the same language and hence can parse the message.

3.7 Global Namespace Server

One agent will be designated as the global namespace server; it will maintain
the identities and locations of all of the agents.

4 System Configuration and Use

For Symbolics workstations, the Host object on each workstation must be
edited using the Namespace Editor to add a service called

Service: REMOTE-EVAL CHAOS REMOTE-EVAL-SERVER

Once this is done, a user can define a workstation as both a Server and a
Client, using the following forms:

3 3 kR kRl ook ok ok ok sk KRk ok ok sk
;5; This defines a server

(net:define-server :remote-eval-server
(:medium :byte-stream :stream stream)
(with~-standard-io-environment
(let ((input-form (read stream)))
(print (eval input-form) stream))))

55 ok 3k ok e o o e e 2k 3k sk ok ok ok ok 3k ke sk ok sk ok ok ok ok ok ook s o ke ook 3k ok ok ok ok ok ok

MCC Nonconfidential 9 Artificial Intelligence Laboratory

;;; This defines a client

(net::define-protocol :remote-eval-server
(:remote-eval :byte-stream)
(:invoke-with-stream-and-close (stream form)
(with-standard-io-environment
(print form stream)
(force-output stream)
(read-from-string
(with-output-to-string (string-stream)
(stream-copy-until-eof stream string-stream)

2330

;33 This defines a contact name for the Protocol.

(chaos:add-contact-name-for-protocol :remote-eval-server "R-EVAL")

For the UNIX environment, each agent starts up a socket pair with a
unique name or Id. It is assumed that other agents, wishing to communicate
with any other agents, know about their socket names.

4.1 Library

The file called dai.prot should be consulted at start-up time. It should be
in either the user’s home directory or /usr/lib/antares/dai.prot. This file
contains the following two rules:

(assert
((remote-prove 7Thost ?goal)
==
(is 7all-proofs (pi:host-prove 7host ?goal))
(element (7goal 7datum) ?all-proofs)
(is 7exists (pi::datum-p ?datum))
(push-cl ?7datum))

MCC Nonconfidential 10 Artificial Intelligence Laboratory

-
&
o

((remote-assert 7host ?pattern)
-->

(is ?success (pi:host-assert 7Thost ?patterm)))

)

4.2 Syntax

The syntax for remote queries is straightforward. The following is the general
form of a remote query:

? (remote-prove <hostname> <goal>)
The syntax for a remote assert is

? (remote-assert <hostnamed> <assertion>)

5 Conclusions

During the next five years, the Reasoning Architectures group at MCC will
be developing new technologies to enable distributed reasoning in Al sys-
tems. It is our firm belief that such technology will be crucial for the future
effectiveness of reasoning tools. This belief is motivated by a number of
observations:

o Applications requiring an Al approach are increasingly large and di-
verse, yet existing reasoning tools work well only for small, specialized

problems. New tools are required that allow modular development of
knowledge bases.

e The world is distributed. Information sources abound throughout our
environment; there is no way for a single reasoning agent to effectively
manipulate all of the information available. Reasoning tools must be

MCC Nonconfidential 11 Artificial Intelligence Laboratory

o

able to communicate and cooperate with one another, just as human
experts do.

e Once an expert system is developed with today’s shells, it becomes
an isolated island of knowledge. It cannot easily be reused in other,
similar problem domains. Because of this, the cost of engineering and
maintaining multiple expert systems is already becoming noticeably
high in the business community, where Al applications are increasingly
commonplace.

Antares is a first step toward cooperative distributed problem solving
among multiple agents. It provides the low-level communication and rea-
soning primitives necessary for beneficial agent interactions, but it does not
guarantee successful and efficient cooperation. The next steps will require
increased intelligence and capabilities for each agent, resulting in more so-
phisticated agent interactions occurring at a higher level. We are providing
these capabilities through our research.

References

[Doyle 1979] J. Doyle, “A Truth Maintenance System,” Artificial Intelli-
gence, vol. 12, no. 3, 1979, pp. 231-272.

[Gasser and Huhns 1989] Les Gasser and Michael N. Huhns, eds., Dis-
tributed Artificial Intelligence, Volume II, Pitman Publishing, London,
1989.

[Huhns 1987] Michael N. Huhns, ed., Distributed Artificial Intelligence, Pit-
man Publishing, London, 1987.

[Mason and Johnson 1989] Cindy L. Mason and Rowland R. Johnson,
“DATMS: A Framework for Distributed Assumption Based Reason-
ing,” in [Gasser and Huhns 1989], pp. 293-317.

[Moore 1980] R. Moore, “Reasoning about Knowledge and Action,” Techni-
cal Note 191, SRI International, 1980.

MCC Nonconfidential 12 Artificial Intelligence Laboratory

[Petrie et al. 1986] C. J. Petrie, D. M. Russinoff, and D. D. Steiner, “Pro-
teus: A Default Reasoning Perspective,” Proceedings 5th Generation
Conference, National Institute for Software, October 1986.

[Petrie 1989] C. J. Petrie, “Reason Maintenance in Expert Systems,” MCC
Technical Report No. ACA-AI-021-89, Microelectronics and Computer
Technology Corporation, Austin, TX, February 1989.

[Warren 1983] David H. D. Warren, “An Abstract Prolog Instruction Set,”
SRI Technical Note 309, SRI International, October 1983.

[Symbolics 1988] “Networks,” Symbolics Users Guide, vol. 9, Symbolics,
Inc., Cambridge, MA, 1988.

[Proteus 1989] Natraj Arni, et al., “Proteus 3: A System Description,” MCC
Technical Report No. ACT-AI-226-89-Q, Microelectronics and Com-
puter Technology Corporation, Austin, TX, June 1989.

[UNIX] “UNIX Programmers Manual,” University of California, Berkeley,
CA, 1984.

MCC Nonconfidential 13 Artificial Intelligence Laboratory

