MCC Technical Report Number Carnot-017-92(Q)

Distributed Communicating Agents:
Guide for Installation and Operation

Michael N. Huhns and Munindar P. Singh

January 1992

MCC/Carnot Confidential and Proprietary

Abstract

This report describes a software tool for developing distributed, knowledge-
based, communicating agents. The tool can be used to construct individual expert
systems that communicate and cooperate with each other, and with human agents,
in solving problems. The agents interact by using Rosette, an actor-based lan-
guage, to manage their communications through TCP/IP and OSI. Thus, they can
be located anywhere that is reachable through OSI. The agents also use Rosette
to access databases. You can use this guide to comstruct, install, operate, and
interact with teams of agents.

Microelectronics and Computer Technology Corporation
Carnot Project
Enterprise Integration Division
3500 West Balcones Center Drive
Austin, TX 78759-6509
(512) 338-3651
huhns@MCC.COM

Copyright ©1992 Microelectronics and Computer Technology Corporation.

All Rights Reserved. Shareholders of MCC may reproduce and distribute these materi-
als for internal purposes by retaining MCC’s copyright notice, proprietary legends, and
markings on all complete _snd partial copies.

Contents

1 Introduction to Distributed Agents

1.1 Major Featuresof RAD.
2 Distributed Reasoning
2.1 Model for Distributed Reasoning
2.2 Architectureand Use
2.2.1 Interagent Queries
2.2.2 Remote Assertions
2.2.3 Remote Justifications and Dlstrlbuted ™S
2.2.4 Negotiation,
2.3 Distributed Reasoning Example
2.4 Implementation Issues
2.4.1 Protocol for Message Passing
2.4.2 Extensible Services Switch (ESS)

3 Truth Maintenance

4 Frames and Assertions

4.1 Classes, Subclasses, and Instances
4.2 Metaclasses i i i i e e e e e e e e e e
4.3 Variablesand Types,
4.4 ASSErtIONS . . . & v i e e e e e e e e e e e e e e
44,1 InstanceSlot Values
442 Class-Slot Values

5 Relations in RAD
5.1 Relationsas Objects

5.2 Relations on Relations

5.3 Predefined Relations
5.3.1 TypeRelations
5.3.2 Comparison Relations
5.3.3 Metarelations
5.3.4 Pathological Relations
5.3.5 RAD Knowledge Base Relations . . .
5.3.6 Class System Relations
5.3.7 InterfacewithLisp
5.3.8 Queryingthe User
5.3.9 Miscellaneous Built-In Relations . . .
5.4 User-Defined Relations
6 Backward Inference
6.1 Asserting Proof Results.
6.2 Proof Strategies
6.2.1 Relations
6.2.2 Multiple-Valued Relations
6.2.3 Single-valued Relations
7 Forward Inference
7.1 Overview of Forward Chaining
7.2 Forward Chaining in More Detail
8 Contradiction Resolution
8.1 Introduction
8.2 The Contradiction Resolution Process
821 TheFIXPhase
8.2.2 Dependency-Directed Backtracking
83 UserHints
8.3.1 General Assertions
8.3.2 Retractable Default Assumptions . .
8.3.3 Preferences
84 FinalCaveats

Confidential and Proprietary i

MCC Carnot Project

jz 9 Syntax and the User Interface 90

01 RADSYNtaxX. oo i i v i ittt 93

92 The RADReader« it 96

921 TheSlash-/ 97

922 RADReaderMacroso 97

9.23 ErrorDetection, 101

] 9.3 TopLevelCommands. 103
' 9.3.1 Creating and Modifying a Knowledge Base 103
9.3.2 Querying and Examining Knowledge Bases and Databases108

] 9.3.3 Customizing the Interface 112
9.3.4 Miscellaneous Commands 115

10 Installation 118

10.1 Environment« v« o v i it e e e e e e e e e 118

10.2 SOUTCES . « v v v v v v e e e e e e e e e e e e e 119

10.3 The MAKE Process ¢ v v v i i v it it et v e o 119

A Multiagent Tic-Tac-Toe 121

A.1 Knowledge Base for Referee 121

A.2 Knowledge Base for Player A 129

A.3 Knowledge Base for Player B 136

A4 PlayingaGameo e e 142

B Resolving Contradictions 144

B.1 SimpleExampleof CRM 144

B.2 Complex Exampleof CRM 147

B.2.1 Knowledge Base for Exampleof CRM 147

{ B.2.2 Protocolfor Useof CRM 148

Confidential and Proprietary il MCC Carnot Project

. |) 1 1 . _ w & s .

Chapter 1

Introduction to Distributed
Agents

Knowledge-based systems have become an important part of computing. Af-
ter more than a decade of successful exploitation, there are now over 100,000
fielded systems [Feigenbaum 1988]. Most of these systems are small, involv-
ing small knowledge bases, single reasoning strategies, and specific domains
of application. However, several trends have recently become apparent:

e Applications requiring an Al approach are increasingly large and di-
verse, yet existing expert-system tools work well only for small, spe-
cialized problems. Larger problems cannot be solved either because the
necessary systems are too complex to build and maintain or because no
single approach is adequate for all aspects of the problem. New tools
are required that allow modular development of knowledge bases.

e Information resources abound throughout our environment, but there
is no way for a single reasoning system to exploit the information avail-
able. Reasoning systems must be able to communicate and cooperate
with one another and access multiple sources of information to solve a
problem, just as human experts do.

e Once an expert system is developed with today’s shells, it becomes
an isolated island of knowledge. It cannot easily be reused in other,
similar problem domains. Because of this, the cost of engineering and
maintaining multiple expert systems is already becoming noticeably

1

high in the business community, where Al applications are increasingly
commonplace.

¢ Knowledge based systems share a set of common needs, both for repre-
senting knowledge and for reasoning with it. The cost of building a new
system in a new domain can be substantially reduced if it is written in
a high-level language (often called a shell) that satisfies these common
needs with built-in mechanisms.

These trends suggest the need for a new kind of system building tool, a tool
that supports the construction of distributed, communicating, knowledge-
based agents.

Distributed reasoning enables a set of knowledge-based systems, con-
structed quasi-independently, to act as a set of cooperating agents, working
together to solve a problem. Developers of distributed reasoning systems
can exploit a divide-and-conquer approach to development; they will be able
to build smaller, more manageable knowledge-based agents. Smaller agents
may represent alternative points of view on a problem. These smaller agents
can also be reused in different combinations for solving additional problems
as they arise. A further advantage of this approach is that it enables sys-
tems to be physically distributed in the world, just as the problems that they
address are.

In this report we describe a tool, called RAD, that makes it possible to
build distributed systems that solve large, complex reasoning problems. RAD
is an extension of earlier MCC-proprietary expert system software. It pro-
vides high-performance forward and backward reasoning using Warren Ab-
stract Machine (WAM) technology [Warren 1983}, a frame system integrated
into a typed unification algorithm [Ait-kaci, et al. 1985], a justification-based
truth maintenance system [Russinoff 1985], and a contradiction resolution
mechanism [Petrie 1987]. Recent extensions support OSI communications
through Rosette [Tomlinson et al. 1991], access to multiple databases, and a
substantially improved user interface.

RADis a product of an ongoing research effort within the Carnot Project,
whose goal is to provide tools for accessing and maintaining the consistency
of data in distributed heterogeneous environments. This report describes
how to install, construct, operate, and interact with multiple computational
agents. Later reports will detail important applications and uses of these

Confidential and Proprietary 2 MCC Carnot Project

agents for intelligent X.500 directory service, robust negotiation-based EDI,
intelligent information retrieval, administration of multiple heterogeneous
databases, and management of data consistency. We intend to exploit this
version of RAD in building representative applications, in cooperation with
our shareholders, and we intend to release a series of new RAD platforms
that incorporate the results of those efforts.

A word of warning is appropriate here. Although RAD is intended to be
a widely useful tool, the current release is only a research prototype: it is not
a production-quality tool. Its only users so far are members of our research
group. So if you decide to try to use it, please get in touch with us so that we
can help. We are knowledgeable in several application areas, and will gladly
give advice on the use of its novel features. We also value user input and
guidance into the ongoing research effort.

1.1 Major Features of RAD

The other chapters of this report describe in detail each of RAD’s compo-
nents. The rest of this section provides the context for those descriptions
by quickly surveying the major components of the system and pointing out
where the corresponding detailed descriptions can be found.

Knowledge Representation

Early artificial intelligence systems relied on first-order predicate logic as
a language for representing domain knowledge. While this scheme is com-
pletely general and semantically clear, it has been found to be inadequate for
organizing large knowledge bases and encoding complex objects. As an alter-
native, various frame-based languages have been employed. These languages
are designed to support the natural representation of structured objects and
taxonomies. They have proved to be well-suited for representing many useful
relations, although they lack the general expressive power of the predicate
calculus.

RAD combines the best features of these alternatives. It is frame-based,
but allows knowledge to be expressed in terms of arbitrary predicates. It
also represents relations as frames, so that a relation can have properties,
any of its arguments can be typed (which RAD will then enforce), it can

Confidential and Proprietary 3 MCC Carnot Project

have arbitrary arity, and it can inherit information from other frames. The
representation of relations in RAD is described in Chapter 5.

In Chapter 4, we introduce frames, along with classes, attributes, meta-
classes, and types. This chapter also describes simple data, including asser-
tions of arbitrary arity that are attached to frames. Here we discuss the use
of a justification-based truth maintenance system in connection with single-
valued relations and inheritance.

Inference Mechanisms

Knowledge-based systems may also be classified according to inference meth-
ods. Most deductive systems may be characterized as either goal-directed
(backward chaining) or data-directed (forward chaining). In a goal-directed
system, logical implications are encoded as rules that are used by the system
to reduce goals to simpler subgoals. This allows knowledge to be represented
implicitly, without using space in the knowledge base, until it becomes rele-
vant to a current problem. In this framework, however, it is difficult for the
knowledge base designer to build control into a system. Data-directed infer-
ence, on the other hand, is based on production rules, which the system uses
to derive all logical consequences of new data automatically. While control of
inference is more natural within this paradigm, it uses space less efficiently,
representing all knowledge explicitly.

RAD integrates both goal-directed and data-directed inference, allowing
a knowledge engineer the freedom to decide whether each logical implication
is more suitably represented as a backward rule or a forward rule. It also
allows many inferences to be made quickly and efficiently through inheritance
in the frame structure. Chapters 6 and 7 describe the RAD backward and
forward chaining inference systems, respectively, and their integration with
a truth maintenance system.

Truth Maintenance System

Another central feature of RAD is a nonmonotonic justification-based truth
maintenance system (JTMS), which is integrated with the inference system
at the architectural level. Based on [Doyle 1979], the RAD JTMS records
logical inferences and dependencies among data as they are derived by both
forward and backward chaining. This allows efficient revision of a set of

Confidential and Proprietary 4 MCC Carnot Project

beliefs to accommodate new information, the retraction of a premise, or the
discovery of a contradiction [Petrie 1989]. It also facilitates the generation of
coherent explanations, which can be used for explanation-based learning as
demonstrated by the MCC Argo project [Huhns and Acosta 1988]. We will
see in Chapter 2 how it also forms the basis for negotiation among cooperating
agents [Huhns and Bridgeland 1991]. Chapter 3 contains a discussion of data
dependencies and the RAD JTMS. Chapter 8 describes the contradiction
resolution mechanism.

Distributed Reasoning

The distributed reasoning facility allows reasoning to be distributed across
multiple symbolic reasoners that can thus collaborate in solving a problem.
To do this requires four things:

e A protocol for interagent communication,

e An “interpreter” to make the agents interpretable to each other in the
case that they were developed using different representational frame-
works,

e A common knowledge base of problem solving strategies that serves as
the basis of collaboration, and

o A generalization of key reasoning mechanisms that transforms them
from global methods suitable for use by a single agent into semilocal
methods that can be distributed across agents.

The current release of RAD provides a protocol for interagent commu-
nication as well as a generalization of the JTMS facility. It allows multiple
agents, each implemented in RAD, to communicate with each other. It sup-
ports a distributed truth maintenance system (DTMS) so that each agent
can rely on the results of another’s reasoning without having to keep track of
the details of that reasoning. This DTMS enforces local consistency within
each agent, while enabling negotiation about inconsistencies among agents.

Future versions will include communication protocols that will enable
agents constructed in other rule-based languages, such as CYC and OPSS5,
to interact with RAD agents. Future versions also will increase the effec-
tiveness and efficiency of the RAD agents by providing a common knowledge

Confidential and Proprietary 5 MCC Carnot Project

base of problem solving methods. This knowledge base will support models
for the beliefs, goals, and intentions of each agent. Agents will then have
an understanding of each other and the roles that they play in an overall
application. Their actions will then be flexible, but robust, and applicable
to dynamic real-time problems such as those that arise when acccessing and
managing integrated networks of information.

High-Performance Implementation

RAD represents a refinement of the Proteus language coupled with a high
performance implementation based on the Warren Abstract Prolog Machine
(WAM) [Warren 1983], which provides inference speed comparable to that of
the fastest commercial Prolog systems. Instructions are generated from RAD
rules by a WAM compiler and interpreted by a WAM emulator, both written
in Lisp. One advantage of this scheme is that it facilitates the extension of
the WAM instruction set to provide the functionality necessary for expert
system applications, allowing the integration of the WAM with other Lisp-
based RAD components [Bridgeland 1989]. Also, since the WAM instructions
are interpreted directly by RAD (in contrast to Prolog systems that compile
themn further into native machine code), RAD programs generate relatively
compact code, thereby allowing larger applications.

User Interface

Chapter 9 is devoted to facilities designed to aid the system builder. This
chapter discusses the user-interface processes, the RAD built-in relations and
commands, the syntax for communicating with agents, and the parser that
interprets this syntax.

The user interface in RAD is implemented as a pair of processes, one
to monitor a keyboard for input from a user and the other to communicate
with computational agents. Eventually, it will allow communication with
computational agents constructed in other expert system languages, such as

OPS5 and KEE.

Current Implementation of RAD

RAD is implemented in a combination of Common Lisp, Rosette, and C. The
main representation and symbolic reasoning mechanisms are implemented in

Confidential and Proprietary 6 MCC Carnot Project

Common Lisp. The user interface and the communication component of
the distributed reasoning system are implemented in C. Future releases may
contain a substantially larger proportion in C, because we are exploring the
possibility of implementing all of RAD in either C or C++4. The network
component of RAD is written in Rosette to take advantage of the OSI and
TCP/IP communication protocols it provides. A window interface is imple-
mented using X Windows.

A number of expert system applications developed by MCC share-
holders [Steele 1989, Kodak 1988, Kirchen 1989, Harp and Sederberg 1988,
Virdhagriswaran et al. 1987, Virdhagriswaran and Pitts 1987], based on
Proteus, have confirmed the viability of our approach and the utility of the
RAD functionality, particularly for the solution of design problems. The
Appendix describes several additional examples of RAD usage.

Confidential and Proprietary 7 MCC Carnot Project

...!.IL — — [— s — — e — »

Chapter 2

Distributed Reasoning

RAD supports two kinds of agents—human and computational—as well as
databases, as shown in Figure 2.1. It does this by making use of recent
technological advances in communication protocols and distributed artificial
intelligence (DAI). DAI is concerned with the cooperative solution of prob-
lems by a decentralized group of agents. It is the appropriate technology for
applications where '

e expertise is distributed, as in design;

e information is distributed, as in office automation and enterprise inte-
gration;

e data are distributed, as in distributed sensing;
e decisions are distributed, as in manufacturing control; and

e knowledge bases are developed independently but must be intercon-
nected or reused, as in next-generation knowledge engineering.

This chapter describes the primitives and features that RAD incorporates
to support distributed reasoning among both human and knowledge-based
agents. The agents are then able to cooperate in solving problems, to
share expertise, to work in parallel on common problems, to be developed
and implemented modularly, to be fault tolerant through redundancy, to
represent multiple viewpoints and the knowledge of multiple human ex-
perts, and to be reusable. Additional benefits are discussed in [Huhns 1987],
[Bond and Gasser 1988}, and [Gasser and Huhns 1989)].

8

DCA Framework

Figure 2.1: Architectural overview of the distributed communicating agent
environment

2.1 Model for Distributed Reasoning

The following is a typical scenario for the use of RAD: there is a loosely-
coupled network of experts, each being an expert in a particular field, and
there is a problem that these experts must solve that is beyond the capabili-
ties of any one of the experts. These experts can together solve the problem,
but they must cooperate to do so. Furthermore, some of these experts might
be knowledge-based systems, i.e., computational agents, some might be hu-
mans, and the remainder might be lower-level computational entities, such
as databases, software simulators, and neural nets. (In this chapter, we refer
generically to all of these as “agents.”) RAD provides specific assistance for
the development of computational agents, provides interfaces for humans to
interact with other agents, and provides the overall framework within which
all of these kinds of agents can operate and interact. Their interaction enables
their cooperation and, ultimately, the solution of their problem.

The RAD framework and its corresponding collection of agents execute
on a network of computer workstations. The agents operate within this
framework asynchronously and, in general, autonomously. RAD permits
the collection of agents to be dynamic, allowing agents to come and go. It
accomplishes this by supporting a rudimentary learning capability, whereby

Confidential and Proprietary 9 MCC Carnot Project

agents learn about each other when they receive messages. Rosette actors
serve as communication aides, one representing each agent or database, to
forward these messages (see Figure 2.2). They use a tree-space mechanism
implemented through OSI and TCP/IP protocols. The actors also buffer
messages when the agents they represent are busy. These actors exist as
entities in an Extensible Services Switch or ESS (described in Section 2.4.2).
Each ESS can be on a different host. Each ESS also contains a special actor,
called aideServer, that maintains a partial directory of agent and database

locations. The directory is updated when agents connect or disconnect from
an ESS.

Comny.
Comm| | Ajde

Agent Agent
B

Agent
C

Figure 2.2: Each agent or database has an aide—a Rosette actor—that man-
ages its communications

The design of the RAD framework is based on our observations of how
a user interacts with a single, conventional knowledge-based system. A user
can query and make assertions to the knowledge-based system, to which

Confidential and Proprietary 10 MCC Carnot Project

the system responds with either an answer or an acknowledgement, as ap-
propriate. As a side-effect of forward or backward inferencing, the system
can independently inform or make a request of a user, who must answer all
requests. Interactions can thus be either user-initiated or system-initiated.

Similarly, RAD agents communicate at a fundamental level by exchang-
ing messages, specifically, queries and assertions. The agents can be either
passive or active, i.e., they can either respond to questions and commands
from another agent or initiate dialogs with another agent.

A problem is then solved by RAD in the following way. At any given
time there will be a number of identically-structured' computational agents,
each having its own domain specific knowledge, and a number of users, each
assisted by an interface. A problem, or a goal to be satisfied, is given to one
of these agents by a user. This agent does one of the following two things:

1. Solves the problem or satisfies the goal itself, using local knowledge and
internal reasoning mechanisms.

2. Decomposes the problem or goal into subproblems, distributes each one
of these subproblems to an appropriate agent, and then integrates the
solutions returned by these agents.

In either case, the agent reports the final solution to the user. Note that each
of the other agents, upon receiving a subproblem, also does one of the above
two things.

The features required for this type of distributed problem-solving include
a communication channel among the agents, a communication protocol for
exchanging goals and solutions on this channel, and a distributed reason-
maintenance system that enables globally-coherent solutions to be achieved.
We have incorporated these features into the current version of RAD.

2.2 Architecture and Use

RAD extends this model to the multiple agent case by enabling system-
initiated interactions to be directed to another agent, as well as to a local
user. For this purpose, a destination field is added to each query or assertion.
A value for this field, i.e., the name of an agent who should receive the query

1At least for now.

Confidential and Proprietary 11 MCC Carnot Project

or assertion, can then be the subject of a reasoning process in the originating
agent. Since an assertion can now come from several sources, its justification
must- be modified to record a source. An agent must also record the agents
to whom it sent an assertion, so that it can inform them in case its belief in
that assertion ever changes.

Agents are implemented as a CLASS in RAD. This implies that all agents?
have to be instances of the class AGENT. Agents have the following basic
attributes:

Name: <Agent Identifier>
Reliable: <A boolean>
Unreliable: <A boolean>

Said: <List of assertions>
Was-told: <List of assertions>

They store values of these attributes for themselves and each other. These
attributes refer to a history of interactions with an agent and its trustwor-
thiness. The agents exist in a fully distributed environment. Each agent can
make queries of other agents and also serve as a knowledge base for other
agents. That is, each agent works in a Client-Server mode. It is a Client
when it requests other agents to solve a problem or satisfy a goal. It is a
Server when it satisfies goals for other agents. An agent can be in one of the
following three states:

o Busy

e Query
o Free

An Agent is in a BUSY state if it is performing internal inferencing oper-
ations. In this state, all requests and messages from other agents are buffered
on its standard port. These requests are processed in order of arrival once
the agent returns to the FREE state.

When an agent queries another agent, it can either go into a QUERY
state until it receives a result or dispatch the request and carry on with
other chores. The first choice refers to a serial way of solving problems and

2 Agents must have compatible class structures.

Confidential and Proprietary 12 MCC Carnot Project

the second one refers to a parallel way of solving problems. In the current
implementation, the agents operate serially. When an agent is waiting for a
reply to a query, it will not permit other agents either to perform destructive
operations on it or to make queries of it, as this may lead to a potential
deadlock. Its communication aide buffers all messages until one with an
awaited tag arrives.

Agents can also tell facts to other agents. This occurs asynchronously, and
the receiving agent does not acknowledge the fact. This feature can be used
to simulate parallel problem-solving that was mentioned above. To do so, the
agents’ knowledge must be expressed as forward rules, which automatically
trigger on the assertion of facts in an agent. We have developed a declarative
implementation of the Contract Net protocol [Smith and Davis 1981] based
on this principle.

A user can also utilize the windowing system to view and edit the knowl-
edge base of a remote agent from the user’s terminal. The interface is de-
scribed in detail in Chapter 9.

The following are the salient issues in distributed reasoning:

¢ Remote queries
¢ Remote assertions

¢ Remote justifications (to enable the implementation of a distributed
JTMS [Mason and Johnson 1989])

o Negotiation

2.2.1 Interagent Queries

An agent or user can make queries of other agents. This is one of the most
basic operations in RAD. When an agent sends a query to a second agent,
the second agent uses its reasoning mechanisms to find an answer. If it suc-
ceeds, then it returns its answer to the first agent, who records the answer,
along with a justification that the source of the answer was the second agent.
Meanwhile, the second agent remembers its answer, along with a justifica-
tion that corresponds to the reasoning process it used and a note that it
communicated this result to the first agent. The queries can be either simple

Confidential and Proprietary 13 MCC Carnot Project

queries, i.e., queries at the user-interface level, or proof attempts of a literal
of a rule at a remote agent.

More specifically, the goal to be proved is sent to the remote agent (the
server) along with a Client Id. This registers a request at the Server’s aide.
Eventually, this request is forwarded to the Server, which then attempts to
prove the given goal. If a successful proof is obtained, a datum corresponding
to the proved literal is created. This datum has the justifications for the
proof of the goal. This datum also is associated with a remote justification,
which has a field to store the Client Id. Note that this datum participates
as any other datum in the local JTMS. The operations described above are
performed for each successful proof of the given goal. Finally all the proved
literals are returned as a list to the client. Now if the server ever changes
its beliefs about some literals or rules that result in a change in status of a
datum, it checks to see if that datum has an associated remote justification.
If it does, the server sends an update message to all the listed clients.

The above mechanism requires the server to remember every proof it
performs for its clients and to remember their names. Sometimes, this is
unnecessary and wasteful of storage and computation. Therefore, we have
also provided the option of having a goal proven by a remote agent, where
the remote agent does not remember the result. The former option is called
prove and the latter option query.

When an interagent query with caching of results by the server occurs in
a forward or backward rule, its syntax must be

prove(<Agent name> <goal>)
or
prove-once(<Agent name> <goal>)

When an interagent query with no caching of results by the server occurs in
a forward or backward rule, its syntax is

query(<Agent name> <goal>)
or
query-once(<Agent name> <goal>)

An example of a command from a user to Agentl to query\(c Agent2
and Agent1’s subsequent reply is (note that the syntax is different from the
interface than from within a rule)

Confidential and Proprietary 14 MCC Carnot Project

User: query Agent2 color(?x ?y)
Agentl: color(My-Ford Red)
color (My-VW Blue)

The messages that are exchanged by the communication aides encode the
sender, the intended recipient, and a tag that uniquely identifies the message.

The Client now creates a datum of the type Client-Datum for each proof
received from the server. This is an “image” of the server datum. Information
about the server is stored in this datum. This datum is given a remote
justification, which is a special kind of justification. Finally, this datum
is stored in a local associative table at the client with the tag being the
associative key. Note that this datum participates in the client’s JTMS.
Hence, the query could be a part of a rule. This datum is special, in that its
status (IN/OUT) depends not only on local justifications, but also on proofs
from remote agents. This is the justification for the above bindings. Finally,
this datum is assigned the status IN.

2.2.2 Remote Assertions

In RAD, we have provided agents with the capability to “tell” facts to other
agents. This kind of interagent assertion, or remote assertion, is analogous
to an assertion that a user might have made. Remote assertions are made
using the Tell command, whose syntax is given below. Such a fact, when
asserted on a remote agent, is justified by a remote justification. This remote
justification has the pointer to the agent that made that particular assertion.
Since any number of users or computational agents can communicate with
an agent, assertions are justified by the source of the assertion, which may
be a user or an agent.
The syntax for a remote assert is

tell(<hostname> <assertion>)

2.2.3 Remote Justifications and Distributed TMS

Remote data and justifications are created as described in the previous sec-
tion. When the remote agent changes its belief about a datum, i.e., changes
its belief status, and this datum happens to be of type Server-Datum, then

Confidential and Proprietary 15 MCC Carnot Project

the corresponding Client, which is responsible for the creation of this datum,
is notified. At the receipt of this message at the client, the “image” datum
at the client is accessed. It is this datum that needs to be acted upon. If the
transition is from an OUT to an IN, a new remote justification is created at
the Client and is pushed onto the justifications of the client datum and the
status of the datum is made IN. If the transition is from an IN to an QUT,
the client datum is made OUT by an erase operation. Again, the justifica-
tion for the subsequent ERASE datum is a newly created remote justification.
The information about the agents causing the above changes is stored in the
‘remote justifications. The Client also has an option of ignoring the messages
from its servers, when the remote data it depends on change their status.
This is set by a flag.

Note that the above remote justifications are necessary only for proofs
whose justifications are needed. This may exclude simple user-level queries,
whose proof tree {or justification information) is transient. An example
where the justification is needed is remote proof attempts on one or more
antecedents of a forward rule. These remote justifications will have to be en-
tered in the justification of any assertion of the consequents of this forward
rule.

2.2.4 Negotiation

There is no requirement for two agents to agree completely. That is, each
agent maintains a locally consistent set of beliefs using its own justification-
based truth-maintenance system, but global consistency among the agents
is not required. However, when two or more agents disagree about belief in
a datum and when this disagreement is encountered during problem solving,
then negotiation among the agents will ensue to resolve the disagreement.
The negotiation is necessary to ensure that the global solutions to the prob-
lems posed to the agents are coherent.

The negotiation procedure involves an exchange of justifications among
the agents. For example, if there is a disagreement about belief in datum
D,, then the agents exchange the justifications for their belief or disbelief in
D,. The agents then compare these justifications. If there is a disagreement
about belief in any datum in the justifications, then the justifications for this
disputed datum are exchanged, and the process recurses. It is expected, but
not yet proven, that resolution of all disagreements among two agents in a

Confidential and Proprietary 16 MCC Carnot Project

consistent world will be achieved by one agent informing another of some
explicit knowledge that the other is missing. The negotiation process is an
active area of research at MCC and will be described further in a forthcoming
technical report.

2.3 Distributed Reasoning Example

Figures 2.3-2.5 show an example of the use and operation of our multiagent
truth maintenance algorithm as two agents interact. Figure 2.3 shows the
initial state of the knowledge bases for the two agents, Client, an investor,
and Broker, a stockbroker. First, Client asks Broker to recommend a stock.
Client knows what it can afford, but it does not have any knowledge about
what stocks it would be wise to buy. It does know, however, that Broker
knows about this problem. Broker does have some general knowledge about
what stocks to recommend and about what stocks it can afford.

When Broker receives Client’s query, it attempts to find an answer by
applying its rules. It succeeds and binds tt ?X to XCorp. It also creates a
server datum for this conclusion, containing the conclusion, the justification
for the conclusion (rules 1 and 2), and a pointer to the agent to whom this
conclusion was reported (Client). Broker recommends XCorp, which causes
Client to believe that he should buy that stock, as shown in Figure 2.4. How-
ever, Broker then learns (not shown) that the basis for his recommendation,
that XCorp is cash-rich, is no longer valid. He revises his beliefs and noti-
fies Client that he has retracted his recommendation for XCorp. The final
knowledge bases for the agents are shown in Figure 2.5.

It is interesting to note that these agents maintain different beliefs about
whether or not they can afford to buy the stock of XCorp. Allowing this
difference in belief—this global inconsistency—is useful in this case. It al-
lows different viewpoints to be represented, it simplifies the representation
of knowledge, in that the predicate afford really should have an additional
argument indicating which agent can or cannot afford the stock, and it elim-
inates the interactions that would be needed to resolve the difference. Of
course, the system would detect, and subsequently correct, the difference
if the agents ever share or discuss this predicate. Details of the justifica-

tions that are constructed when two agents exchange beliefs are shown in
Figure 2.6.

Confidential and Proprietary 17 MCC Carnot Project

Client

£3: afford(XCorp Yes)

r3: Infer buy(?X) from
query(Agent2 recommend(?X)) and
afford(?X Yes)

? recommend (?X)

Broker

f1: afford(XCorp No)
£2: cash-rich(XCorp)

ri: Infer recommend(?X) from takeover-bid(?X)
r2: Infer takeover-bid(?X) from cash-rich(?X)

Figure 2.3: Initial knowledge bases of two interacting multiagent-JTMS-
based agents, before Client queries Broker for a recommendation

Confidential and Proprietary 18 MCC Carnot Project

Client

£3: afford(XCorp Yes)
r3: Infer buy(?X) from
query(Agent2 recommend(?X)) and
afford(?X Yes)
f4: recommend(XCorp)
Status - EXTERNAL
Shared with - Agent?2
Justification - ()
£f5: buy(XCorp)
Status - IN
Justification - (£3 f4 r3)

Y

recommend (XCorp)

Broker

fi: afford(XCorp No)
£2: cash-rich(XCorp)
ri: Infer recommend(?X) from takeover-bid(?X)
r2: Infer takeover-bid(?X) from cash-rich(?X)
£3: recommend(XCorp)

Status - INTERNAL
Shared with - Agentl

Justification - (f1 r1 r2)

Figure 2.4: Knowledge bases of the agents after Broker has replied to Client’s
query

Confidential and Proprietary 19 MCC Carnot Project

Chent

£3: afford(XCorp Yes)
r3: Infer buy(?X) from
query(Agent2 recommend(?X)) and
afford(?X Yes)
f4: recommend(XCorp)
Status - OUT
Shared with - Agent2
Justification - ()
£5: buy(XCorp)
Status - OUT
Justification - (£3 f4 r3)

3

Relabel recommend(XCorp)

Broker

f1: afford(XCorp No)

£2: cash-rich(XCorp) — OUT

ri: Infer recommend(?X) from takeover-bid(7?X)
r2: Infer takeover-bid(?X) from cash-rich(7?X)
£3: recommend(XCorp)

Status - OUT
Shared with - Agentl

Justification - (f1 rl1 r2)

Figure 2.5: Final knowledge bases of the agents after Broker has notified
Client that a fact must be relabeled

Confidential and Proprietary 20 MCC Carnot Project

? valid(?X)
A B
valid(db?)

reliable(A) reliable(B)

I valid(db?) I

revise-belief(A valid(db?7))

+
said(B valid(db7)) reliable(B)
- +
I valid(db7) told(A valid(db7))
unreliable(B) I

Figure 2.6: Justification networks that are constructed by two agents that
exchange beliefs (see Chapter 3 for notation)

Confidential and Proprietary 21 MCC Carnot Project

2.4 Implementation Issues

2.4.1 Protocol for Message Passing

The communication aides utilize the Rosette tree-space mechanism to pass
messages. This is shown in Figure 2.7. The agents establish TCP/IP con-
nections from the machine on which they are executing to a machine running
an Extensible Services Switch or ESS (please see Section 2.4.2 for details).
Establishment of a connection causes the creation of a communication aide
and a tree-space interface for each agent.

Teespace
Interface

Treespace
Interface

Transmi ¢
Message Message
Agent Bufferg Bufferg S Agent

A Aide Aide B

Statement, Forward
Demand,
Handshake, etc.

Figure 2.7: Each communication aide has an associated tree-space interface
that passes messages for agents or databases

Orice a connection is established, agents and databases can exchange six
basic types of messages: demands, responses, database queries, statements,
errors, and handshakes. Each of these message types encodes information
about the sender, the communication aide, the recipient, the identifying tag,
and the contents. The message types and their specific behavior are described
next.

Demand: a message for which the sender expects a response to be returned.
Queries between agents are Demands, but so are assertions and com-

Confidential and Proprietary 22 MCC Carnot Project

mands from a user, since they require an acknowledgement. The se-
mantics of a demand is that the agent will not assume that the remote
agent has performed the operation until a response has been received.
A demand message has the following syntax:

(outDemand <my-aide> <destination> <new-tag> <message>)

The local communication aide forwards this message through the tree
space to its destination and then waits for a response with a tag that
matches <new-tag>. While it is waiting, it buffers all other messages
for its agent. This means that agents will remain idle until they receive
a response to their demand. Interfaces, however, can continue to send
out other messages.

Database Demand: a message to be sent to a database. The message
contents are an SQL statement to be processed by the database. It has
the following syntax:

(Eval (db-query DBAgent <SQL-statement>[])[<destination>])

Since databases are passive entities, it convenient to let the response of
a database demand arrive as a result of computing the given db-query
on the destination.

Response: a message in response to a Demand message. It uses the tag from
the demand to which it is responding. It has the following syntax:

(outResponse <my-aide> <destination> <old-tag> <message>)

Statement: a message from one agent to another, where a reply is not
expected. This is an asynchronous input to an agent. An example of
a Statement is a print message to the interface. A statement has the
following syntax:

(outStatement <my-aide> <destination> <new-tag> <message>)

Error: a message issued as a response to a Demand message, when the
Demand message caused an error in the agent. It has the following
syntax:

Confidential and Proprietary 23 MCC Carnot Project

(outError <my-aide> <destination> <old-tag> <message>)

Handshake: a message that an agent sends to its communication aide, in-
forming it that the agent is FREE and is ready for the next message.
It has the following syntax:

(handshake <my-aide>)

In order for the agents and interfaces to be robust in the presence of un-
expected messages, expecially when they are waiting for a response to one
of their demands, we have implemented message handling by the communi-
cation aides according to the state diagram shown in Figure 2.8. The state
machine specifies the operational semantics of messages that are sent and
received by agents and interfaces.

2.4.2 Extensible Services Switch (ESS)

Each agent must be connected to an ESS. The ESS then provides communica-
tion facilities and a simple directory mechanism for maintaining the locations
of agents, databases, and other ESS’s.

Whenever an agent is started, it registers itself with an ESS. The syntax
for registration 1s

(makeAide aideServer <Aide Name> <Agent Name>)

Whenever an agent halts or ceases to exist, it unregisters from the ESS by
sending the message

(killAide aideServer <Agent Name>)

At any time, an agent can unregister from one ESS and then register with
another. The other messages supported by the ESS for the purpose of agent
interactions are

e db-connect, for connecting a database to an ESS,
o db-disconnect, for disconnecting a database from an ESS,

o essOf, for determining whether a given agent is registered and finding

its ESS, and

Confidential and Proprietary 24 MCC Carnot Project

Init S/F@®),P

F@)/T(t)
— Buffer
i H,Q=0/P NoWait
S(t)/F(H.Q/=0"Or—4

F(rt)/T(xt) D()/F(t)

Key

Statement S
I tM) Demand D F(wt)/Q(wt)
nput Messages Handshake H

Forward F

. Transmit T
Output Actiony Enqueue Q
Pop queue P

. Current tag ct
Modifiers Righttag rt

Wrong tag wt

Figure 2.8: A state machine for the operational semantics of messages sent
and received by computational agents and interfaces

Confidential and Proprietary 25 MCC Carnot Project

e who, for producing a list of all agents and databases, and their ESS’s
known to an ESS.

The remainder of this document primarily describes the behavior, func-
tionality, and structure of a single agent.

Confidential and Proprietary 26 MCC Carnot Project

Gl & O el e B8 OO B | O B3 e e O

Chapter 3

Truth Maintenance

Each datum (or element of a RAD knowledge base) represents a potential
belief. The status of this belief, which is subject to change, is reflected in
the support-status of the datum, the value of which may be IN, indicating
that it is currently believed, or OUT, indicating current disbelief. This value
is assigned by a justification-based truth-maintenance system (JTMS) in ac-
cordance with a list of justifications that have been attached to the datum.

Each justification consists of a pair of lists of data, the IN-list and the OUT-
list of the justification. A justification is said to be valid and is considered
to represent reason for belief in its associated datum if each element of its
IN-list is IN and each element of its OUT-list is OUT. The justified datum is
said to depend monotonically on each member of the justification’s IN-list
and nonmonotonically on each member of the OUT-list.

Also associated with each datum is a list of other data called its sup-
porters. The supporters of a datum are considered to be responsible for its
current support-status.

It is the function of the JTMS to assign support-statuses and supporters
to data in a manner that is consistent with their justifications, and to adjust
these assignments continually as required by the addition of new justifications
and the retraction of old ones. More precisely, the state of the knowledge
base, as constructed by the JTMS, must satisfy two requirements: stabil-
ity and well-foundedness. A stable state is one that satisfies the following
conditions:

1. A datum is IN if it has at least one valid justification. In this case
its list of supporters is the result of appending the IN-list and OUT-list

27

appendicitis
(IN)

side no prior colitis recent
pain appendectomy (OUT) meal

5

(IN) (IN) (OUT)

p! +
patient says patient i’fil;aé
no prior unreliable (OUT)
appendectomy (OUT)
(IN)

)

Figure 3.1: A stable well-founded state

of one of its valid justifications. This justification is identified as the
supporting justification.

2. A datum is OUT if it has no valid justification. Its supporters then
include one representative of each of its invalid justifications: either an
OUT member of the IN-list or an IN member of the OUT-list.

The requirement of well-foundedness is that no set of beliefs be mutually
dependent, i.e., there may be no sequence of data dy, . .., dn, all of which are
IN, such that do = d, and for i = 1,...,n, di_; is a supporter of d;.

An example of an admissible state is shown in Figure 3.1. In this graph
and those that follow, each circle corresponds to a justification, with an arrow
pointing to the justified datum, positive arcs connected to the elements of
the IN-list, and negative arcs to elements of the OUT-list. Thus, the datum
representing a diagnosis of appendicitis has a valid justification with a two-
element IN-list and a two-element OUT-list. The belief that the patient has a

Confidential and Proprietary 28 MCC Carnot Project

m—— e

Fly to Dallas Drive to Dallas
+ +

Arrive early Have a car

Figure 3.2: Alternative assumptions

side pain is supported by a justification with an empty IN-list and an empty
OUT-list and is said to be a premise. The datum representing the unreliability
of the patient has an empty list of justifications and is therefore OUT. If this
datum were to acquire a new valid justification, then its support-status as
well as those of the data that depend on it (directly or indirectly) must
be reevaluated, ultimately forcing the diagnosis OUT. This phenomenon, the
development of a new belief resulting in the abandonment of an old one,
characterizes nonmonotonic reasoning.

In the presence of nonmonotonic dependencies, the status-assignment
problem may not have a unique solution. In the situation shown in Fig-
ure 3.2, the JTMS may succeed either by making Fly-to-Dallas (and hence
Arrive-early) IN and Drive-to-Dallas (hence Have-a-car) OUT, or by giving
the opposite assignments. This choice between alternative hypothetical as-
sumptions can only be made arbitrarily, and may have to be revised later as
new justifications are produced (e.g., if Drive-to-Dallas acquires a new valid
justification while Fly-to-Dallas is IN).

Circularities involving nonmonotonic dependencies may also impose un-
satisfiable constraints on the JTMS, a situation that may be difficult to
detect. Two simple examples of this are shown in Figures 3.3 and 3.4. Note
that the network of Figure 3.4 does have a stable state (in which all data are
IN), but this state is ill-founded, and therefore inadmissible.

Figure 3.5 illustrates a situation in which a datum Q is given a new
justification and, in order to restore stability, the JTMS must examine not
only Q and the data that depend on Q, but also those on which Q depends.
In this example, if only the support-statuses of P and Q were reassigned,
the system would be forced to report an unsatisfiable circularity. In order

Confidential and Proprietary 29 MCC Carnot Project

Figure 3.4: No well-founded stable state

P (IN)

>:>‘ (IN) S (OUT)

Q (OUT)

Figure 3.5: A solvable odd loop

Confidential and Proprietary 30 MCC Carnot Project

to succeed, it must also consider R (on which Q now depends) and thus S
(which depends on R). The only solution is to put S IN and P, Q, and R OUT.

As described in [Russinoff 1985], the RAD JTMS is complete in the sense
that given any database with any set of justifications, it will achieve a sta-
ble well-founded state if such a state exists, and otherwise will recognize
and report failure. This represents an improvement over the original TMS
[Doyle 1979], as well as other published procedures for truth maintenance
[Charniak et al. 1980, Goodwin 1984]. These systems all fail (perhaps even
fail to terminate) in the presence of certain circular dependencies that have
been characterized as odd loops. An odd loop is a cycle of arcs with an odd
number of minus signs, as in Figures 3.3, 3.4, and 3.5. A dependency net-
work containing such a loop may or may not be satisfiable. (We have already
observed that the network in Figure 3.5 does admit a solution.) While the
presence of odd loops complicates the truth maintenance task and is gen-
erally considered undesirable, they are sometimes unavoidable in practice,
particularly in dependency networks that are based on input from several
users.

In the following chapters, we shall see how data dependency networks are
created in RAD by the user, by the frame system, and by both forward and
backward inference.

Confidential and Proprietary 31 MCC Carnot Project

-

D O O mm O OO OO . .3

Chapter 4

Frames and Assertions

The data on which the JTMS operates represent statements about objects.
Before discussing the structure of these data, we shall describe the objects
that they concern. These objects, called frames, are the subject of this
chapter.

4.1 Classes, Subclasses, and Instances

In the initial state of the system, there exist several frames. One of these,
named CLASS, plays a special role as discussed below. The others are
AGENT, DATABASE, RELATION, LIST, CONS, NULL, SYM-
BOL, NUMBER, FIXNUM, FLOAT, BIT-VECTOR, VECTOR, and
STRING. By means of the commands described in Chapter 9, the user may
enlarge this set by creating new frames.

There are two primitive relations defined on frames: Instance and Sub-
class. If a pair (z,y) is an element of the instance relation, we say that z is
an instance of y, or that y is the type of z. For a pair (z,y) in the subclass
relation, we say that z is a subclass of y or that y is a superclass of z. Figure
4.1 depicts these relations as they are defined in the initial state. Broken lines
are drawn from instances to types; solid lines are drawn from subclasses to
superclasses. Note that CLASS is the type of every system-defined frame.

Two other important relations are defined in terms of these primitives:
Subclass* and Instance*. The relation Subclass* is defined as the reflexive
transitive closure of the relation Subclass. Thus, z is a subclass* of y (equiv-

32

IR0 I N\ g aa
VECTOR 7 /. &\\\ STRING
BIT_VECTOR /1 N RELATION
/, E' '."'._ \ \\\\\
/ / // E: "'..'.. \ \ NS <
NUMBER/ / | % SYMBOL LIST
: s .
/ : K
SN

FIXNUM FLOAT AGENT DATABASE NULL CONS

Figure 4.1: Built-in classes. Solid lines denote subclass relationships and

dashed lines denote instance relationships.

alently, y is a superclass* of z) if either z is identical to y, or z is a subclass
of a subclass* of y. The relation Instance* is defined as follows: z is an
instance* of y iff = is an instance of a subclass* of y. In this case we may
also say that z is @ y. In particular, a class is by definition a frame that
is an instance* of CLASS. Note that every system-defined frame is a class,

including CLASS itself.

As new frames are created by the user, he may also extend these relations
by assigning types to instances and creating subclass relationships (between
user-defined classes only). This must be done in such a way, however, that
at each stage of the development, the following properties are preserved:

1. The instance relation is a function, i.e., for each frame z there exists a
unique frame y such that z is an Instance of y.

2. CLASS is the only frame that is an Instance of itself. Thus, whenever
a new frame is created, some preexisting frame must be specified as its

type.

Confidential and Proprietary 33 MCC Carnot Project

3. The relation Subclass* is a partial order. That is, if = is a Subclass* of
y and y is a Subclass* of z, then z and y are identical.

4. If z is an Instance of y, then y must be an Instance* of CLASS.

5. If z is a Subclass of y, then z and y must each be an Instance* of
CLASS.

Thus, according to the last two of these properties, only a class may havea
subclass, superclass, subclass*, superclass*, instance, or instance*. There is a
further restriction on the classes that may be instantiated by the user: a user-
defined frame may be an instance of CLASS, RELATION, or of any user-
defined class, but it may not be an instance of LIST, CONS, NULL, SYM-
BOL, NUMBER, FIXNUM, BIT-VECTOR, VECTOR, STRING,
or FLOAT. Instead, whenever the system encounters a Common Lisp ob-
ject whose datatype is the name of one of these system-defined classes, the
object automatically becomes an instance of the named class. For example,
if the number 3 is read, it becomes an instance of FIXNUM and thus a
member of NUMBER (in other words, a number). When the symbol NIL
is encountered, it is recognized as the unique instance of the class NULL,
and hence both a list and a symbol.

An example of a user-defined system of frames is illustrated in Figure
4.2. This example involves eight new classes, all of which are subclasses of
the class PERSON and instances of the class CLASS. For clarity, classes
are denoted in bold-face and other user-defined frames in typewriter font.
HILARY, for example, as an instance of TA, is not a class, but is a TA, a
graduate, a staff, a student, an employee, and a person.

4.2 Metaclasses

Of course, the existence of classes as frames provides the advantage of being
able to reason about classes at the same level at which one reasons about
the objects of which they are comprised. It is often desirable to be able to
reason about classes of classes as well. The only class we have seen so far that
has classes as instances is CLASS itself. Any class that has a class as an
instance must be a subclass of CLASS, in which case all of its members are

Confidential and Proprietary 34 MCC Carnot Project

’ y
STUDENT

4
/

bl DAY
-

\
\

UNDERGRADUATE
TA
: CHRISTINE

DAVID :
GRADER
NAT HILARY

Figure 4.2: User-defined classes

35 MCC Carnot Project

Confidential and Proprietary

rd
rd

-
-

KINGDOM

~

<,
LANIMALIA
v - d g
CHOIIIDATA et
HOMO-SAE’IENS AMOEBA PARAMECIUM
N\
MARY MIKE

Figure 4.3: User-defined metaclasses

classes. Such a class is called a metaclass. While CLASS is the only system-
defined metaclass (and the only one in the example of Figure 4.2), additional
‘metaclasses may be created simply by asserting a subclass relationship from
any user-defined classes to CLASS.

The example of Figure 4.3 includes several user-defined metaclasses (de-
noted in large bold print). This example is based on six classes of ani-
mals: ANIMALIA (the class of all animals) and five of its subclasses,
which are related as indicated by the solid arrows connecting them. These
classes could be constructed simply as instances of CLASS. But in or-
der to represent and utilize the knowledge that these classes share more

Confidential and Proprietary 36 MCC Carnot Project

than mere classhood, we first define a metaclass called BIOLOGICAL-
CLASS, intended to include the animal classes among its instances. In
fact, the animal classes are partitioned into smaller metaclasses by defin-
ing them as instances of KINGDOM, PHYLUM, and SPECIES, which
are subclasses of BIOLOGICAL-CLASS. Note that KINGDOM, PHY-
LUM, and SPECIES are themselves not simply instances of CLASS, but
are classes by virtue of being instances of the metaclass TAXONOMIC-
DIVISION. Moreover, they are metaclasses by virtue of their links to the
metaclass BIOLOGICAL-CLASS.

4.3 Variables and Types

Along with the objects that appear in RAD data, there are also occurrences of
variables. These are denoted as symbols with initial character “?”. Variables,
as usual, represent unspecified objects. The process of unification, which is
central to the mechanisms of forward and backward chaining, is built on the
basic operation of binding (i.e., assigning values to) variables. An unbound
variable 7X may be bound either to an object or to another unbound variable
Y. In the latter case, if 7Y is subsequently bound, its binding also becomes
the binding of 7X.

Since objects in this system are classified by their types, it is natural and
useful to classify variables as being of a certain type [Ait-kaci, et al. 1985].
This is done by appending the name of a class to the variable name, using
“" ag a separator, as in ?X:STUDENT. The consequence of assigning a type
to a variable is that any binding of the variable is required to be an instance
of the variable’s type.

In the presence of typed variables, the standard unification algorithm
must be altered in several ways. First, before a variable is bound to an
object, it must be verified that the object is an instance of the variable’s
type. Second, before a variable is bound to another variable, it must be
verified that the types of the two variables are compatible, so that it will be
possible later to bind them to the same object. Thus, the two types must
have a nontrivial common subtype. Finally, when a variable 7X is bound to
a variable 7Y, the type of ?Y must be replaced in order to ensure that any
later binding of ?Y is consistent with the type of ?X. The new type of ?Y
should be the most general common subtype, or greatest lower bound, of the

Confidential and Proprietary 37 MCC Carnot Project

type of ?X and the old type of ?Y. For example (see Figure 4.2), a variable
X : UNDERGRADUATE could be bound to a variable ?Y:STAFF, with type of 7Y
replaced by GRADER. 7Y could then be bound to NAT, but no longer to
HILARY, which would violate the type restriction on ?X.

Thus, the modified unification algorithm depends on the computability
of the greatest lower bound (g.l.b.) of two variable types. Unfortunately,
the partially ordered set of classes does not form a lattice, i.e., the g.1.b. of
two classes may not exist. The classes STUDENT and EMPLOYEE of
Figure 4.2, for example, have two common subclasses, GRADER and TA.
Since neither of these is a superclass of the other, neither can be said to be
the g.1.b. of STUDENT and EMPLOYEE.

This problem is solved by generalizing the notion of type. A type is now
defined to be a set of classes, none of which is a subclass of another. A type
t, is a subtype of a type t; if each of the classes of t; is a subclass of at
least one of the classes of t,. An object is said to belong to a type if it is an
instance of at least one of its classes. It follows that an object belongs to a
type if it belongs to any of its subtypes.

Under this ordering, the set of all types forms a lattice. The type of a
variable may be any instance of this lattice. The identification of each class
¢ with the type {c} induces an embedding of the partially ordered set of
classes into the lattice of types. In this context, the g.l.b. of two classes may
always be computed. Thus, the g.1.b. of STUDENT and EMPLOYEE is
the type {GRADER,TA}.

The empty set of classes, denoted BOTTOM, is a subtype of every type.
This type contains no objects and is not allowed as the type of a variable.
If the g.l.b. of the types of two variables (e.g., ?X:STAFF and ?Y:FACULTY)
is BOTTOM, then these variables cannot be unified; their types contain no
common objects.

The set of all maximal classes is also a type, denoted T. It is a supertype
of every type, and every object belongs to it. If no type is specified for a
variable, then the variable’s type is taken to be T as a default. There is no
restriction on the binding of such a variable.

The cost of the expressive power of typed variables is the resulting com-
plication of the unification algorithm. In order to minimize this cost, the
g.1.b. operation must be a fast computation. This is accomplished by means
of an encoding scheme that associates with each class ¢ a bit-string B(c), in
such a way that ¢, is a subclass of c; if and only if B(c;) is (bit-wise) less

Confidential and Proprietary 38 MCC Carnot Project

than or equal to B(c;). For a typet = {c1,...,¢c}, B(t) is constructed as
the logical-or of the B(c;). The g.l.b. operation then reduces to logical-and.
The details of this scheme are described in [Ait-kaci, et al. 1985).

4.4 Assertions

There are two main classifications of data: rules and assertions. Rules, which
are used by the system to derive assertions from other assertions, are classified
as forward rules and backward rules. These are the subjects of Chapters 6
and 7. Assertions, as described in this section, represent simple statements.
Specifically, an assertion is a proposition that resides in the knowledge base,
where a proposition is a list whose members are a relation symbol followed
by arguments.

An assertion is further classified as general or particular according to
whether or not it contains any variables. The variables in a general assertion
are understood to be universally quantified. Thus, the assertion

User: owes(?U:undergraduate ?F:faculty 15)

represents the statement “Each undergraduate owes each faculty member 15
dollars.”

4.4.1 Instance Slot Values

A frame may assume values for a given relation if the frame is an instance of
the class for which the relation is defined (see Chapter 5). In this case, an
instance slot corresponding to the relation is attached to the frame. One or
more values may be stored in this instance slot. Thus, if a relation Descrip-
tion has argument-types PERSON and HUMAN-ATTRIBUTE, then
the frame NAT may acquire Description values. An assertion such as

User: description(nat tall)
Zeus: Instance Slot Value DESCRIPTION-1 accepted.

results in the creation of a datum called an Instance Slot Value, which is
stored in NAT’s Description slot. This datum is justified as a premise (i.e.,
with empty IN-list and OUT-list). Thus, an instance slot value is just an
assertion pertaining to a relation for an instance of a class.

Confidential and Proprietary 39 MCC Carnot Project

When a relation is initially defined, it is either specified as Single-valued or
is multiple-valued by default. A frame may assume any number of coexisting
values for a multiple-valued relation. If Description, for example, is multiple-
valued, then asserting a new Description for NAT via

User: description(nat thin)

has no effect on the old value. Thus, a query for NAT’s Description produces
both values:

User: 7?7 description(nat 7X)
Zeus: DESCRIPTION(NAT TALL)
DESCRIPTION(NAT THIN)

For a single-valued relation, on the other hand, a frame may have only
one effective value at any time. Suppose the relation Nationality is defined
for class PERSON and declared to be single-valued, and that a Nationality
is asserted for NAT:

User: nationality(Nat French)
Zeus: Instance Slot Value NATIONALITY-1 accepted.

If another value is later asserted for the Nationality of NAT, then the old value
is overridden by the new one:

User: nationality(Nat Swiss)
Zeus: Instance Slot Value NATIONALITY-2 accepted.

User: 77 nationality(Nat 7X)
Zeus: NATIONALITY(NAT SWISS)

Actually, this restriction to a single value is enforced by the JTMS: whenever
a value is asserted for a single-valued relation, it is added to the OUT-list of
each justification of any preexisting conflicting value. Thus, the old value
remains in the database, but is ignored in answering the query because it is
now OUT. This method not only provides for the construction of explanations,
such as

User: why NATIONALITY-1
Zeus: Instance Slot Value NATIONALITY-1

Confidential and Proprietary 40 MCC Carnot Project

JUSTIFICATION:
in-list NIL
out-list (NATIONALITY-2)

is invalidated by

Instance Slot Value NATIONALITY-2
but also allows an old value to be reinstated if the overriding value is removed:

User: erase nationality-2
Zeus: OK.

User: 7?7 nationality(mat ?X)
Zeus: NATIONALITY(NAT FRENCH)

In fact, RAD always ensures that the value that is IN is the one with the
most recently created justification that is currently valid. Note that if several
conflicting values for a slot are asserted in succession, then a reassertion of
the original value will result in a complicated dependency network, including
odd loops. This implementation, therefore, requires a complete JTMS as
discussed in Chapter 3.

Instance slot values do not have to be binary. For example, consider
representing “Nat owes David $5.” This would be written in RAD by using
the ternary relation Qwes as follows:

User: assert-instance (relation owes)

User: argument-types(owes (person person number))
User: single-valued(owes)

User: owes(nat david 5)

Further, the default that “Nat owes everybody $10” could be written

User: owes(nat ?X:person 10)

4.4.2 Class-Slot Values

Values for a relation may be attached to subclasses of its defining class as
well as to its instances. Each of these subclasses contains a class slot, the

Confidential and Proprietary 41 MCC Carnot Project

values in which may be inherited by any instance of the class to which it
belongs. For example, the command

User: description(?X:person aerobic)
Zeus: Class Slot Value DESCRIPTION-1 accepted.

adds a value to the Description class slot of PERSON: This datum repre-
sents the belief that every instance of PERSON is AEROBIC. Similarly, any
subclass of PERSON may acquire class values for this relation:

User: assert-instance (class texan)
User: assert-subclass (person texan)
User: ?? description(?X:texan ?Y)

Zeus: DESCRIPTION(?X:TEXAN AEROBIC)

The Description values associated with an instance of TEXAN are then the
instance values specifically assigned to it, along with the class values assigned
to the superclasses of its type. Hence,

User: assert-instance (texan connie)
User: description(connie pretty)
User: ?7 description(connie 7X)
Zeus: DESCRIPTION(CONNIE PRETTY)
DESCRIPTION (CONNIE AEROBIC)

For single-valued relations, a more complicated mode of inheritance is
used. A value for a single-valued class slot may be inherited by an instance
of the class only if no value has been assigned to that instance’s instance slot.
Class slot values for these relations are therefore called default values.

Default values assigned to a given class override each other in the same
manner as instance values for a given frame, so that only one default value
assigned to a class may be IN at any time. If a value for a relation is sought
for a given frame, the frame’s instance slot is first examined for an IN value.
If there is none, then each of the superclasses of the frame is examined (in
depth first order) until an IN default value is found.

Suppose that for the single-valued attribute Nationality, the default val-
ues AMERICAN, CHINESE, and INDIAN are asserted for the classes PERSON,
STUDENT, and GRADUATE, respectively. Suppose further that NAT’s
Nationality is asserted to be FRENCH and that DON’s is GERMAN. Then a query

Confidential and Proprietary 42 MCC Carnot Project

for the Nationality values for all instances of PERSON would produce the
following:

User:
Zeus:

?7? nationality(?X:person ?7Y)
NATIONALITY(DON GERMAN)
NATIONALITY(ANN AMERICAN)
NATIONALITY(HILARY INDIAN)
NATIONALITY(NAT FRENCH)
NATIONALITY(DAVID CHINESE)
NATIONALITY(MARY AMERICAN)

If a new default value were now asserted for STUDENT, only DAVID’s Na-
tionality would change:

User:

User:
Zeus:

nationality(?X:student carolinian)

?7? nationality(?X:student 7Y)
NATIONALITY(HILARY INDIAN)
NATIONALITY(NAT FRENCH)
NATIONALITY(DAVID CAROLINIAN)

If the default value for GRADUATE were retracted, then HILARY would
inherit from STUDENT:

User:

User:
Zeus:

erase nationality(?X:graduate indian)

?? nationality(?X:student 7Y)
NATIONALITY(HILARY CAROLINIAN)
NATIONALITY(NAT FRENCH)

NATIONALITY(DAVID CAROLINIAN)

Confidential and Proprietary 43 MCC Carnot Project

Dot e

Chapter 5

Relations in RAD

5.1 Relations as Objects

In RAD, an object is a cluster of knowledge, i.e., a thing to which attribute
values are attached and about which propositions are formed and inferences
are drawn. An object is also a thing that is subject to a classification accord-
ing to which it inherits properties. Of all the structures that are manipulated
by an inference system, which ones are to be handled explicitly as objects in
this sense?

In an object-oriented or frame-based system, any structure about which
one cares to reason should have the status of an object. In Proteus, the
only built-in objects are a few system-defined classes. Predicates are not
objects in the above sense, and neither are rules, assertions, or slots. These
structures are allowed to occur as arguments of predicates, but they may not
have attribute values and they cannot inherit properties. This has proved to
be a deficiency—the machinery that has been developed for classifying and
reasoning about objects is not available in dealing with these less fortunate
structures, even though it might be quite useful. Raising their status to make
them objects seems to be desirable in terms of the power of our system, the
simplicity of its implementation, and the clarity of the user’s model. Thus,
the following are full-fledged objects:

Classes Every object is an instance of at least one class. If classes are
objects themselves, then they must be instances of other classes. These
classes of classes are called metaclasses, and they can be manipulated in the

44

same ways as ordinary classes.

Relations Conceptually, a relation of arity n is a set of n-tuples of ob-
jects. In Proteus, these are partitioned into “predicates” and “attributes.”
A predicate may have arbitrary arity and there are no restrictions on the
form of its arguments. An attribute is always binary, and has a well-defined
domain. That is, its first argument is constrained to belong to some specified
class for which the attribute is defined. Thus, an attribute allows values to be
attached to objects—it may be thought of as a mapping from some domain
of objects into some set of values. If attributes (more generally, relations)
themselves have the status of objects, then properties such as reflexivity,
symmetry, etc. may be explicitly associated with them. It would also al-
low a classification of relations according to mode of inheritance and other
properties.

The structure of a frame system is defined by the primitive relations
among its objects. Each of these relations may be viewed as a built-in at-
tribute, defined for some class of objects. Some of the most obvious of these
are

1. Type, defined for the universal class of all objects;
2. Instance and Subclass, defined for the class of all classes;
3. Argument-types and Single-valued, defined for the class of relations;

Other built-in attributes represent the links between attributes and slots,
slots and objects, rules and rule instances, objects and their parts, etc. One
advantage of representing these primitives as attributes is that it allows the
structure of the frame system to be defined within the frame system itself.
Another advantage is that if instance and subclass links (which comprise the
paths through which properties are traditionally inherited) are special cases
of slot values, then it begins to make sense to think about supporting inher-
itance through arbitrary relations. Relations in RAD have three significant
characteristics:

e In RAD there is a single class of object—relation—that is of arbitrary

arity. A given relation can either be Specificity-ordered, in which case
it does support inheritance, or not.

Confidential and Proprietary 45 MCC Carnot Project

e In RAD relations are objects. This allows inheritance of information
to relations.

o In RAD, there is a class RELATION. Every relation is an instance of
that class.

5.2 Relations on Relations

Most of the following relations on relations are lazy: e.g., a relation can
be asserted to be Aziomatic, and if later that assertion is killed, then the
relation will no longer be Ariomatic. A few are not lazy and once asserted are
permanent, such as Specificity-ordered, Single-valued, and (to some extent)
Argument-types. The restrictions that apply are explained in detail with each
of these three relations. Note that it is only difficult, but not impossible, to
implement these three relations lazily.

Axiomatic reln Primitive Axiomatic

Most relations have instances that are objects in the JTMS, i.e., an as-
sertion about such a relation would have a support status and justifications.
However, the instances of some relations are not JTMS objects, because it
would be cumbersome and inefficient to tag everything that depended on
them. Such relations are said to be ariomatic. For example, Argument-
types (defined below) is axiomatic; if it were not, a premise assertion of the
backward rule

Infer foo(?X) from (bar(?X) baz(?X))

would have to be justified with the facts that Foo, Bar, and Baz all take the
argument types that they in fact do.

Note that although axiomatic relations can be single-valued, it is an error
to assert an “extra” value for one. (This error handling is not yet imple-
mented.)

Primitive reln System Axiomatic

Some relations are Primitive, in that users can only make ground unit
assertions with these relations. This restriction is imposed because some
relations (e.g., Subclass) are handled specially by RAD machinery that as-
sumes only ground unit assertions. If the user attempts to assert nonground

Confidential and Proprietary 46 MCC Carnot Project

or nonunit classes about reln, RAD will warn the user of his mistake and
refuse to accept the assertion.

System reln System Axiomatic

Some relations are completely defined by the system. For example, Sub-
class* is defined as the transitive closure of Subclass, and it is a mistake for
the RAD user to attempt to assert clauses about Subclass* directly. Such at-
tempts will be rejected with an error message, because Subclass* is a System
relation.

A relation cannot be both primitive and a system relation, although this
is not currently enforced.

Action reln System Axiomatic

The group of relations that perform actions are designated by the unary
relation Action. Action relations are typically used as consequents in forward
rules.

Argument-types reln list-of-types Primitive Axiomatic

Each relation has a fixed arity, and restrictions on the types of its ar-
guments. List-of-types is a list of types of logical variables. A type can be
either a class, a conjunction of classes (written as a list of the classes), or the
unrestricted type (written as T').

The arity of reln is the length of list-of-types, and only tuples of arguments
that unify with the types in list-of-types are permitted as tuples of arguments
to the relation. Thus Argument-types generalizes the Proteus domain and
range constructions to all the arguments of a relation.

Operationally, Argument-types has the following effects:

e An assertion that is not consistent with the Argument-types assertion
will be rejected with an error message. For example if

argument-types (power-consumption
(electrical-device number power-unit))

and a user asserts
power-consumption(fan-25 100 joules)
RAD will reject the assertion because the user has the wrong units.

Confidential and Proprietary 47 MCC Carnot Project

¢ Only proofs that are consistent with Argument-types assertions will be
found. Thus, no proofs will be found of power-consumption(zebra
?7x 7y).

Note that because Argument-types is multidirectional, it is also good for
queries of what relations are defined on an argument of some type. For
example, one can determine the relations defined on fan-25 by querying
argument-types(?x (fan . 7ignore)).

If argument-types is not specified for a relation, but the arity of the
relation is deduced from other knowledge, the default argument-types is a
list of unrestricted types (T) of the right arity. The argument-types of a
relation can be changed, but one cannot change the arity of a relation after
it has been set.

Persistent reln Primitive Axiomatic Single-valued
Persistent relations survive a clear operation on the knowledge base.
There are two restrictions:

1. The only persistent classes are the built-in ones CLASS, AGENT,

RELATION, FIXNUM, etc. Hence, a Persistent relation cannot
refer to any other class.

2. A Persistent relation cannot be defined in terms of relations that are
not Persistent. If FOO is defined by “Infer foo(?x) from bar(7x)” and
FOO is Persistent, than BAR must also be.

Note that there is currently no error-checking for either of these.

All library routines of built-in predicates are persistent, so they do not
have to be automatically reloaded after clearing the knowledge base. Note
that since classes cannot be made persistent, this limits the use of typed
variables in defining persistent relations.

Single-valued reln Primitive Axiomatic
- A Single-valued relation is one that has only a single set of second through
nth ground arguments for a ground first argument. As in Proteus, the lat-
est assertion takes precedence over earlier ones. Single-valuedness is imple-
mented with the JTMS.
A relation cannot be asserted to be Single-valued after clauses of the
relation have been asserted. In this way Single-valued is not lazy. Similarly,

Confidential and Proprietary 48 MCC Carnot Project

the Single-valued property of a relation cannot be retracted after the relation
has clauses.

Specialization special-reln general-reln Primitive

Special-reln is a specialization of the relation General-reln. The two rela-
tions must have the same arity, and the argument types of Special-reln must
be nonstrict subclasses of the argument types of General-reln. The built-in re-
lations that are specializations of each other are specialization(subclass
subclass*) and specialization(instance instance*).

A proof of Special-reln for some arguments will suffice to prove it for
General-reln for the same arguments.

Specificity-ordered reln Primitive Axiomatic

Relations that support inheritance are Specificity-ordered. These relations
must have an arity > 0 and must have a domain that is an actual class, not
just a type. Unlike Proteus, inheritance in RAD is not restricted to binary
relations.

A relation cannot be asserted to be Specificity-ordered after clauses of
the relation have been asserted. In this way, Specificity-ordered is not lazy.
Similarly, the Specificity-ordered property of a relation cannot be retracted
after the relation has clauses.

Triggerable reln
This probably should be a relation, but it currently is not.

Unidirectional reln in-arg-indices Primitive Axiomatic

Most relations in RAD are, by default, multidirectional. That is, any
argument can potentially be used either for input or for output. However,
some relations are either inherently or conceptually Unidirectional, meaning
that the bindings for some arguments cannot (or should not, due to consider-
ations of efficiency or conceptual clarity) be inferred given bindings for some
others.

Unidirectional means that any query on reln must have ground bind-
ings for all the arguments given in in-arg-indices.! From an implementation

1We could, of course, alter the semantics (or provide another relation) to make a weaker
statement about the relation involved, namely, that if any of the arguments specified by
in-arg-indices is nonground, then all arguments not in in-arg-indices are nonground as
well. This intuitively does not seem as useful, although in such cases there would still be
room for some optimization.

Confidential and Proprietary 49 MCC Carnot Project

standpoint, the advantage of having some relations be unidirectional is that
it could allow us to index instances of the relation on an argument or ar-
guments. We could thus generate more efficient WAM/Lisp code for such
relations.

Unidirectional has been defined here as a primitive relation, although
most users would not actually want to concern themselves with the generation
of efficient WAM code. Moreover, it would even be easier to implement as
a system relation, since most of the relations for which unidirectionality is
useful or necessary are predefined. In any case, we make Unidirectional
axiomatic since the relation in question would have to be recompiled every
time such an assertion went in or out (unless we had some kind of redundant
compilation).

Note that Unidirectional is a single-valued relation. That is, for a given
relation there can be only one set of “input” arguments specified.

5.3 Predefined Relations

A set of relations are already defined when RAD is started. Some of these
predefined relations are essential to the operation of RAD, while others are
predefined strictly for the convenience of users.

There are three important properties that the relations described below
can have:

Action Some relations are action relations. Only a proposition beginning
with an action relation can appear as a consequence of a forward rule.
Intuitively, action relations are those that have some side-effect. Action
relations are noted as such when they are described.

Library Most of the relations defined below are built-in: they are already
defined when you start RAD, and they persist after you clear the RAD
knowledge base. Some relations are not built-in but are instead defined
in RAD library files that must be loaded before the relation is defined.
Library relations are noted as such in the descriptions that follow, along
with the the library file where they are defined.

Triggerability Most predefined relations form propositions that will not
trigger a forward rule. Those that will are noted as such.

Confidential and Proprietary 50 MCC Carnot Project

5.3.1 Type Relations

There are some relations that test the type of their arguments, succeeding if
the argument is of the correct type, or failing (and backtracking) if it is not.
Note that if the argument is a variable, the variable is “dereferenced” to its
binding before the type checking is done.

Atom thing
Atom succeeds if thing is a symbol.

Atomic thing
Atomic succeeds if thing is either a symbol or a number.

Ground thing
Ground succeeds if thing is either atomic, or a cons whose car and cdr are
ground.

Integerp thing
Integerp succeeds if thing is an integer.

Nonvar thing
Nonvar succeeds if thing is not an unbound logical variable.

Numberp thing
Numberp succeeds if thing is a number.

Var thing
Var succeeds if thing is an unbound logical variable.

5.3.2 Comparison Relations

These three relations compare their arguments.

Eq thingl thing?2
Eq succeeds if thing! and thing2 are exactly the same object, either:

e Both lisp objects and EQ, according to lisp, or

¢ The same unbound logical variable.
Neq thing! thing2

Neg succeeds if thing! and thing2 are not exactly the same object, i.e., it
succeeds exactly when Fjq fails and vice versa.

Confidential and Proprietary 51 MCC Carnot Project

= thingl thing?2
= succeeds if thing! and thing2 unify.

5.3.3 Metarelations

The following relations take one or more propositions as arguments. They
can be used in the antecedents of forward rules or backward rules.

And propl prop?2 Both arguments are clausal

And succeeds if both prop! and prop2 are provable, with compatible bind-
ings for the logical variables. Since there is an implicit And around the an-
tecedents of a rule, this explicit And is really only useful inside an Orr. And
and Orr can be arbitrarily nested.

Bagof template proposition bag proposition is clausal

Bagof finds all the proofs of proposition. For each proof, Bagof collects an
instance of template which is consistent with proposition, and finally unifies
this list with dag.

Excuse proposition proposition is clausal and triggerable

Ezcuse succeeds if proposition is provable via backward chaining. Ezcuse
prevents any proof of proposition from affecting the justification of the proof
in progress. Thus, no JTMS record of proposition will appear in any result
of a proof of Fzcuse.

Known proposition proposition is clausal and triggerable
Known succeeds if proposition is provable via relation ground assertions,
i.e., without resorting to rules, nonground assertions, or slot values.

Orr propl prop2 Both arguments are clausal
Orr succeeds if either propl or prop2 is provable. Note that RAD tries

the two propositions in order: successive proof attempts of Orr will cause

successive proof attempts of prop! until failure. Then prop?2 is tried.

Provable proposition proposition is clausal

Provable succeeds if proposition is provable using backward chaining—
from the point of view of backward chaining the proposition (provable (foo
?x)) is identical to (foo 7x). Provable is useful in antecedents of forward
rules because it is not triggerable.

Prove agent-name proposition proposition is clausal

Confidential and Proprietary 52 MCC Carnot Project

Prove succeeds if proposition is provable by the agent agent-name. The
agent returns all possible instantiations of proposition, which are then used
one at a time. For each such clause, an assertion that the remote agent SAID
that clause is recorded.

Prove-once agent-name proposition proposition is clausal

Prove-once succeeds if proposition is provable by the agent agent-name.
If so, an assertion is recorded that the remote agent SAID that instance of
the proposition.

Query agent-name proposition proposition is clausal

Query succeeds if proposition is provable by the agent agent-name. The
agent returns all possible instantiations of proposition, which are then used
one at a time. For each such clause, an assertion that the remote agent SAID
that clause is recorded. Unlike Prove, the remote agent does not remember
the proofs it generates.

Query-once agent-name proposition proposition is clausal

Query-once succeeds if proposition is provable by the agent agent-name. If
so, an assertion that the remote agent SAID that instance of the proposition
is recorded. Unlike Prove-once, the remote agent does not remember the
proof it generates.

Remember proposition proposition is clausal

Remember succeeds if proposition is provable. If proposition is proved
using a backward rule or some assertion more general than proposition, then
proposition is asserted with the proper justification as a side-effect of the
Remember proof. Future attempts to prove proposition will not have to
reprove it using the same method.

Said agent-name proposition proposition is clausal
Said succeeds if the agent agent-name said proposition to this agent.

Unless proposition proposition is clausal

Unless succeeds if proposition is unprovable, much like Prolog’s not. Un-
like not, it will create a nonmonotonic dependency between proposition and
the results (if any) of the proof of Unless. (Unless is actually not imple-
mented as a relation, but rather as a macro for the RAD reader. However,
for all practical purposes, it can be treated as a relation.)

Was-told agent-name proposition proposition is clausal
Was-told succeeds if this agent was told proposition by agent agent-name.

Confidential and Proprietary 53 MCC Carnot Project

5.3.4 Pathological Relations

Fail

The relation Fail always fails and backtracks.

True
The relation True always succeeds.

5.3.5 RAD Knowledge Base Relations

The following relations affect the state of the RAD knowledge base, and
hence they are all action relations suitable for consequents of forward rules.
They are also sometimes useful as antecedents of backward or forward rules.
If used in that manner, they always succeed, and in succeeding change the
RAD knowledge base in the manner specified for each relation.

Accept proposition Action; proposition is clausal

Accept causes proposition to be asserted in the RAD knowledge base. The
justification of proposition is that the agent who made the accept “said so”
and that the agent is reliable unless known to be unreliable.

Assert proposition Action; proposition is clausal

Assert causes proposition to be asserted in the RAD knowledge base.
The justification of proposition is that of the proof so far, either the proof-in-
progress for an Assert that appears as a rule antecedent, or the complete proof
of the forward rule for an Assert that appears as a forward rule consequent.

Assert-Instance class frames Action

Assert-instance creates instances of the class class, with names given by
frames. When it is used as a consequent of a forward rule, this action relation
enables a class system to be expanded at run-time.

Assert-Subclass class frames Action

Assert-subclass creates subclass relationships from the superclass class to
each of its subclasses given by frames. When it is used as a consequent of
a forward rule, this action relation enables a class system to be refined at
run-time.

Consult pathname Action

Confidential and Proprietary 54 MCC Carnot Project

Consult loads a RAD file into the knowledge base. If the file has already
been loaded, consult will not reload it. RAD consult files are described in
more detail in Chapter 9.

Contradiction Action
Contradiction creates a contradiction and thus invokes the contradiction
resolution mechanism (see Chapter 8).

Erase proposition Action; proposition is clausal
Erase causes proposition to be OUT. The justification of the erasure is
that of the proof so far, as with Assert.

Kill proposition Action; proposition is clausal
Kill deletes all evidence of proposition from the RAD knowledge base.

Remove-Subclass class frames Action

Remove-subclass deletes existing subclass relationships from the super-
class class to each of its subclasses given by frames. When it is used as a
consequent of a forward rule, this action relation enables a class system to
be modified at run-time.

Tell agent proposition Action; proposition is clausal
Tell causes proposition to be asserted in the knowledge base of the agent

agent, as described in Chapter 2. The justification for proposition has an IN-

list consisting of reliable (SOURCE-AGENT) and said(proposition SOURCE-AGENT,

and an empty OUT-list, where SOURCE-AGENT is the name of the agent that

executed the relation Tell. The SOURCE-AGENT maintains a justification con-

sisting of either the proof-in-progress for a Tell that appears as a rule an-

tecedent, or the complete proof of the forward rule for a Tell that appears as

a forward rule consequent.

5.3.6 Class System Relations

The following relations are used for testing or generating classes and in-
stances in the RAD class system. Each of the relations is multidirectional.
For instance, one can use subclass to test whether GRADER is a direct sub-
class of EMPLOYEE (by querying subclass(grader employee)), to find
classes that are direct subclasses of EMPLOYEE (via successive proofs of
subclass(?x employee)), or to find pairs of classes such that one is a direct
subclass of the other (using subclass(?x ?y)).

Confidential and Proprietary 55 MCC Carnot Project

Instance frame class Library: builtins.rad
Instance is true if frame is an instance of class, that is if the type of frame
is class.

Instance* frame class Library: builtins.rad
Instance* is true if frame is an instance of class, that is if the type of
frame is a Subclass* of class, as described in Chapter 4.

Subclass sub super Library: builtins.rad

Subclass is true if sub is a direct subclass of super. Subclass is the primi-
tive class relation built from the command assert-subclass, as described in
Chapter 9.

Subclass* sub super Library: builtins.rad
Subclass* is true if sub is a subclass of super. Subclass* is the reflexive
transitive closure of Subclass, as explained in Chapter 4.

5.3.7 Interface with Lisp

RAD has a fast and versatile interface with lisp, available through the fol-
lowing relations.

Is thing lisp-form Action
Is evaluates the lisp s-expression lisp-form, with the following caveats:

1. Lisp special forms (e.g., setq) cannot be used in lisp-form. (Instead of
setq, use set.)

2. Evaluation of a RAD logical variable is interpreted as dereferencing.
Thus if lisp-form is (cons ?x a), ?x is bound to a, and a is bound to
5, Is will evaluate the form to produce a cons of the symbol a and the
number 5.

The result of evaluating the form is then unified with thing. If unification is
unsuccessful, Is fails.

It is anticipated that most uses of Is will fall into a few stereotypical
cases. Therefore a more concise syntax has been implemented within the
RAD reader. Escapes to Lisp can be prefixed by a comma; the RAD reader
will parse these and generate the appropriate calls to Is. (Refer to Chapter
9.

Confidential and Proprietary 56 MCC Carnot Project

Do lisp-form Action

Do evaluates the lisp s-expression lisp-form. The evaluation caveats of
Is also apply to Do. Do always succeeds, so to be useful, lisp-form should
perform some side-effect.

5.3.8 Querying the User

Ask prop prop is clausal; Library: ask.rad
Ask takes a proposition as an argument and queries the user for an instance of
this proposition (with exceptional cases described below). If the user replies
positively with a valid instance, then that instance is automatically inserted
in the knowledge base and Ask then succeeds by matching the goal with the
new assertion. If not, then Ask fails.

For example, if information pertaining to a relation P may only be sup-
plied directly by the user, then P may be defined by a single rule:

Infer P(?X 7Y) from Ask(P(?X 7Y))
If Q is defined by

Infer Q(?X ?Y) from P(?X ?7Y)

then

User: 7 q(a 7?x)

Zeus: P(A 7X)7

User: reply zeus ‘‘p(a 1)’’
Zeus: Assertion P(A 1) accepted.

User: ? q(b ?X)
Zeus: P(B 7X)?

User: reply zeus ‘‘’’
Zeus: NO SOLUTION

Here, the user responds positively to the first query with the instance P(A
1), and negatively to the second with an empty string.
Note that a query may be repeated, as it may have several valid responses:

Confidential and Proprietary 57 MCC Carnot Project

User: ? q(a 7x)

Zeus: P(A 7X)7?

User: reply zeus ‘‘p(a 1)’’
Zeus: Q(A 1)

User: next

Zeus: P(A 7X)7

User: reply zeus ‘‘p(a 2)'’
Zeus: Q(A 2)

In order to avoid unnecessary repetitions of queries, the system maintains
a history of the queries that have already been posed to the user. If the user
has already responded negatively to a query about a given goal (or any goal
of which the given goal is an instance), then the query is cancelled and Ask
simply fails:

User: 7 q(?x 7y)
Zeus: P(7X 7Y)?
User: reply zeus ‘‘’’
Zeus: NO SOLUTION

User: ? q(a 7X))
Zeus: NO SOLUTION

In Chapter 9, we describe the top-level command ask, which allows the
system builder to customize the format in which a query is posed.

Ask-once prop prop is clausal; Library: ask.rad

This relation has the same behavior as Ask, except that once the user
has been queried about a goal, Ask-once will never query him about it again
(regardless of the user’s original response). This is useful in case it is known
that a goal has only one valid instance:

User: Infer age(?X ?7Y) from ask-once(age(?X ?7Y)))
Zeus: Backward Rule AGE-1 accepted.

User: ? age(bob 7X)

Zeus: AGE(BOB 7X)?
User: reply zeus ‘‘age(bob 35)’’

Confidential and Proprietary 58 MCC Carnot Project

Zeus: AGE(BOB 35)

User: next
Zeus: NO SOLUTION

5.3.9 Miscellaneous Built-In Relations

Count-proofs proposition count Proposition is clausal; Library: misc.rad
Count-proofs is true if there are exactly count proofs of proposition in the
RAD knowledge base. Note that the JTMS status of count-proofs proof is
weird: it does not depend on the status of any of the actual proofs counted.

Element elt list Library: misc.rad
Element is true if elt is an element of the list list. (This is the same as
member from Prolog.)

Frules-indexed reln rules Library: misc.rad; System Axiomatic

Frules-indezed relates a relation reln to the forward rules in which it
appears as an antecedent. It is Unidirectional, i.e., its first argument must
be ground.

Host database name Library: dai.rad
The relation Host is defined for the built-in class DATABASE. Its value,
supplied by RAD, is the name of the host machine for the database.

Print format print-elements Library: misc.rad

Attempting to prove Print or asserting Print as a consequent of a forward
rule will cause output to be printed to the window of the user interface
process. format is lisp’s format directive string, while print-elements is a list
of arguments for that string.

Reliable agent Library: dai.rad
The relation Reliable is used to provide justifications for data learned
from other agents.

Unreliable agent Library: dai.rad
The relation Unreliable is used to provide justifications for data learned
from other agents.

Confidential and Proprietary 39 MCC Carnot Project

RAD supports the prolog control primitive cut (!”), both in backward
rules, and as described in Chapter 7 in forward rules as well. The operational
semantics of cut is identical to that in Prolog, and beyond the scope of this
manual.

5.4 User-Defined Relations

Corresponding to each user-defined class is a (possibly empty) set of user-
defined relations associated with that class. Every relation can be defined for
a unique class by means of the relation Argument-types (defined in Section
5.2). The frames that may have values for a given relation are the instances
of the class for which it is defined, i.e., the instances of the class listed first
in Argument-types. Thus, in the example of Figure 4.2, if relations called
Hourly-wage and Title are defined for the classes EMPLOYEE and FAC-
ULTY, respectively, then the frames that may have Hourly-wage values are
NAT, HILARY, ANN, and DON, while only ANN and DON may assume T'itles.

The manner in which relations are inherited from their defining classes
provides motivation for the construction of user-defined metaclasses, such
as those of Figure 4.3. If ANIMALIA, CHORDATA, etc. had simply
been defined as instances of CLASS, there would have been no way for
them to acquire relation values. But as instances of the user-defined class
BIOLOGICAL-CLASS, they may assume values for any relations defined
for that class. If Common-name is among these relations, then the statement
“the Common-name of PROTOZOA is ONE-CELLED-ANIMAL” makes sense.
The partitioning of BIOLOGICAL-CLASS into subclasses allows the def-
inition of relations that pertain to some biological-classes but not to all. For
example, one might refer to the number of species of protozoa, but not to the
number of species of amoeba, while the number of species of animalia is not

practically measurable. The relation Number-of-species, therefore, should not
be defined for the class BIOLOGICAL-CLASS, but rather for its subclass
PHYLUM.

Confidential and Proprietary 60 MCC Carnot Project

Chapter 6

Backward Inference

The primary means by which computation is carried out in RAD is through
a goal-directed theorem-proving process called backward inference. This pro-
cess permits goals, in the form of propositions, to be proven by a combination
of unification and backward chaining.

When a proposition is presented to the RAD theorem prover as a goal, it
attempts to derive an instance of it from the data in the knowledge base. An
instance of a proposition is a second proposition that results from the first
by performing some set of variable substitutions.

One way in which it might do this is to unify the goal with an assertion.
The process of unification amounts to finding the most general common in-
stance of two propositions. If a goal is unifiable with an assertion that is IN,
then the resulting instance of the goal is returned as the result of the proof.
For example, if the knowledge base of Figure 4.2 contains

DESCRIPTION (?X:STUDENT IDEALISTIC)

then the goal DESCRIPTION(?X:EMPLOYEE ?Y) could succeed by returning
the instance DESCRIPTION(?X: (GRADER TA) IDEALISTIC).

A goal may also be proved with the use of a backward rule. A back-
ward rule is composed of a proposition, called its consequent, and one or
more antecedents. A rule represents the belief that any instance of its con-
sequent is true whenever any compatible instances of its antecedents are
true. If a goal is unified with the consequent, then the corresponding in-
stances of the antecedents become subgoals—recursively proving all of these
subgoals completes the proof of the original goal. This process is known

61

as backward chaining or goal-directed inference, and is the basis of Prolog
[Clocksin and Mellish 1981] and other logic programming systems.

For example, in order to derive a value for MICHAEL’s Uncle slot, the goal
UNCLE(MICHAEL ?X) may be unified with the consequent of the rule

Uncle-rule: Infer uncle(?X 7Y)
from (parent(?X ?7Z)
brother(?Z ?Y))

creating the subgoals PARENT(MICHAEL ?Z) and BROTHER(?Z ?Y). Suppose
that the first of these is matched with the consequent of

Parent-rule: Infer parent(?X ?Y) from mother(?X 7Y)

and is thus replaced by the subgoal MOTHER (MICHAEL ?Y), which is matched
with

Instance slot value MOTHER-7
MOTHER (MICHAEL SUZY)

The second subgoal, which becomes BROTHER (SUZY ?Y), may then be derived
from

Instance slot value BROTHER-23
BROTHER(SUZY DAVID)

The instance UNCLE (MICHAEL DAVID) of the original goal is thereby proved
by backward chaining.

The RAD backward inference mechanism is based on an extended Warren
Abstract Machine emulator [Warren 1983]. The assertions and backward
rules associated with a given relation, which form its definition with respect
to backward inference, are compiled into a sequence of instructions that are
interpreted by the emulator when a goal is processed. Although the user
need not be aware of the workings of the compiler and the emulator, the
code generated for a relation may be examined by means of the top-level
command bgrind (Chapter 9).

Certain built-in relations (see Chapter 9) are defined directly by WAM
instructions, either for efficiency or because their desired behavior cannot be
represented by rules. An example of a relation that could not effectively be
defined in terms of rules is the built-in relation Unless. This relation takes a
single argument, which is a proposition, as in

Confidential and Proprietary 62 MCC Carnot Project

Parent-rule-2: Infer has-child(?X)
from (mother(?Y 7X)
unless(adult(?Y)))

When an antecedent of this type is processed, the system attempts to prove
the proposition that occurs as the argument of Unless (under the current
variable bindings). If this proof attempt fails, then the subgoal succeeds; if
the proof succeeds, then the subgoal fails.

6.1 Asserting Proof Results

When a proposition proved by backward chaining is explicitly added to the
knowledge base as an assertion, it receives a justification that is constructed
upon examination of the proof. Thus, the proposition derived in the first
example of this chapter results in

Instance Slot Value UNCLE-2
UNCLE(MICHAEL DAVID)

which acquires a justification with IN-list (MOTHER-7 BROTHER-23 UNCLE-RULE
PARENT-RULE), i.e., all the data involved in the proof, and OUT-list ().

Nonmonotonic dependencies are constructed from proofs that involve Un-
less antecedents. For example, if the proposition (HAS-CHILD SUZY) were
derived from the backward rule Parent-rule-2 and Assertion MOTHER-7
above, and

Assertion HAS-CHILD-5
HAS-CHILD(SUZY)

were derived as a result, then the IN-list of its justification would be (MOTHER-7
PARENT-RULE-2), but the justification would also reflect the dependency of

the derivation on the failure to prove ADULT(MICHAEL). This would be done

by making the OUT-list (ADULT-2), where

Assertion ADULT-2 (ouT)
ADULT(MICHAEL)

Confidential and Proprietary 63 MCC Carnot Project

is an unjustified assertion, created for the purpose of this justification (un-
less it already existed). If ADULT(MICHAEL) were to be asserted later, then
ADULT-2 would become IN, and HAS-CHILD-5 would go OUT, as it should.

The case of an UNLESS goal with unbound variables presents a new prob-
lem. Suppose, for example, that we have a relation Orphan with an associated
rule

Orphan-rule: Infer orphan(7X)
from unless(parent(?X ?Z))

Then the goal ORPHAN(ANNIE) will succeed if PARENT(ANNIE ?Z) fails. In
this case, the new justification for

Assertion ORPHAN-2:
ORPHAN (ANNIE)

should contain only ORPHAN-RULE in its IN-list, but there is no assertion,
general or particular, which could be placed in the OUT-list to record the
nonmonotonic dependency. This problem is solved by the introduction of a
new datatype:

Failed Goal PARENT-2 (OUT)
PARENT (ANNIE 7Z)

A failed goal is a datum that is created only in this situation. When a proof
succeeds as a result of a failure to prove a proposition that follows Unless
in an antecedent, the proposition that failed is inserted in the knowledge
base without justification as a failed goal. It represents the belief that some
instance of the proposition is true. That is, any variables in a failed goal are
understood to be existentially quantified. The failed goal PARENT-2 above,
which represents the belief that ANNIE has some parent, would appear in the
OUT-list of the justification of ORPHAN-2.

If some instance of a failed goal is asserted at any time, the system auto-
matically creates a monotonic dependency of the failed goal on the assertion.
Thus, if the assertion ORPHAN-2 were justified as described above, and

Assertion PARENT-3:
PARENT (ANNIE WARBUCKS)

were later to become IN, then the failed goal PARENT-2 would also be forced
IN and hence ORPHAN-2 would go OUT.

Confidential and Proprietary 64 MCC Carnot Project

6.2 Proof Strategies

In the process of proving a goal by backward chaining, the goal is matched
against each element of a set of assertions and rules until unification succeeds.
If a resulting subgoal fails and the prover backtracks to the original goal, the
matching process is resumed until another match is found.

6.2.1 Relations

It is not surprising that the ordering of the list of data to be matched against
a goal may not only affect the efficiency of a proof but may actually determine
whether a proposition is provable at all. Consider, for example, the relation
Not-instance*, defined by

Infer not-instance*(?X ?C:class)
from (instance*(?X ?C) ! fail())

and
not-instance*(?X 7C)

(The symbol “!” is the standard Prolog cut and Fail is a built-in relation
that represents the empty relation.) This relation, which represents X is not
an instance* of class C, behaves as desired only if the data are applied in
the order indicated, with the rule preceding the assertion.

In Prolog, the order in which a set of data is created is strictly preserved
by the inference system. Of course, this means that a relation must be re-
compiled whenever a new rule or assertion is added. One difference between
an expert system built with RAD and most Prolog programs is that an ex-
pert system is likely to generate a large number of assertions dynamically
during its execution. In order to avoid excessive recompilation, RAD makes
a distinction between ground assertions (i.e., assertions without variables)
and rules. When a ground assertion is created, it is not compiled, but in-
stead inserted at the end of a list that is interpreted directly by the inference
mechanism. In an attempt to prove a goal, the list of relevant ground as-
sertions is always processed first, followed by the (compiled code for the)
relevant rules. Nonground assertions—like backward rules—are compiled in
the order in which they are asserted.

Confidential and Proprietary 65 MCC Carnot Project

6.2.2 Multiple-Valued Relations

Different goal-matching strategies are required for relations associated with
frames, i.e., specificity-ordered relations. For these, each instance slot value
is attached to the frame to which it pertains. In fact, this is an important
advantage of declaring a relation to be specificity-ordered: when a goal is
being processed that concerns values for a fixed frame, the values for that
frame only are retrieved, while other frames are ignored.

In the case of a multiple-valued relation, all relevant instance slot values
are matched against a goal before any backward rules are applied. The first
argument of a goal pertaining to a slot may be either a variable or a frame.
If it is a frame, then the instance slot values for that frame are tested first,
followed by the class slot values for all superclasses of the frame’s type (in
depth first order). Finally, a list of all the backward rules for the slot is
traversed.

If the first argument of the goal is a variable, the strategy is complicated.
In this case, each class that has a subtype in common with the type of the
variable must be examined for matching values. Consider, for example, the
goal (DESCRIPTION 7X:STAFF ?Y), where Description is the multiple-valued
relation that was defined for class PERSON in Chapter 4. In processing
this goal, the g.l.b. of STAFF and each subclass C of PERSON must be
computed. There are three possibilities:

1. The gl.b. of STAFF and C may be BOTTOM. (This occurs when C is
FACULTY.) In this case, C is ignored.

2. The g.l.b. may be C itself, i.e., C may be a subclass of STAFF. (This
occurs when C is STAFF, GRADER, or TA.) In this case, the vari-
able 7X may be bound to either an instance of C or to a variable whose
type is C. The list of all instances of C is examined first. Each instance
becomes the binding of 7X while ?Y is bound to each of its Description
values. After all of these instance values have been examined, the type
of 7X is coerced to the g.l.b. and the class values of C are examined in
order.

3. The g.l.b. may be a nontrivial proper subtype of C. (This occurs when
C is PERSON, STUDENT, GRADUATE, or UNDERGRAD-
UATE.) In this case, X may be bound to he instances of C, which

Confidential and Proprietary 66 MCC Carnot Project

are therefore ignored, but the class values of C are examined as in case
2.

After all classes and all relevant slot values have been examined, the list of
backward rules is traversed as in the previous case.

6.2.3 Single-valued Relations

The strategy for satisfying a goal pertaining to a single-valued relation is
somewhat simplified by the design decision that a query concerning the values
of a single-valued relation for a fixed frame should not return more than one
instance. Therefore, in the case in which the first argument of the goal is a
frame rather than a variable, only one instance of the goal may be proved—
there is no backtracking. To satisfy such a goal, the frame is first examined
for an instance value that is IN. (There can be only one such value.) If none
is found, then the system tries to derive a value using backward rules. Only
if this fails is the default value for the appropriate class retried. Thus, default
values, unlike class slot values for multiple-valued relations, are used only as
a last resort.

If the first argument of the goal is a variable, then the prover begins
by binding this variable to some instance of its type, and attempts to sat-
isfy the goal according to the procedure described in the preceding para-
graph. If this fails, or if an additional solution is sought, then the variable
is bound to another frame, until it has been bound to all possible frames.
This accounts for the result of the query in Chapter 4 for all provable in-
stances of (NATIONALITY ?X:PERSON ?Y). Note, in particular, that although
the proposition (NATIONALITY 7X:STUDENT CHINESE) has been asserted as
a default value, and this value remains IN, this proposition is not retrieved as
a provable instance of the goal. The reason for this is the difference between
default values of single-valued relations and class values of multiple-valued
relations—a default value for a class is not necessarily inherited by the in-
stances of the class. Therefore, the proposition (NATIONALITY ?X:STUDENT
CHINESE) should not be considered a general assertion. A default value
should be used only in computing a value for a particular object, and not for
a class of objects.

Confidential and Proprietary 67 MCC Carnot Project

Chapter 7

Forward Inference

A backward rule has effect only when it is relevant to a goal being processed
by the system. The insertion of a backward rule, therefore, affects only the
implicit informational content of the knowledge base, without causing new
assertions to be added explicitly. Consider, for example, the backward rule
PARENT-RULE of Chapter 6, which states that all mothers are parents.

Parent-rule: Infer parent(?X ?Y) from mother(?X ?Y)
In the presence of the assertion

Instance slot value MOTHER-7
MOTHER (MICHAEL SUZY)

this rule enlarges the implicit knowledge base to include the proposition
PARENT (SUZY MICHAEL), without actually creating a new assertion.

The same logical implication expressed by PARENT-RULE could alterna-
tively be represented as the forward rule:

Parent-rule-3: If mother(?X ?Y)
then parent(?X ?7Y)

While the two rules are logically equivalent, they are used quite differ-
ently. The forward rule takes effect not when a goal matches its conse-
quent PARENT(?X ?Y), but rather when an assertion matches its antecedent
MOTHER(?X 7Y). In this event (assuming the new assertion is IN), another

68

assertion, representing the corresponding instance of PARENT(7X ?Y), is au-
tomatically added to the knowledge base. The PARENT assertion is then jus-
tified by the MOTHER assertion and the rule. Thus, when the match between
MOTHER-7 and PARENT-RULE-3 is discovered, the result is the new datum

Instance Slot Value PARENT-4
PARENT (MICHAEL SUZY)

which is justified with an IN-list (MOTHER-7 PARENT-RULE-3) and OUT-list
NIL. This process is known as forward chaining or data-directed inference.

7.1 Overview of Forward Chaining

A forward rule may have any number of antecedents and consequents. An-
tecedents have the same form as those of backward rules. When a new
assertion is unified with an antecedent of a forward rule, the set of remain-
ing antecedents is presented to the backward inference system as goals. For
each simultaneous proof of these goals, a firing of the rule occurs, i.e., its
consequents are processed.

Consequents of a forward rule are actions and involve one of the action
relations, such as Assert, Consult, Do, Erase, Is, Kill, Print, or Tell. Intu-
itively, these are all relations that have some side effect—either to the RAD
knowledge base, to another agent, to the user interface, or to the Lisp inter-
preter. All consequents that are not explicitly actions are considered to be
Assert actions. Thus, if if you want to assert some proposition as a conse-
quent of a forward rule, you need only write the proposition itself; the Assert
relation is implicit.

When a rule is fired, each of the consequences is executed. For assertions,
execution means that an instance of the proposition to be asserted is actually
asserted. The justification for this assertion is constructed from the data
involved in the derivation of the antecedents, as described in Chapter 6. For
other sorts of action propositions, the corresponding action is executed. The
actions are described with the rest of the built-in predicates in Chapter 9.

Suppose, for example, that the knowledge base contains

Rule-1: If (patient(?X)
should-take(?X ?7Y))

Confidential and Proprietary 69 MCC Carnot Project

then (under-treatment(7X)
print ("Prescription for “A: “A" (?X 7Y)))

when

Assertion PATIENT-2
PATIENT(BILL)

is added. The first antecedent of PATIENT-2 is matched with RULE-1, trigger-
ing an attempt to prove SHOULD-TAKE(BILL 7Y). Suppose that the instance
SHOULD-TAKE (BILL ASPIRIN) is derived. Then after

Assertion SHOULD-TAKE-1
SHOULD-TAKE(BILL ASPIRIN)

is added to the knowledge base, the rule RULE-1 fires:

Assertion UNDER-TREATMENT-1
UNDER-TREATMENT (BILL)

is added, justified by RULE-1, PATIENT-2, and SHOULD-TAKE-1, and
Prescription for BILL: ASPIRIN

is printed.

Some thought is required in determining whether a given implication
should be represented as a forward rule or a backward rule. A backward rule
offers the advantage of increasing the inherent knowledge of a system without
incurring the expense (in both time and space) of creating new assertions.
It may be necessary, however, for this knowledge to be represented explicitly
in order for it to take some desired effect.

Suppose, for example, that the assertion

Assertion ORPHAN-3 (IN)
ORPHAN (GEORGE)

is added as a result of the rule ORPHAN-1 of Chapter 6:

Orphan-rule: Infer orphan(7X)
from unless(parent(?X ?7Z))

Confidential and Proprietary 70 MCC Carnot Project

Then the OUT-list of its justification contains a datum corresponding to the
last antecedent of the rule,

Failed Goal PARENT-5 (OUT)
PARENT (GEORGE 7Z)

which was unprovable at the time ORPHAN-3 was created. Suppose that

Assertion MOTHER-12
MOTHER (GEORGE MARY)

were asserted later. It would then be desirable for PARENT-5 to come IN and
for ORPHAN-3 to go OUT. The backward rule PARENT-1, however, could not
cause this to occur. Although an instance of PARENT-5 would become prov-
able, that instance would not be discovered. It would probably be preferable
in this case to code the rule in the form of the forward rule PARENT-RULE-3
instead. This would produce a new assertion

Assertion PARENT-6
PARENT (GEORGE MARY)

on which PARENT-5 would become monotonically dependent, and ORPHAN-3
would go OUT as desired.

7.2 Forward Chaining in More Detail

The above description of forward chaining is accurate but not very complete.
For some RAD programs, it is important to know not only what happens but
exactly when things happen.

When a unit clause is asserted, the new assertion is placed on an agenda.
As long as the agenda is nonempty, RA D does not return to the user. Instead
elements are popped from the agenda and executed—used to trigger forward
rules. (By default the agenda is LIFO—a stack—but a user can control which
element is picked from the agenda with the function pick-cselt.)

When an agenda element is picked, RAD looks for an antecedent from a
forward rule to unify with it. If more than one such antecedent will unify,
the antecedent from the rule with the highest priority is chosen. Priorities
are integers from 1-99 associated with forward rules, and a rule has priority
50 by default. A forward rule with a different priority is created by enclosing
a two-digit number in square brackets before the If clause of the rule:

Confidential and Proprietary 71 MCC Carnot Project

Rule-2: [40] If (foo(?X 7Y)
bar(?Y ?Z)
baz(?7Z ?X))
then fbb(?X ?Z)

When an antecedent from a rule has been chosen, RAD attempts to unify
the agenda element with the antecedent. If the unification fails, RAD looks
for another antecedent, choosing antecedent from rules with higher priorities
over antecedents from rules with lower priorities.

If the unification succeeds, RAD attempts to find proofs of the conjunc-
tion of the remaining antecedents in the context of the variables bound in the
successful unification. For example, if the agenda element BAR(12 7X) trig-
gers the above rule, then RAD attempts to prove AND(FOO(?x 12) BAZ(7z
?x)). These proofs are found by standard RAD backward chaining as in
Chapter 6. In particular, no OUT rules or clauses will be used in any proof of
the remaining antecedents.

For each proof of the antecedents, RAD executes the consequences once.
This means that a single triggering of a single forward rule can lead to multi-
ple firings of that rule, if there happen to be multiple proofs of the remaining
antecedents in the knowledge base. Since the remaining antecedents are
just a conjunction RAD propositions, a well placed cut (“!”) among the
antecedents can served to prune the proofs. For example, the rule

Rule-3: [40] If (foo(?X ?7Y)
bar(?Y ?2Z)
baz(?Z ?X) !)
then fbb(?X ?Z)

will allow (at most) one firing of the rule for every triggering of the an-
tecedents.

Some of the consequents of the fired rule may assert new facts. These
assertions are added to the RAD knowledge base, and if they are unit clauses,
they are added to the agenda. Nothing new is picked from the agenda until
the currently active agenda element has triggered all the rules it can.

After finishing with one antecedent, RAD looks for another antecedent
that will unify with the current agenda element, continuing the process of
firing forward rules. Only when there are no more antecedents to unify will
another element be picked from the agenda.

Confidential and Proprietary 72 MCC Carnot Project

Some antecedents trigger their rules by unifying their first argument
rather than the whole proposition with the active agenda element. For ex-
ample, if KNOWN(FO0(?X)) (described in more detail in Chapter 5) is an
antecedent in a rule, it can be triggered by FOO(?X:NUMBER). This is consis-
tent with Known’s semantics: Known is true if there is a ground IN instance
of its first argument in the RAD knowledge base—i.e., if its first argument is
provable without resorting to nonground clauses or backward rules. Thus it
makes sense for Known to be triggerable by unification of the agenda element
with Known’s first argument.

Some propositions (e.g., those involving the relation Bagof) cannot be
triggered by an agenda element. The special predicates that are not trigger-
able are noted in Chapter 5.

Confidential and Proprietary 73 MCC Carnot Project

Chapter 8

Contradiction Resolution

8.1 Introduction

RAD contradiction resolution performs a restricted sort of abductive infer-
ence [Pierce]. A RAD contradiction represents a user-designated conflicting
set of beliefs. Given a contradiction, RAD attempts to hypothesize a set of
propositions that, if believed, would cause disbelief in at least one element of
the conflict set. Further, RAD attempts to create a consistent justification
for the hypothesized propositions. When successful in doing so, RAD is said
to have resolved the contradiction. In terms of the JTMS, contradictions
are resolved by retracting some set of assumptions in the foundations of the
JTMS. An assumption is a datum that is currently believed (IN) based on a
valid justification with a nonempty OUT-list. An assumption is retracted if an
elective in the OUT-list of the assumption receives a valid justification. RAD
contradiction resolution involves attempts to disbelieve assumptions and to
find reasons to believe electives.

RAD contradictions are instances of a special kind of datum. They may
have only a single justification and the JTMS will always attempt to find
a stable, well-founded knowledge base state of support-statuses in which all
contradictions are OUT. If none can be found, the Contradiction Resolution
Mechanism (CRM) will attempt to produce a set of electives and associated
new justifications which will make such a state possible. If it is successful, the
contradiction is OUT and hence resolved. If the CRM fails, the contradiction
is added to a set of unresolved contradictions that remain IN. Resolution of

74

these is attempted whenever they are consequences of data whose support
status is altered by the JTMS. The RAD CRM implements the extended
dependency-directed backtracking algorithm described in [Petrie 1987].

The semantics of a RAD contradiction is that it represents an undesirable
situation, indicated by a combination of belief of the data in the IN-list and
lack of belief in the data in the OUT-list of the justification for the contradic-
tion. Although the term “contradiction” is used for historical reasons, in a
justification-based TMS such as used by RAD, contradictions have no logical
import and only denote a user-defined problem. There is no requirement in
RAD that if an assertion and its negation are both IN, then there is a con-
tradiction. In fact, there is no definition of “negation” in RAD. RAD does
not try to prove the logical consistency of its knowledge base. A user must
explicitly specify the conditions that RAD will recognize as a contradiction
in the knowledge base.

The user can specify these conditions for a contradiction either interac-
tively or via a rule. If a forward rule has the assertion CONTRADICTION() as
its consequent, then when that rule fires, a contradiction is inserted into the
knowledge base with the same justification as any other consequent of that
forward rule. A user can contradict a conjunction of beliefs by using their
names as arguments to the top-level command contradict. The last answer
supplied by a top-level query can be contradicted by the command wrong.

The relations, Fiz, Prefer, and Defeat enable a user to provide domain
knowledge to guide contradiction resolution. These relations are specially
recognized by the RAD CRM. They represent explicit knowledge about the
use of other assertions in an inference procedure, and so represent a metalevel
of knowledge. As a result, they are called “metarelations”.

8.2 The Contradiction Resolution Process

8.2.1 The FIX Phase

The CRM is based on a simple notion of defeasible reasoning. As a simplifi-
cation (see Defeat below for a complication), a valid justification is defeasible
if it has a nonempty OUT-list or if every valid element of the justification
set of some element of its IN-list is defeasible. We say that an assertion is
defeasible if every valid justification supporting it is defeasible. The classi-

Confidential and Proprietary 75 MCC Carnot Project

cal definition of an assumption in a JTMS is a special case of a defeasible
assertion. This more general notion of defeasibility suggests a recursive pro-
cedure. Given any culprit to be defeated, i.e., made OUT, the procedure is
to attempt to defeat all of its valid justifications. For each justification, this
is done by attempting to make some element of its OUT-list IN (namely an
elective) or by taking one of the elements of its IN-list as a new culprit to
defeat. Ultimately, the result will be an AND-of assertions (electives) to be
made IN. Obviously, there will be many possibilities. The purpose of the
metarelations is to suggest guidance for this search.

The relation Fir takes three arguments: the target, the fix-culprit, and
the fix-elective. A Fizis defined for a particular potential contradiction if the
Fiz has a target that will unify with an IN supporter of that contradiction
should it be created. The purpose of such a Fiz is to identify some particular
assumption (the fix-culprit) that is likely to be in the foundations of the
contradiction and, if so, for which a retraction attempt should be made. The
fix-elective identifies a possible elective for that assumption. That is, the Fir
may so suggest a possible way of retracting the assumption.!

The CRM begins with a datum, called the culprit, to be made OUT. Ini-
tially, the culprit is the contradiction. First, an attempt is made to use
domain knowledge to make the culprit OUT by using a Fir assertion to inval-
idate one of the IN supporters of the culprit. Each of the IN supporters in
turn becomes a culprit for which there may be a Fiz. An available Fiz for
a culprit is obtained when the culprit proposition unifies with the target of
some provable Fiz. A qualified Fiz is derived from the available Fiz when
its fix-culprit unifies with the proposition of some datum in the foundations
of the culprit (the target of the Fiz). If some element of the OUT-list of the
supporting justification of the fix-culprit unifies with the fix-elective of the
qualified Fiz, then the Fiz is applicable and that element becomes the elec-
tive to be made IN by the CRM (making a datum IN is described in Section
8.2.2).

An example of a Fir assertion might be

Fix(Conclusion(?Patient 7Degree 7Meas ?Chem)
Symptom(?Patient ?Symptom)
Mistaken-observation(?Patient ?Symptom))

! Any of these arguments may be left unspecified. However, the more specificity, the
more useful fires will be. An assertion of Fix(?X ?Y 7Z) would not be useful.

Confidential and Proprietary 76 MCC Carnot Project

This Fiz asserts that if any conclusion becomes a culprit to be made OUT, and
the conclusion depends on belief in some symptom, then a mistaken observa-
tion of that symptom may retract belief in it. That mistaken observation will
only become an elective if it is either already in the OUT-list of the supporting
justification of the symptom, or can be placed there by a Defeat assertion.

A Defeat assertion provides a way of inserting an Unless condition retroac-
tively. An Unless condition in a rule indicates a non-monotonic condition.
One way of avoiding performing the computation involved in testing this con-
dition is to use the Known and Unless relations in conjunction. However, this
will check to see if the condition is asserted in the database and will invali-
date the result of the rule firing if the condition is ever asserted. In contrast,
a Defeat assertion represents a condition that will never even be considered
unless the result of the rule firing becomes implicated in a contradiction.

The Defeat metarelation also takes three arguments. The first of these is
the defeat-culprit, the second is the in-supporter, and the last is the defeat-
elective. A Defeat asserts that the defeat-elective may be added to the OUT-
list of each justification of the defeat-culprit that contains the in-supporter in
its IN-list. Thus the in-supporter is a way of distinguishing among justifica-
tions, if needed. If the Defeat is meant to apply to justifications with empty
IN-lists (for example, premise justifications), the word none may be given as
the in-supporter. If any nonempty IN-list should apply, a variable, such as
?X, can be used for the in-supporter. In general, though, a Defeat represents
an argument against a particular reason for believing the defeat-culprit. If the
Defeat is meant to apply to a contradiction justification, the defeat-culprit
should be the term contradiction. In this case, the in-supporter should
unify with one of the antecedents of the rule that produced the contradiction
and the defeat-elective will be added to the OUT-list of the justification of the
contradiction. An example of a Defeat might be

Defeat (Symptom(?Patient 7Symptom)
none
Mistaken-observation(?Patient ?Symptom))

To illustrate how this Defeat and the previous Fiz could be used, con-
sider a conclusion of a high sodium concentration for a patient named Jane,
generated by the following assertion and rules:

Symptom(Jane dehydrated)

Confidential and Proprietary 77 MCC Carnot Project

If Symptom(?Patient dehydrated)
then Conclusion(?Patient low amt H20)

If (Conclusion(?Patient low amt H20)
Remember (Normal (?Patient amt Na)))
then Conclusion(?Patient high conc Na)

Infer Normal (?Patient amt Na)
from Unless(Result(7Patient low amt Na))

If the final conclusion of a high sodium concentration for Jane were to support
a contradiction, belief in this conclusion could be retracted by hypothesiz-
ing that a mistaken observation was made about the symptom which sup-
ported this conclusion. The Fiz focuses on this hypothesis and the Defeat
makes it applicable. Notice that none of the rules includes an Unless clause
concerning mistaken observations.? The Defeat assertion allows the asser-
tion Mistaken-observation(Jane dehydrated)) to be introduced into the
knowledge base and into the OUT-list of the assertion of the symptom during
contradiction resolution. This still does not resolve the contradiction. It still
remains to make the new assertion IN to resolve the contradiction (described
in Section 8.2.2).

There may be more than one Fir that is applicable to a culprit. One
of the uses of the metarelation Preferis to allow the user to specify domain
knowledge to decide between Fizes. Available Fizes are ranked on the basis of
their fix-electives. An alternative would be to consider the fix-culprits. But
the reasoning used is that, ultimately, reasons for distinguishing between
assumptions rest on reasons for belief or lack of belief in their electives. It
is the electives that compete for valid justifications from the contradiction
resolution process. Thus, the electives should be ranked with respect to each
other in terms of preference of attempted justification. RAD contradiction
resolution uses a very general mechanism of preferences to do so.

2The use of the Unless clause in these rules is worth explaining. The second forward
rule has an antecedent that asserts that the patient’s amount of sodium is normal. This
is proven via the backward rule due to the lack of any reason to believe sodium level is
low. By using a backward rule and the relation Remember, an assumption of normality is
introduced into the database. This is the standard way to achieve a “positive” assumption
in a RAD database.

Confidential and Proprietary 78 MCC Carnot Project

One datum is preferred to a second if Prefer is the relation symbol of a
provable assertion for which the first and second arguments unify with the
first and second data, respectively. A preference is such a provable assertion.
The semantics is that belief in the first argument is preferred to belief in
the second for the purposes of the belief revision being performed by contra-
diction resolution. One belief is dominated by another if it is provable that
the latter is preferred over the former. The CRM will first choose a Fiz, the
fix-elective of which is not dominated by that of another. As an example,
suppose we add the following rules and assertions to those above:

If (Lab-test(?Patient low ?Meas 7Chem)
Conclusion(?Patient high ?Meas ?Chem))
then contradiction()

Lab-test(Jane low conc na)

Fix(Lab-test (?Patient ?Degree ?Meas ?Chem)
Lab-test(?Patient 7Degree 7Meas 7Chem)
Test-error(?Patient ?Degree 7Meas 7Chem))

Defeat (Lab-test(?Patient ?Degree 7Meas ?Chem)
none
Test-error(?Patient ?Degree 7Meas 7Chem))

The first rule and assertion will cause a contradiction since the symptoms in-
dicate that Jane should have a high concentration of sodium, but the lab-test
shows just the reverse. Now two Fizes are applicable in this case. A doctor
will generally recheck the symptoms before he rechecks the test because it is
cheap and easy to do so. This domain knowledge can be represented by the
assertion

Prefer (Mistaken-observation(?Patient ?Symptom)
Test-error(?Patient ?Degree 7Meas ?Chem))

which asserts that belief in a mistaken observation is preferable to that in a
lab test error for the purpose of contradiction resolution. Notice also that this

Confidential and Proprietary 79 MCC Carnot Project

preference could have been provable. For instance, this preference could rest
on a default assumption that the patient is not being remotely diagnosed,
in which case it is conceivable that rechecking the symptoms might be ex-
pensive. Such knowledge could be represented by substituting the following
more specific rule for the above preference:

Infer Prefer(Mistaken-observation(?Patient ?Symptom)
Test-error(?Patient ?Degree ?Meas ?Chem))
from Unless(remote-patient(?Patient))

It is sufficiently important to mention again that Fires and Defeats can be
similarly qualified by the antecedents of rules. Also, no single argument of
any of the metarelations need be even partially instantiated. For instance,
the assertion

fix(conclusion(?X ?Y ?Z ?U) symptom(?V 7W) 7T)

would cause an attempt to retract any supporting assertion of a symptom
with any elective possible. Finally, we note that the same preferences used
to choose the order in which Fires are tried may also be used to guide the
dependency-directed backtracking of [Petrie 1987] as explained in the next
section.

The Fiz operation may be summarized as follows. When a contradic-
tion becomes IN, before dependency-directed backtracking is used to find
an elective, the CRM will look for a Fiz. The CRM will find all of the
available Fizes for the IN supporters of the contradiction. If there are none,
then dependency-directed backtracking is used as described below. Given
a set of available Fizes, a best Fizr will be chosen such that its elective is
not dominated by that of another applicable Fiz. In the above example, the
mistaken-observation Fiz would be tried prior to trial of the test-error Fiz,
since the latter is dominated by the former.

When a Fiz is chosen for a culprit, an attempt is made to qualify the Fiz
and make it applicable. This entails a search of the foundations of the culprit.
First, the culprit itself is examined to see if it unifies with the applicable fix-
culprit. This is why the first two arguments of a Fiz may be identical. Failing
a qualification at this level, the IN supporters of the culprit are examined. An
attempt is made to find new Fires which are applicable to these supporters.
A new best Fiz is chosen at this time. The target of the best Fiz becomes

Confidential and Proprietary 80 MCC Carnot Project

the culprit. In the case that an IN supporter becomes the new culprit, the
search begins at that datum. Otherwise, the search continues where it was
interrupted by the attempt to collect new Fizes.

Given that the qualification search proceeds to the IN supporters of some
datum, an attempt is made to qualify the best Fiz for the culprit on each
of the supporters. If the Fiz becomes qualified, then an attempt is made
to make the Fiz applicable and make IN the resulting fix-elective. If the
qualified Fiz is not applicable or the fix-elective cannot be made IN, then the
Fizx is removed from further consideration and another best Fiz is chosen. A
Fiz is also discarded and a new best Fiz chosen when the foundation search
of a culprit is complete and the Fiz has not been successful.

8.2.2 Dependency-Directed Backtracking

If no Fiz can be used to make a culprit OUT, dependency-directed backtrack-
ing is invoked. Given a culprit to make 0UT via DDB, the CRM attempts
to either determine that it is already invalid or invalidate each of its justifi-
cations. A justification is invalidated by making some element (elective) of
its OUT-list IN or (culprit) of its IN-list OUT. The former is tried first. Prefer-
ences are used to select the elective or culprit to pursue first. An elective is
chosen that is not dominated by any other element in the OUT-list. A culprit
is chosen that is not preferable to any other in the IN-list. If the CRM is
in interactive mode, the user will be queried to confirm this choice. The
candidate electives or culprits will be enumerated. The user may respond
with a carriage return only if the first choice is acceptable. Otherwise, one
of the other candidates may be selected by supplying its number.

An elective is IN already if it has already been made IN or currently has a
support status of IN and is not in the transitive closure of the consequences of
data for which the CRM has constructed new consequences. If an elective is
not already IN, the CRM will first attempt to make IN an elective by proving
it. If the proof is successful, a justification for the elective is provided from
the proof. If the elective has a relation symbol for which a query schemata
has been defined, the user will be queried as to the belief in the elective. An
answer of “yes” gives the elective a premise justification. An answer of “no”
indicates that the datum is not suitable as an elective. An answer of “maybe”
causes the elective to be abductively justified as described in [Petrie 1987].
This new justification has the semantics that belief in the elective is assumed

Confidential and Proprietary 81 MCC Carnot Project

in order to resolve the contradiction.

The elective will also receive such a justification if it is provable that belief
in the elective is preferable to belief in the contradiction; the first argument
of such a preference unifies with the elective and the second is the relation
Contradiction. In our example so far, the following preferences would be
sufficient to allow the CRM to make IN the various possible electives:

Prefer(Mistaken-observation(?Patient ?Symptom) contradiction())
Prefer(Test-error(?Patient ?Degree ?Meas 7Chem) contradiction())
Prefer(Result(?Patient low amt 7Chem) contradiction())

Abductive justifications are constructed so as to become invalid later if
belief in the elective is no longer necessary to resolve the contradiction, as
they represent a higher level assumption that belief in the elective is so nec-
essary. It may not be possible to ensure this property for a particular elective
because, as described in [Petrie 1987], the justification for an elective may
produce an odd loop. In such a case, RAD will query the user as to whether
the offending assertion may be safely omitted from the constructed justifica-
tion. (This should be a relatively uncommon occurrence.) In addition, the
elective is not permitted to receive the constructed justification if it would
cause a previous contradiction to become IN.

The metarelation Support may be used to construct a justification for
the elective. The elective is supported if Support is the relation symbol of a
provable assertion with a single argument which unifies with the elective. In
this case, the proven assertion will be added to the knowledge base with a
justification based on its proof, and will be included in the IN-list of a new
justification constructed for the elective. The OUT-list of this justification
will contain the contradiction. In an intuitive sense, Support is the inverse
of Defeat. The latter is used to argue against reason for belief in a culprit.
Supportis used to argue for belief in an elective. In terms of default reasoning,
Support provides a way to indicate additional computation that should be
performed to test the validity of an assumption. Initially, belief in the culprit
may have been justified by failure of some limited attempt to prove the
elective. If this culprit is later implicated in a contradiction, Support can be
used to generate additional proof attempts. If the elective receives a Support
justification, its semantics are that the elective received new support in order
to resolve a contradiction.

Confidential and Proprietary 82 MCC Carnot Project

If an elective cannot be proven and a new justification cannot be con-
structed for it, the CRM will attempt to validate one of the justifications of
the elective, if any, by recursively making all of the data in the OUT-list OUT
and in the IN-list IN. When trying to invalidate a justification and failing
to make some elective from the OUT-list IN, the CRM will attempt to add
elements to the OUT-list by proving any applicable Defeat assertions. The
added elements will also become candidate electives. If no elective can be
made IN, the CRM will pick some element of the IN-list as a new culprit to
make OUT. No element will be chosen that is preferred to another.

As an example of this operation, suppose that, instead of the preferences
above, the following query schema were defined for the example (see Chapter
9 for a description of ask):

ask((result(?x low 7y 7z)
"Is the “a of "a for "a low?"
(?7y 7z 7x) Ot O))
(mistaken-observation(?x ?7y)
"Were you mistaken in observing that “a seemed “a 7"
Cx 7y) Ot O)
(test-error ?x 7y 7z 7u)
"Was the test showing ~a to have a "a “a of "a in error?"
(?x 72y 7z 7u) Ot O))
)

Then when Jane’s lab-test results caused a contradiction, given the initial
simple preference of belief in mistaken observations over that of lab tests,
the CRM would first apply the Fiz about the former, discover that there
was a Defeat which made it applicable, and then try to prove the mistaken
observation. There being no other way for the proof to succeed, and a query
schemata having been defined for the assertion, the user would be queried

Were you mistaken in observing that JANE seemed DEHYDRATED?

If the user answered “no”, the next Fiz would be applied resulting in the
query

Was the test showing JANE to have a LOW CONC of NA) in error?

Confidential and Proprietary 83 MCC Carnot Project

A “no” answer to this query would exhaust the possible Fizes and cause
dependency-directed backtracking to be attempted.

The supporters of the contradiction in this instance are the result of the
lab test and the conclusion about high sodium. The 0UT-list being empty, the
CRM would attempt to make one of these assertions OUT. Since we already
know that the lab test was not in error, the CRM would not be able to defeat
the result of the lab test.

However, the conclusion of a high concentration of sodium rests upon
an assumption of a normal amount of sodium. This assumption would be
retraction if it could be believed that there was a low amount of sodium.
Although there are no backward chaining rules with which to prove a low
amount of sodium, there is a query schemata defined for this assertion. So
the user would be queried:

Is the AMT of NA for JANE low?

An answer of either “yes” or “maybe” would resolve the contradiction. The

“maybe” answer would produce the abductive justification that the prefer-
ence above would. An answer of “no” would result in an unresolvable con-
tradiction since there are no alternative electives except for the possibility of
a mistaken observation, which has been eliminated by a previous query.

8.3 User Hints

We now give some useful hints for the use of contradiction resolution.

8.3.1 General Assertions

If the top-level command wrong is used after a query about the inherited
value of a multiple-valued slot for a frame, contradiction resolution will at-
tempt to invalidate the justifications for the class slot value. This is also true
for general assertions using relations. The semantics are that belief in the
particular value for the slot rests on an assertion, the class slot value, that
all instances of the class have that value for the slot. Contradiction of that
value for one instance of that class entails contradiction of the more universal
assertion that all instances have that value.

Confidential and Proprietary 84 MCC Carnot Project

This is almost always a stronger contradiction than intended. In RAD,
general assertions may not be defeated. As an example, suppose that we have
a class of BANKER with a class value slot of wears(?X:banker watch)
where Wearsis a multiple-valued slot. If we want to contradict that a partic-
ular banker wears a watch, and the class value slot had a premise justification,
resolution of the contradiction might be attempted with a Defeat such as:

defeat (wears(?X:banker watch)
none
there-exist(timeless-banker))

Of course, there must be a way to prove such a defeat-elective. One way
would be to provide a rule such as:

Infer there-exist(timeless-banker)
from (instance*(banker 7X)
timeless(?X))

Such a rule would attempt to prove that each banker was timeless (rules or
a query schemata must be given to allow such a proof). If it were able to do
so for one, then all bankers would lose their watches. RAD does not permit
this: the Defeat will essentially ignored.

If the user anticipates that such a class value slot for a multiple-valued
slot might not hold for all instances of the class, but only represents a typical
value, it is better to forego inheritance and make the slot values individual
assumptions with a rule such as:

If (instance*(banker 7X)
unless(timeless(?X))
then
wears(?X watch)

This rule would allow individual bankers to lack watches without affecting
others.

8.3.2 Retractable Default Assumptions

Default assumptions are those that rest on the lack of belief in assertions
that are neither sufficiently important nor likely to make all attempts to find

Confidential and Proprietary 85 MCC Carnot Project

a reason to believe them without further cause. The last rule of the previous
section is intended to implement the default assumption that bankers typi-
cally wear watches. If the assertion that a banker is “timeless” is provable
by use of a query schemata, then the user will be queried as to whether
each banker is timeless. This is not what we desire in a default assumption.
Rather we want to assume that a banker is not timeless unless we have spe-
cific reason to believe so. But if insufficient domain knowledge is supplied
to justify the elective (typically an Unless condition) during contradiction
resolution, then the assumption is not retractable.

There are three methods in RAD for deferring proof attempts on an
elective in order to retract an assumption. The simplest is to use Known
together with Unless to avoid any attempt to prove the Unless condition
except for checking for a ground instance of the condition already in the
database. The user may supply backward chaining rules which infer the
condition, but they will not be invoked until contradiction resolution time.

The user may want to make limited proof attempts on the Unless con-
dition. If so, Known is not used and the initial proof attempts can be rep-
resented by ordinary RAD backward chaining rules concluding the Unless
condition. Further proof attempts which should be made only at contradic-
tion resolution time can be made by writing RAD backward chaining rules
which conclude the Support metarelation on the Unless condition. For ex-
ample, if the assertion

support(timeless(?X))

were provable, then the CRM would be able to defeat the assertion that some
particular banker wears a watch. This Support may itself have been simply
asserted, proven by a user query, or proven by more complex inferencing.

The other method of deferring proof attempts on an Unless condition is to
omit the Unless clause and defer introduction of an elective in the knowledge
base with Defeats. In this case, assumptions are created when needed by
modification of OUT-lists. However, this only occurs during contradiction
resolution. Prior to a Defeat being used, the assertion of the defeat-elective
will not cause the defeat-culprit to go OUT since it has not yet been made an
assumption resting on lack of belief in that particular elective. Thus Defeats
should be used for rare defaults not usually considered: this introduces an
element of heuristic inconsistency into the database.

Confidential and Proprietary 86 MCC Carnot Project

Finally, electives need neither be proven nor Supported but only assumed
if it is provable that they are preferable to a contradiction. For example, if
the assertion

Prefer(timeless(?X) contradiction)

were provable, the forward rule would also represent a retractable assump-
tion. This uses of Prefer permits the CRM to generate an abductive jus-
tification as described in [Petrie 1987). The general idea is that reductio
ad absurdem reasoning is used. That a banker is timeless will be believed
because it will cause a contradiction not to believe it.

8.3.3 Preferences

Preferences are very general. Even though they are non-numeric, this does
not mean that they may not be based on numbers. For instance, the following
rule decides between two assertions based on their associated costs:

Infer Prefer(auto(?X) auto(?Y))
from (cost(?X ?Costl)

cost(?Y 7?Cost2)

,<(?Cost1 7Cost2))

As another example of generality, it is easy to express the knowledge that
any element of some one set is preferable to that of another. Suppose that
bigger(set-1 set-2) establishes a relationship between two sets. Then we
may prefer elements of one set to another, based on that relationship with
the rule:®

Infer Prefer(?X 7Y)

from (element(?X ?U)
bigger(?U ?V)
element (7Y ?7V))

It is also easy to prefer one kind of assertion over any other. Suppose
that assertions with relation Boy were to be preferred over any other. This
would then be accomplished by asserting:

3Warning: Transitivity is not guaranteed by such rules.

Confidential and Proprietary 87 MCC Carnot Project

Prefer(boy(?X) ?7Y)

When used to determine a choice between Fizes, it is important to remember
that the initial choice of which Fiz to pursue is based on the applicable fix-
electives: as they have been instantiated by unification with the target. For
instance, suppose we have:

Infer Prefer(lies(?X) jokes(?X))
from salesman(7X)

Fix(speaks(?X) known(?7Y) jokes(?Z))

Fix(speaks(?X) known(?Y) lies(7?Z))

If these Fizes were used to resolve a contradiction involving, say, the assertion
speaks (Polly), the preference could not be used to decide between the two
Fizes. the value of ?Z would be unbound at the time the choice of Fizes was
to be made. This can be solved instead by concluding the preference which
instantiates the possible liar or joker:

Infer Prefer(lies(?X) jokes(?7X))

from (says(?X ?7Y)
unless(clown(?X))
salesman(7X))

Finally, when trying to invalidate a justification of a culprit there is no way
to express a preference for pursuing a particular element of the IN-list rather
than one of the OUT-list. All elements of an OUT-list are chosen as electives and
must fail before elements of the IN-list are examined. Preferences are only
applicable in choosing between elements of an OUT-list or between elements of
an IN-list. If there is another choice to be made, the user should restructure
the knowledge representation.

8.4 Final Caveats

During contradiction resolution, the user may answer “yes-no” queries with
“maybe”. This has exactly the same effect as a “no” answer unless the
query is about the belief in the elective that the CRM is currently trying to

Confidential and Proprietary 88 MCC Carnot Project

prove. In that event, the elective receives a valid justification constructed
by the CRM. This does not happen when the user answers “maybe” to a
query about a goal generated by the attempted proof of the elective. In any
case, if the elective cannot be proved and there is no query schemata for it,
contradiction resolution will fail to use it to resolve the contradiction.

In general, the knowledge-guided contradiction resolution described here
is a novel and complex method of computing. For the end-users of expert
systems, it should provide additional functionality. The ability to disagree
with a computer seems highly desirable. However, the novelty, complexity,
and added functionality of this experimental computation can be expected to
make the job of the knowledge engineer even more difficult. The interested
RAD user is encouraged to try examples from this report and to experiment
extensively before committing to development of an application. In any case,
simple applications of the CRM, avoiding the full complexity and power of
the system, are feasible.

Confidential and Proprietary 89 MCC Carnot Project

Chapter 9

Syntax and the User Interface

The user interface is an interpreter that allows the user to enter commands,
which are then executed by RAD. These commands allow the user to create,
use, and modify knowledge bases. Commands can also be stored in files, then
loaded into RAD and executed via a consult command.

In order to interact with agents, there must first be an Extensible Services
Switch (ESS) running that provides communication and tree-space facilities.
The ESS can be started by executing the following command on some work-
station (assumed to be named “Delphi” here)

% ess -comm -client -tss

An arbitrary number of RAD agents and user interfaces can then be started.
For an ESS on a host machine named “Delphi,” an agent named “Zeus,” and
a user logged in as “User,” this is done in the following two steps:

1. Create an agent by executing the following command in a window on
“Delphi” or on another workstation

% radagent ;;This invokes lisp, in the PI package.
:;You must call "run" to start an agent.
<cl> (run ’Zeus ’Delphi)
RAD Inference Engine
Proprietary and Confidential
MCC Carnot Project

90

Connecting to ESS on Delphi+17001
Agent ZEUS is registered with the ESS.

RAD Agent Zeus is ready.

2. Create a user interface process in another window, or on another work-
station, by

% raduser -u User -e Delphi
RAD User Interface
Proprietary and Confidential
MCC Carnot Project

Connecting to ESS on Delphi+17001...
ESS: Aide user-aide is ready.

User:

The prompt, User:, indicates who has said what or whose turn it is to talk.
The complete syntax for the user interface command is

raduser [-a agent]
[-d]
[-e ess-host [ess-port]]
[-u user-name]

The options are
-a initialize connection with the given agent.
-d execute in debug mode; this mode is useful to yacc hackers.

-e find the ess on the specified host and, optionally, at the port where it is
known to be listening. For example, the command

% raduser -e Cromos 17002

Confidential and Proprietary 91 MCC Carnot Project

will cause a search for the ess on the host Cronos at port 17002. Since
we anticipate that users might often use the same ess, we have added
a shell variable RADSERVER that is the name of the default ess host.
So for example, if you put

setenv RADSERVER delphi

in your .cshrc, then you don’t need to use the -e option unless you
wish to override your default. Please notice that the host name must
be in lower case.

-u use the given user-name for a prompt, instead of the default. The default
is the value of the shell variable RADUSER, if present; otherwise, it is
the value of the shell variable USER.

You can connect the user interface to a different ESS by using the ess
command. In either case, once connected to an ESS, the user interface can
directly communicate with any other agent or interface that is also connected
to this ESS. You specify the particular agent with which you want to com-
municate by using the contact command. To communicate with an agent
connected to an ESS different than your own, you must use the location
command to tell your ESS where the agent is. This enables you to communi-
cate with an agent executing anywhere reachable through OSI. The argument
to the contact command is either an agent name or a two-element list whose
first element is a host name and whose second is a port number. An example
of how to use these commands is the following:

(assume that User is currently served by an ESS on delphi,
and that agent Zeus is registered with the ESS on delphi.)
User: ess maui

User is unregistered from the ESS on delphi.

Interface: Looking for ESS at maui port 17001.

Connecting to ESS at maui+17001...

ESS: I am at maui port 17001.
ESS: Aide user-aide is ready.
User: location zeus delphi
User: list-agents

Confidential and Proprietary 92 MCC Carnot Project

ESS: Registered agents and databases:
user is at maui
zeus is at delphi
User: contact zeus
Interface: pinging agent zeus...
zeus: READY
User:

The ess command can also accept either a host name or a host-port pair.
If you are running raduser under a unix shell, then control-C will interrupt
and restart it. If running under GNU Emacs, do control-C control-C instead.

9.1 RAD Syntax

This section describes the syntax for RAD. A RAD program is a sequence of
statements, each of which takes one of the following forms:

e A command, followed by its arguments. Some commands take a vari-
able number of arguments; if there is more than one argument, the
arguments must be enclosed in parentheses.

e A clause, such as an assertion or rule. In this case, an accept command
is implicit.

Unit clauses take the form relation(args). Lists and conses are written as
in Lisp. All escapes to external functions (written in Lisp or (eventually) C)
are prefaced by a comma, but are otherwise written as unit clauses. (They
are written this way, rather than in the syntax of their parent language, for
the sake of compatibility should the externals be implemented differently.)
Variables are prefaced by a question mark.

Backward rules have the form

Infer consequent from antecedents
while forward rules have the form

If antecedents then consequents

Confidential and Proprietary 93 MCC Carnot Project

where consequent is a unit clause and antecedents and consequents are either
unit clauses or lists thereof. Forward rules may have an optional priority as-
sociated with them, which, if present, appears in brackets before the If. Unit
clauses and rules may also be given labels by which they may be referenced
later. This is done by writing the label name, followed by a colon, before the
clause.

Users have great freedom in formatting their input as they like for the
sake of readability. Input to RAD is not case-sensitive, except that case is
preserved within literal strings, and for external tokens in the event that the
external language is case-sensitive. Symbols can be written with any of the
characters

A,..,Z,a,..,2,0,..9,—, [,

Spaces, tabs, and newlines are mostly insignificant, except as follows:

o These characters normally serve to delimit lexical tokens. They can
generally be omitted in cases where other punctuation is involved. For
example, a rule label like "foo:" will be parsed as two tokens.

e Comments, which are prefaced by a semicolon, extend to the end of
the input line.

e There can be no whitespace between a relation or function name and
the left parenthesis that begins its argument list. This is necessary to
distinguish between strings like "foo(bar)", which is a single term,
and "foo (bar)" which is two. Likewise, there can be no whitespace
between the name of a typed logical variable and its type specifier:
"?x:baz" is a typed logical variable, whereas "?x :baz" is an untyped
variable followed by a Lisp keyword.

e When a syntax error is detected, the parser applies a very simple heuris-
tic: the remainder of the input line is discarded, and an attempt is made
to begin parsing the next statement at the next input line.

The following example is a simple consult file that uses most of the fea-
tures of the above syntax. Almost all operations, particularly changes to the
class lattice, are in the form of assertions on appropriate primitive relations.
Thus, a RAD consult file can consist mostly of clauses, with the accept
being implicit.

Confidential and Proprietary 94 MCC Carnot Project

;;; Echo assertions
echo t

;;; Turn syntax-checking off
check nil

;33 Consult two files
consult ("my-utilities.rad" "my-classes.rad")

;;; Create three new classes
assert-instance (class mammal)
assert-instance (class dog cat)

;3; Manipulate the class lattice
assert-subclass (mammal dog)
assert-subclass (mammal cat)

;;; Define append using backward rules
append(nil 7x 7x)

infer append((?x . ?7tail) ?y (?x . 7newtail))
from append(7tail ?y ?newtail)

;;; Create a forward rule with priority of 20
frulei: [20] if (a(?x) b(?x) <(?x))
then d(?7x)

;;; Reference an external function
foo-rule: infer foo(?x 7y 7z 7w)
from =((?x . ?y)
,assoc(?z 7w :test #’eq)) ; Lisp escape

sys-rule: infer system-call(?x ?y)
from =(?y ,system(?x)) ; C escape

Confidential and Proprietary 95 MCC Carnot Project

9.2 The RAD Reader

The RAD reader is a collection of functions in the RAD agent that takes
input from the parser and translates it into a form that is usable to the rest
of the system. Part of the RAD reader’s job is to dereference the names of
objects that are passed to it. For example, in the following command, the
strings “man” and “mortal” are taken to be the names of the relations Man
and Mortal, respectively; these are defined if they do not already exist. This
is because the RAD parser will recognize them as relations and will pass this
information in the code that it generates for the agent.

User: Infer mortal(?x) from man(?x)

User: man(Socrates)

Likewise, the string “?x” is taken to be the name of a logical variable,
7X. As for “Socrates”, it depends on whether or not “Socrates” is the name
of something existing in the knowledge base. If SOCRATES were, for example,
an instance of the class PHILOSOPHER, then the string would be taken
to refer to that instance. However, if “Socrates” were not the name of any
knowledge base object, it would simply be taken to stand for the symbol
SOCRATES.

A common mistake, therefore, would be to define some string that has
previously been interpreted as a symbol name to be the name of something
else. Suppose, for example, the following were entered:

User: assert-instance (class philosopher)
User: man(socrates)
User: assert-instance (philosopher socrates)

User: 7 man(socrates)

The query will unexpectedly fail. This is because the “Socrates” to which the
query refers is the instance of PHILOSOPHER, whereas the one to which
the assertion refers is just a symbol. (Of course, the query will work if the
assertion and the assert-instance commands are interchanged.) RAD will

Confidential and Proprietary 96 MCC Carnot Project

generate a warning if the user attempts to create an object with the same
name as a symbol that it has previously encountered, but the operation will
be performed anyway.

9.2.1 The Slash - /

The slash is used extensively in the names of a number of objects that are
internal to RAD. Its use in the names of user-defined objects is therefore
potentially dangerous and strongly discouraged.

9.2.2 RAD Reader Macros

A number of syntactic constructs are implemented at the reader level by
macros. These signal the reader to perform some kind of expansion on the
input.

Question Mark — ?

By itself, the question mark expands into the name of the function PROVE,
which is an internal RAD function that implements a user query. Before
another question mark, it expands into PROVE-ALL-INSTANCES, the RAD
function that proves all instances of a goal.

A question mark appearing before anything else is, of course, taken to be
the first character in the name of a logical variable. Avoid any use of the
question mark that is not consistent with these conventions.

Comma —,

The comma is intended to provide a more concise and usable interface to
Lisp than is provided by function declarations and the relations Is and Do.
In general, the appearance of a comma in the antecedent of a forward or
backward rule indicates that the following expression should be evaluated in
Lisp. The reader examines the expression and generates appropriate calls to
the relation Is. For example:

Infer q(?x ?y) from (,£f(7x) ,7y))

is translated internally to

Confidential and Proprietary 97 MCC Carnot Project

Backward Rule Q-1 (I
Infer Q(?X ?7Y) from (IS(NIL (NOT (F ?X)))
IS(NIL (NOT (EVAL ?Y))))

Commas can appear directly before a Lisp expression in the antecedent
of a forward or backward rule, as in

Infer p(?x) from ,f(7x)

A proof of p(?x) will succeed as long as the lisp function (F ?X) does not
evaluate to NIL for the current binding of 7X. Symbols can also be evaluated
using the comma, although special forms cannot.

Expressions with commas can be used within relations, for example:

Infer p(?x) from q(,*foo*)
is translated to

Backward Rule P-2 (IN)
Infer P(?X) from (IS(?/NEWO (EVAL (QUOTE *F00*)))
‘Q(?/NEWO0))

Note that the system automatically generates a logical variable to hold the
result of the symbol evaluation.

Most importantly, however, the bindings of logical variables can be eval-
uated in Lisp. For instance,

Infer p(?7x) from ,7x
Backward Rule P-3 (IN)
Infer P(?X) from IS(NIL (NOT (EVAL 7X)))

succeeds if the current binding of 7X is (CAR ’(A)), or any Lisp expression
that does not evaluate to nil.

Logical variables can appear anywhere in the scope of a comma. For
instance, the following are all legal:

Infer q(?x ?7y) from p(,7x ,7y)
Infer p(?x) from ,f(7x)
Infer q(?x ?y) from p(,£(?x) ,%y)

Confidential and Proprietary 98 MCC Carnot Project

Functions that are referenced within the scope of a comma must be visible
in the package PROT. This is true of symbols as well. The usual Common
Lisp syntax conventions apply when referring to objects in other packages.
Passing an unbound logical variable to Lisp, however, is not in itself an error.
In this case, the variable will evaluate to itself.

Since commas get compiled into calls to Is, the user should observe the
same care as if the use of Is were explicit. In the following example,

Rule-1: If ,f(?x) then p(7x)

Forward Rule RULE-1 (IN)
If IS(NIL (NOT (F ?X)))
then P(?X)

RULE-1 will never fire, since Is is not triggerable. Another problem can arise if
all references to a logical variable in the head of a forward rule appear within
the scope of a comma. Such a variable will never be bound to anything. For
instance,

I1f p(,?x) then q(7x)
Forward Rule FRULE-1 (IN)
If (IS(?/NEWO (EVAL 7X))
P1(?/NEWO))
then
P(?X)

There is no way to assign a binding to ?X at top level. Hence the rule will
not behave as one might expect.

The RAD reader allows only the first comma preceding a Lisp expression
or logical variable to be a macro character. Subsequent commas revert to
their traditional meaning, and must occur within backquoted expressions.
For example,

Infer foo() from ,,X

produces an error. If a sequence of evaluations is desired, then it must be
made explicit, to wit:

Infer foo() from ,(eval x)

Confidential and Proprietary 99 MCC Carnot Project

Lisp macros can also be evaluated, but caution should be exercised since
macro expansion takes place at rule compilation time rather than at proof
time, even though this is not apparent from looking at the rule. For example,
if the following macro is defined in lisp,

(defmacro bar (x) ‘(progl t (format t ‘‘~&Hi "A’’ ,x)))
then RAD would have the following behavior:

User: Infer baz(?x) from ,bar(?x)

Zeus: Backward Rule BAZ-1 (IN)
Infer BAZ(?X) from IS(NIL (NOT (BAR 7X)))

User: 7 baz(mom)
Zeus: Hi MOM
Zeus: Yes.

If the macro is then redefined as follows
(defmacro bar (x) ‘(progl t (format t "“&Bye "A" ,x)))
then RAD would have the following behavior:

User: 7 baz(mom)
Zeus: Hi MOM
Zeus: Yes.

In order to produce the output “Bye MOM” one would have to erase BAZ-1
and reassert the same rule.

Unless

Although users can normally think of Unless as a built-in relation, it is im-
plemented as a macro. Unfortunately, this is not completely transparent at
the user interface level. For example,

Infer inanimate(?x) from unless(1living(?x))

Backward Rule INANIMATE-1 (IN)
Infer INANIMATE(?X)
from
JUNLESS/0(?X PI::*ARG-END-SYMx LIVING)

Confidential and Proprietary 100 MCC Carnot Project

/Unless/0 is a relation that is automatically created by macro expansion.
Although this expansion is not transparent, users need not concern them-
selves as the semantics remain the same as if Unless were actually defined as
a relation.

9.2.3 Error Detection

In addition to the syntactic checking performed by the parser, the RAD
reader tries to detect errors that result from input that is meaningless in
light of the contents of the knowledge base. While some errors will still
throw the user into the debugger, many common ones can be easily detected
at the reader level.

Error detection is enabled at the start of radagent. Users can turn error
detection off and on via the check command.

Errors fall into two classes, depending on their severity:

Warnings are printed when the user tries to do something questionable,
where the action is otherwise syntactically correct and where aborting
the action would be difficult or costly. The action is performed anyway.
An example would be attempting to define a frame whose name had
previously been used as an uninterpreted symbol.

Errors are printed when faulty syntax is detected before a command is
processed. The command is not executed and control returns to RAD
top level. An example would be supplying too many arguments to a
top-level command.

Warnings
e Attempt to redefine assumed symbol: A warning is printed if an object
is created that shadows an uninterpreted symbol that the RAD reader
has previously encountered. For example:
foo(bar)
User: assert-instance (class bar)

Zeus: Warning: BAR, previously assumed to be of type

Confidential and Proprietary 101 MCC Carnot Project

SYMBOL, is being redefined to be of type CLASS.

o Attempt to redefine object: RAD is creating an object that shadows an
object previously defined by the user. For example:

User: £-1()
User: £()

Zeus: Syntax Warning: Attempt to redeclare or redefine
the predicate F-1 to be of type ASSERTION.

The new definition will shadow the old.

Note that an actual error results if the user attempts to redefine an
object (other than a symbol). See below.

o Relation arity violation: A relation has been supplied with the wrong
number of arguments. This is normally an error (see below); a warning
is generated only in the case of the ask and translate commands:

argument-types(baz (symbol))
translate baz(?x ?y) "“A is a “A BAZ!"™ (7x 7y)

Syntax Warning: The arguments to the predicate BAZ,
?X ?Y, are in excess of its arity (1).
Errors
o Type error: An argument to a relation was of the wrong type.
User: assert-instance (relation foo)
User: argument-types(foo (class))

User: foo(5)
Zeus: The first argument to FOD, 5, is not of type CLASS.

Confidential and Proprietary 102 MCC Carnot Project

o Attempt to redefine: The user has attempted to redeclare or redefine
an object.

User: dog(5)
User: if di1() then assert-instance(relation dog-1)

User: d1()
Zeus: Attempt to declare Assertion DOG-1 to be a RELATION.

o Relation arity violation: A relation was referenced with the wrong num-
ber of arguments.

User: argument-types(foo (symbol))

User: foo(dog cat)

Zeus: Syntax Error: The arguments to the relation F0O,
DOG CAT, are in excess of its arity (1).

o Unrecognized type: The user qualified a logical variable to be an un-
known type.

User: assert-instance (relation foo)
User: ? foo(?x:dawg)
Zeus: Syntax Error: DAWG is not a recognized type.

9.3 Top Level Commands

This section describes the top level commands available to the user within

the stream interface. They can be entered from a keyboard or consulted by
RAD from a file.

9.3.1 Creating and Modifying a Knowledge Base
accept pattern — (&rest patterns)

This command adds its arguments to the knowledge base, each with a jus-
tification consisting of the premise that an agent said the pattern and the

Confidential and Proprietary 103 MCC Carnot Project

default that the agent is reliable, i.e., the agent cannot be proven to be un-
reliable. Note that the command name accept is typically omitted, without
causing any ambiguity.

User: accept has-son(King Prince)

User: has-son(King Duke)

If the relation Has-son did not already exist in the knowledge base, it would
be created and given an arity of two. However, if KING, Duke, and PRINCE

did not already exist, they would be accepted as uninterpreted symbols by
RAD.

An accept may also be a backward rule:

User: Mortality-rule: Infer mortal(?x) from man(?X)
Zeus: Backward Rule MORTALITY-RULE accepted.

Again, the relations Man and Mortal are created if they do not already exist.
The user-supplied name, "Mortality-rule:", is optional.
Finally, an accept may be a forward rule:

User: If mother(?x 7y) then parent(?x ?y)

The rule may be preceded by a symbol to be used as the name of the rule
andjor by a two-digit priority:

User: Parent-rule: [25] If mother(?x ?y) then parent(?x ?y)

assert pattern — (&rest patterns)

This command adds its arguments to the knowledge base, each with a premise
justification. Note that the command name assert is typically omitted,
without causing any ambiguity.

User: assert has-son(King Jester)
Zeus: Assertion HAS-SON-7 (IN)

An assertion may also be a backward or forward rule.

Confidential and Proprietary 104 MCC Carnot Project

assert-instance (class &rest names)

This command creates instances of the given class. If names is omitted, a
name for the instance is generated by the system.

User: assert-instance (class dog cat)

User: show dog
Zeus: DOG is an instance of CLASS

Subclass of: none
Subclasses: none
Instances: nomne

assert-subclass (super Erest subs)

This command causes super to be made an immediate superclass of each of
the subs. All arguments must be existing classes.

User: assert-subclass (thing animal vegetable mineral)

User: show thing
Zeus: THING is an instance of CLASS

Subclass of: none
Subclasses: ANIMAL, VEGETABLE, MINERAL
Instances: none

clear

This command reinitializes RAD by removing data and rules that are not
system-defined.

consult file — (&rest files)

This loads the indicated consult files into RAD. The files must be written as
strings.

consult "testl.rad"

Confidential and Proprietary 105 MCC Carnot Project

contradict detum-name

This command takes an existing datum as an argument and contradicts it.
See also wrong, which can be used to contradict the last proof result.

erase datum-name — (8rest data)

The given data are to be made OUT. The JTMS then updates the support
status of other data accordingly.

User: erase mortal-1
Zeus: OK.

User: why mortal-i
Zeus: Assertion MORTAL-1 (ouT)
MORTAL (SOCRATES)

JUSTIFICATION:
in-list NIL
out-list NIL

was erased by assertion ERASED-1

User: show erased-1
Zeus: Assertion ERASED-1 (IN)
ERASED(MORTAL-1)

kill thing — (&rest things)

This deletes objects from the knowledge base. The objects are actually re-
moved and their names are bound to a special symbol, DELETED. Contrast
this with erase, which leaves data around, but puts them OUT. Moreover,
erase only makes sense for data, i.e., things that actually have a support
status, whereas kill can be used on data, relations, and frames.

User: kill (foo bar-1)

Confidential and Proprietary 106 MCC Carnot Project

remember

When typed after a successful query, remember creates a datum represent-
ing the result of that query and asserts it. This is primarily useful for saving
the result of a long proof so that the backward chainer would not have to
repeat the proof.

User: ? likes(joe 7x)
Zeus: LIKES(JOE CANDY)

User: remember
Zeus: Remembered as Assertion LIKES-2.

User: show likes-2
Zeus: Assertion LIKES-2 (IN)
LIKES(JOE CANDY)

remove-subclass (super rest subs)

This removes all parent-child links between super and each element of subs.
All arguments must be classes, of course.

User: remove-subclass (thing animal)

reply agent “clause”

Reply causes clause to be sent to the agent agent. The clause can be a
datum, rule, or value, but it must be in the form of a string.

Zeus: P(A ?X)7
User: reply zeus "P(A 5)"

tell agent clause

Tell causes clause to be asserted in the knowledge base of the agent agent, as
described in Chapter 2. The justification for clause has an IN-list consisting of
reliable(SOURCE-AGENT) and said (SOURCE-AGENT CLAUSE),and an empty
OUT-list, where SOURCE~AGENT is the name of the agent that executed the
relation Tell. Note that clause may be a rule as well as a unit clause.

Confidential and Proprietary 107 MCC Carnot Project

toggle datum-name — (&rest data)

This command changes the support status of datum-name from IN to OUT or
OUT to IN, as appropriate. Any other datum dependent on datum-name may
change its support status also.

wrong

This command is used to contradict the last goal proven by ? or next. See
also contradict, which can be used to contradict an existing datum.

9.3.2 Querying and Examining Knowledge Bases and
Databases
? goal

This command attempts to prove a goal by backward chaining. If the query
succeeds the solution is printed, with appropriate variable bindings if vari-
ables were present in the goal pattern. If the query fails, then NO SOLUTION
is printed.

User: age(hilary 7)

Zeus: Assertion AGE-1 accepted.

User: 7 age(hilary 7x)
Zeus: AGE(HILARY 7)
?? goal

This is like 7, except that it constructs all proofs of a goal pattern. All
successfully proved instances of the goal are output immediately.

User: 77 age(7x 7)
Zeus: AGE(HILARY 7)
AGE(JENNIFER 7)

Confidential and Proprietary 108 MCC Carnot Project

explain

Explain, when typed after a successful query, shows why the query suc-
ceeded. For example,

User: ? mortal(socrates)
Zeus: MORTAL (SOCRATES)

User: explain
Zeus: MORTAL(SOCRATES)

was derived from the following:
Assertion MAN-1 (IN)
MAN (SOCRATES)

Backward Rule MORTAL-1 (IN)
Infer MORTAL(?X) from MAN(?X)

next

When typed after a successful call to 7, next initiates another proof attempt
of the same goal in order to derive another solution, until all instances of the
goal have been derived.

User: 7 age(?x 7)

Zeus: AGE(HILARY 7)

User: next
Zeus: AGE(JENNIFER 7)

User: next
Zeus: NO SOLUTION

query agent goal

Query succeeds if goal is provable by the agent agent. The agent returns all
possible proofs of goal, which are then used one at a time. For each successful
proof, an entry for the proof is created in a table of remote proofs, with a
pointer to agent who supplied the proof.

Confidential and Proprietary 109 MCC Carnot Project

query-once agent goal

Query-once succeeds if goal is provable by the agent agent. If so, it creates
an entry for the proposition in its table of remote proofs, with a pointer to
agent who supplied the proof.

db-query database pattern

Db-query succeeds if the database database contains any tuples that match
pattern. The database returns all possible matching tuples, which are then
used one at a time by the agent that issued the db-query command. In-
ternally, the interface converts this command into. an equivalent query in
SQL syntax that is processed according to the RDA protocol. For this query
to succeed, the database must already be opened (see the commands db-
connect and db-disconnect).

User:
Zeus:
User:
User:
Zeus:

User:

contact zeus
READY
db-connect TravelDB delphi

db-query TravelDB hotelinventory(?hotel ?city)

hotelinventory("Hilton" "San Diego")
hotelinventory("Sheraton" "Denver")
hotelinventory("Hyatt" "Austin')
db-disconnect TravelDB

show object — (&rest objects)

Show displays the printed representation of its arguments, which may be
data, relations, or frames.

User:
Zeus:

show age-1
Assertion AGE-1 (IN)

AGE(HILARY 7)

User: show dog

Zeus: DOG is an instance of CLASS
Subclass of: none
Subclasses: none
Instances: FIDO

Confidential and Proprietary 110

MCC Carnot Project

why datum

This command explains the support status of a datum. If the datum is IN,
the IN- and OUT-lists of its justification are printed. If it is OUT, but has
justifications, then the data that invalidate its justifications are printed.

User: why mortal-1
Zeus: Assertion MORTAL-1 (IN)
MORTAL (SOCRATES)

was derived from the following:
Forward Rule FRULE-0 (IN)

If

MAN(?X)

then

MORTAL (?X)

Assertion MAN-1 (IN)
MAN (SOCRATES)

User: erase mortal-1
Zeus: OK.

User: why mortal-1
Zeus: Assertion MORTAL-1 (ouT)
MORTAL (SOCRATES)
JUSTIFICATION:
in-list (FRULE-0 MAN-1)
out-list NIL

was erased by Assertion ERASED-1

Confidential and Proprietary 111 MCC Carnot Project

9.3.3 Customizing the Interface
ask pattern string bound-vars unbound-vars t-or-nil prompts

This command creates an object called a query schema, which determines a
format in which the user may be prompted for information during the course
of a proof, by means of the built-in relations Ask and Ask-once (see Chapter
6). A query schema consists of the following components:

pattern is a clause, possibly containing variables, with which the query
schema is associated.

string is a string to be used as the second argument to the Lisp function
FORMAT; it may contain occurrences of "A.

bound-vars is a list of some of the variables that occur in pattern; its
length must be the number of occurrences of “A in string.

unbound-vars is a list of the variables occurring in pattern that do not
belong to bound-vars.

t-or-nil is either T or NIL, depending on whether or not the query deter-
mined by string requires a yes-or-no response.

prompts is a list of strings of the same length as unbound-vars.

A query schema is relevant to a goal if the goal is an instance of its pattern
with each variable in bound-vars replaced by a constant. When the user is to
be queried for an instance of a goal that is being processed by the backward
chainer, the list of query schemata associated with the relation of the goal
is examined until either the end of the list is reached or one is found that is
relevant to the goal. In the first case, the default format (see the definition
of Ask) is used for the query. Otherwise, a format is determined by the
relevant query schema as described below.

As an example, consider the command

ask birthplace(?X ?Y ?Z) "Enter the birthplace of “A"
(?X) (?Y ?Z) NIL (" city: " " state: ")

Suppose that after this command has been issued, the user is to be queried
for an instance of the goal BIRTHPLACE(MICHAEL ?C ?S). Since this goal is
an instance of the pattern BIRTHPLACE(?X 7Y ?7Z) with 7X (the only variable
in bound-vars) replaced by the constant MICHAEL, the query schema defined
by the command is relevant. The string is then printed with ~A replaced by
MICHAEL. The user is then prompted for values of ?Y and ?Z:

Confidential and Proprietary 112 MCC Carnot Project

Enter the birthplace of MICHAEL
city: BOSTON
state: MASSACHUSETTS

In this case, the resulting assertion
BIRTHPLACE (MICHAEL BOSTON MASSACHUSETTS)

is successfully matched against the goal.
If t-or-nilis T, as in

ask birthplace(?X 7Y ?Z) "Do you know where “A was born?"
(?X) (?Y ?7Z) T (" city: " " state: *)

then a yes-or-no response is expected after string is printed, determining
whether to proceed with the query:

Do you know where MICHAEL was born? (Y or N) Yes
city: BOSTON
state: MASSACHUSETTS

Do you know where BOB was born? (Y or N) No

Query schemata are matched against a goal in the order in which they
were originally defined. If several query schemata are relevant to a goal,
than this order is significant. Generally, they should be entered in order of
decreasing specificity.

ask birthplace(?X ?Y ?Z) "Was "A born in "A,7A?"
@x?Y72) OTOQO

ask birthplace(?X ?Y ?Z) "Do you know where “A was born?"
(?X) (?Y ?Z) T (" city: " " state: ")

ask birthplace(?X ?Y ?Z) “Do you know anyone born in "A7"
(?2) (?X ?Y) T (" who? " " what city? ")

In this case, all three schemata are relevant to the goal BIRTHPLACE(JIM
CLEVELAND OHIO), but only the first would be used in querying about this
goal.

Confidential and Proprietary 113 MCC Carnot Project

check t-or-nil

The check command controls whether or not the agent checks for errors in
the parser input. It takes one argument, which can be T or NIL: check nil
suppresses the checking for and printing of errors and warnings, while check t
turns error detection back on. Note that this applies only to the agent: the
syntax checking performed by the parser cannot be disabled.

echo t-or-nil

This command turns on the echoing of user-defined assertions and rules. This
behavior is enabled by default when RAD starts up, and can be shut off with
echo nil.

translate pattern string vars

This command specifies translation schema to be associated with certain
patterns, in order that they can be printed in a more readable form. Each
schema is specified by three things:

e A patiern to be translated when printed.

e A string specifying the translation. This should be a string acceptable
to the format function, with “A’s used to mark the place of logical
variables.

e A list of variables that are passed as arguments to format. These must
be a subset of the variables appearing in patiern.

For example,

translate age(?x 1) ""A is a year old." (7x)

translate age(?x ?y) "“A is “A years old." (7x ?y)

creates two query schema associated with the relation Age. If one were to
assert AGE(GEORGE 15), the following would be printed:

Assertion AGE-1 (IN)
GEORGE is 15 years old.

Confidential and Proprietary 114 MCC Carnot Project

Note that the translation schema will be matched in the order they are
declared. Users should therefore enter the most specific schema first.

9.3.4 Miscellaneous Commands
bgrind reln

This takes a relation reln and outputs the WAM code generated for its back-
ward rules.

fgrind reln

This command takes a relation reln and outputs the WAM code generated
for its forward rules.

contact arg

The contact command is used to connect the user interface to different
agents. For agents connected to a different ESS than the one to which you
are connected, you must first issue the location command. This enables a
user to communicate with an agent executing anywhere that is reachable by
TCP/IP or OSI. The argument to the contact command is either an agent
name or a two-element list whose first element is a host name and whose
second is a port number.

db-connect database host

The db-connect command is used to connect the user interface to a database.
This causes an open-db instruction in the RDA protocol to be executed. The
arguments to the db-connect command are a database name and the name
of the host where the database is located.

db-disconnect database

The db-disconnect command is used to disconnect the user interface from
a database. This causes an close-db instruction in the RDA protocol to
be executed. The argument to the db-disconnect command is a database
name.

Confidential and Proprietary 115 MCC Carnot Project

ess arg

The ess command is used to connect the user interface to an ess and, thereby,
directly to the set of agents that the ess serves. The argument to the ess
command is either a host name or a two-element list whose first element is
a host name and whose second is a port number.

location arg

The location command is used to connect the user interface to agents that
are connected to and serviced by other ESS’s. The two arguments to the
location command are an agent name and the host where that agent’s ESS
is executing.

halt-agent agent

The halt-agent command is used to stop the execution of an agent with
which you are in contact (see the contact command). The argument to this
command is the name of the agent to be halted. The agent unregisters itself
from its ESS and returns control to the operating system.

list-agents

The list-agents command is used to display all of the agents and databases
that are known to the ESS, for example

User: list-agents

ESS: Registered agents and databases:
user is at delphi
zeus is at delphi
traveldb is at olympus

User:

help command

This command provides a simple online help facility for most commands.

User: help assert-instance
Zeus: ASSERT-INSTANCE (Class &Rest Names)

Confidential and Proprietary 116 MCC Carnot Project

quit

This exits the user interface and returns the user to the operating system.
~ This does not affect the operation of any agents with which the user interface
may have been communicating.

Confidential and Proprietary 117 MCC Carnot Project

Chapter 10

Installation

10.1 Environment

The Distributed Communicating Agent software currently operates on the
following system architectures:

e Sun 4 with SunOS 4.x and Allegro 4.0.1 Common Lisp
e Sun 3 with SunOS 4.x and Allegro 4.0.1 Common Lisp

e DECstation 5100 with Ultrix V4.2 and Lucid Common Lisp Version
4.0

In order to build the Distributed Communicating Agent software, you must
have the following software tools installed:

e C development tools, e.g., cc, libc.a, and include files
e C library containing socket system calls, if not already in libc.a
¢ Common Lisp

Additionally, in order to execute the software, you must have a Rosette
Extensible Services Switch (ESS) executing with its client, communication,
and tree-space options available.

118

10.2 Sources

The source files for the Distributed Communicating Agent software are in four

directories. The files are described relative to a Carnot root directory, typ-
ically /usr/carnot. The shell ENVIRONMENT variable CARNOTDIR must
be set to this prior to making any of the components, e.g.,

% setenv CARNOTDIR /usr/carnot
The four directories, depicted in Figure 10.1, contain

1. sources for RAD agents,
~carnot/semantic/dca/release/base/src/agent/*

2. sources for RAD interfaces (human agents),
~carnot/semantic/dca/release/base/src/interface/*

3. a library of definitions for built-in RAD commands and funtions,
~carnot/semantic/dca/release/base/src/radlib/#*

4. a library of example knowledge bases, some of which are described in
the appendix to this document

~carnot/lib/dca/#*

10.3 The MAKE Process

Installation of the Distributed Communicating Agent software is automated
by Makefiles. However, you need to define several MAKE variables for your
particular environment. The carnot/config directory contains configu-
ration Makefiles for the supported architectures. Examine the appropri-
ate file and modify it for your environment. In particular, set the value
of the variable RADLISP to the path where your lisp is located. Then run
the carnot/Makefile. For example, to compile and install the software on a
Sun4, do the following from CARNOTDIR:

Y cmake semantic-svcs

Confidential and Proprietary 119 MCC Carnot Project

Figure 10.1: Organization of the Distributed Communicating Agent software

Confidential and Proprietary 120 MCC Carnot Project

— [0 =

—

IS

3 3

] 3] =3 B3

i A | e ol | i et

Appendix A

Multiagent Tic-Tac-Toe

This section of the document describes a RAD implementation of tic-tac-
toe involving four agents: a referee, two players, and a human observer.
The human observer communicates with the referee to initiate the game.
The referee 1) determines if the two players are ready to play the game,
2) finds out if the players have a preference for “X” or “O” and assigns
marks accordingly, 3) “flips a coin” to determine which player goes first,
4) successively asks each player for his next move, 5) checks each move for
legality, 6) determines when a game is over, and 7) declares a winner (if any).
The players each have knowledge about tic-tac-toe and a strategy for playing
it.

A.1 Knowledge Base for Referee

;;¥*%* Class and Instance Declarations **x*

assert-instance(class player)
assert-subclass(agent player)
assert-instance(player PlayerA PlayerB)
assert-instance(agent referee)
assert-instance(class game)
assert-instance(class nought-or-cross)
assert-instance(nought-or-cross 0 X)
assert-instance(class index)

121

assert-instance(index zero one two)
assert-instance(class agent-capability)
assert-instance(agent-capability tic-tac-toe-playing)
assert-instance(game gamel)

; ;%*% Relation Declarations ***

assert-instance(relation modl)
argument-types(modl (index index))

assert-instance(relation mod2)
argument-types(mod2 (index index))

assert-instance(relation expertise) ; multiple-valued
argument-types(expertise (agent agent-capability))
specificity-ordered(expertise)

assert-instance(relation awake)
argument-types(awake (agent symbol))
single-valued(awake)
specificity-ordered(awake)

assert-instance(relation abnormal)
argument-types(abnormal (agent))

assert-instance(relation play-tic-tac-toe)
argument-types(play-tic-tac-toe (player player game))

assert-instance(relation tic-tac-toe)
argument-types(tic-tac-toe (player player game))

assert-instance(relation mark)
argument-types(mark (player game mought-or-cross))
single-valued(mark)

specificity-ordered(mark)

assert-instance(relation prefer-mark)

Confidential and Proprietary 122 MCC Carnot Project

argument-types(prefer-mark (player nought-or-cross))
single-valued(prefer-mark)
specificity-ordered(prefer-mark)

assert-instance(relation opposite-mark)
argument-types(opposite-mark (nought-or-cross nought-or-cross))
single-valued(opposite-mark)

specificity-ordered (opposite-mark)

assert-instance(relation coin-toss-result)
argument-types(coin-toss-result (game number))
single-valued(coin-toss-result)
specificity-ordered(coin-toss-result)

assert-instance(relation goes-next)
argument-types(goes-next (game fixnum player))
specificity-ordered(goes-next)

assert-instance(relation other-player)
argument-types(other-player (player player game))
single-valued(other-player)
specificity-ordered(other-player)

assert-instance(relation board)
argument-types(board (game index index nought-or-cross))
specificity-ordered(board)

assert-instance(relation game-over)
argument-types (game-over (game))
specificity-ordered (game-over)

assert-instance(relation tie-game)
argument-types (tie-game (game))

specificity-ordered(tie-game)

assert-instance(relation wins-game)
argument-types(vins-game (player game))

Confidential and Proprietary 123 MCC Carnot Project

specificity-ordered(wins-game)

assert-instance(relation move)
argument-types(move (player index index game))
specificity-ordered(move)

assert-instance(relation okay-move)
argument-types (okay-move (game player index index))
specificity-ordered(okay-move)

; ;**x End of Relation Declarations ***

mod1(zero one)
mod1(one two)
modi(two zero)

mod2(zero two)
mod2(one zero)
mod2(two omne)

expertise(referee tic-tac-toe-playing)
opposite-mark(X 0)
opposite-mark(0 X)

Infer awake(?Agent Yes)
from unless(abnormal (?Agent))

;; Begin a game of tic-tac-toe between two Players.
;; Make sure the Players are ready to play...

Begin-tic-tac-toe:

If (play-tic-tac-toe(?Playerl ?Player2 ?Game)
query-once(?Playerl awake(?Playerl Yes))
query-once(?Player2 awake(?Player2 Yes)))

then (tic-tac-toe(7Playerl ?Player2 7Game)

other-player(?Playeri 7Player2 7Game)
other-player (?Player2 ?Playerl ?Game)

Confidential and Proprietary 124 MCC Carnot Project

tell(7Playerl other-player (?Playerl ?Player2 ?7Game))
tell(?Player2 other-player(7Player2 ?Playerli ?Game)))

Trigger-mark-choice:
If (tic-tac-toe(?Playeri 7Player2 7Game)
excuse(unless(marks-chosen(?Game))))
then (preference-rule-enabled(?Game) ;Order of consequents
no-preference-rule-enabled(?Game)) ;determines order of
;rule firing.

Choose-marks-1: ;give Playerl his preference
If (tic-tac-toe(?Playeri ?7Player2 ?Game)
excuse(unless(marks-chosen(?Game)))
preference-rule-enabled(?Game)
query-once(?Playeri prefer-mark(?Playeri ?Mark))
opposite-mark(?Mark 70ther-mark))
then (mark(?7Playerl 7Game 7Mark)
mark(?Player2 ?Game 70ther-mark)
tell(?Playerl mark(?Playerl ?Game ?Mark))
tell(?Playerl mark(?Player2 ?Game 70ther-mark))
tell(?Player2 mark(?Playeri ?Game 7Mark))
tell(?Player2 mark(?Player2 7?Game ?0ther-mark))
marks-chosen(?Game))

Choose-marks-2: ;give Player2 his preference
If (tic-tac-toe(?Playerl ?Player2 7Game)
excuse(unless(marks-chosen(?Game)))
preference-rule-enabled(7Game)
query-once(?Player2 prefer-mark(7Player2 ?Mark))
opposite-mark(?Mark ?0ther-mark))
then (mark(?7Player2 7Game ?Mark)
mark(?Playerl 7Game ?0ther-mark)
tell(7Playerl mark(?Player2 7?Game ?Mark))
tell(7Playeri mark(?Playerl 7?Game ?0ther-mark))
tell(7Player2 mark(?Player2 ?Game ?Mark))
tell(7Player2 mark(?Playeri 7Game 70ther-mark))

Confidential and Proprietary 125 MCC Carnot Project

marks-chosen(?Game))

Choose-marks-3: ;assign marks if no preferences
If (tic-tac-toe(?Playeri ?Player2 ?Game)
excuse (unless(marks-chosen(7Game)))
no-preference-rule-enabled(?Game))
then (mark(?Playerl ?Game X)
mark(?Player2 ?Game 0)
tell(7Playeri mark(?Playerl ?Game X))
tell(?Playeri mark(7Player2 ?7Game 0))
tell(?Player2 mark(?Playerl ?Game X))
tell(7Player2 mark(?Player2 ?Game 0))
marks-chosen(7?Game))

Decide-who-goes-first: ;the referee "flips a coin"

If (tic-tac-toe(?Playerl ?7Player2 ?Game)
marks-chosen(?Game)
excuse(unless(coin-toss-result(?Game 7Number))))

then coin-toss-result(?Game ,random(1.0)) ;0 <= ?X < 1.0

If (tic-tac-toe(?Playerl 7Player2 ?Game)
coin-toss-result (?Game 7X)
,>=(?X 0.5)) ;Playeri goes first
then goes-next(?Game 1 7Playeri)

If (tic-tac-toe(?Playeri 7Player2 ?Game)
coin-toss-result(?Game 7X)
,<(?X 0.5)) ;Player2 goes first
then goes-next(?Game 1 ?Player2)

Incorporate-next-player-move:

If (goes-next(7Game ?Move-number ?Playeri) ;Next player moves
excuse(unless(goes-next(?Game ,1+(?Move-number) ?Anyone)))
excuse (unless(game-over(7Game))) ;unless game over
,<(?Move-number 10)
okay-move(?Game ?Playerl 7RMove ?CMove) ;Get next move
mark(?Playerl ?Game ?Mark)

Confidential and Proprietary 126 MCC Carnot Project

other-player(?Playeri ?Player2 ?Game))
then (board(?Game 7RMove ?CMove 7Mark)

tell(7Playerl board(?Game ?RMove ?CMove ?Mark))
tell(?Player2 board(?Game 7RMove ?CMove 7Mark))
print("*~%Move “A: square "A "A is occupied by “A"

(?Move-number ?RMove ?CMove 7Playeri))
goes-next (?Game ,1+(?Move-number) ?Player2))

;Other player is next

Find-good-move:
Infer okay-move(?Game ?Player 7RMove 7CMove)
from (query-once(?Player move(?Player 7RMove ?CMove ?Game))
excuse(unless(board(?Game ?RMove ?CMove ?Any-mark))))

Test-row-1:

If (mark(?Player 7Game ?Mark)
board (?Game zero zero 7Mark)
board (?Game zero one ?Mark)
board (?Game zero two ?Mark))

then (wins-game(?Player ?Game)

game-over (7Game))

Test-row-2:

If (mark(?Player 7Game 7Mark)
board (?Game one zero ?Mark)
board(?Game one one 7Mark)
board (?Game one two ?Mark))

then (wins-game(?Player 7Game)

game-over(?Game))

Test-row-3:

If (mark(?Player ?Game ?Mark)
board(?Game two zero 7Mark)
board (?Game two one ?Mark)
board (?Game two two 7Mark))

then (wins-game(?Player 7?Game)

game-over (7Game))

Confidential and Proprietary 127 MCC Carnot Project

Test-column-1:

If (mark(7Player ?Game ?Mark)
board(?Game zero zero ?Mark)
board(?Game one zero ?7Mark)
board (?Game two zero 7Mark))

then (wins-game(?Player 7Game)

game-over (7Game))

Test-column-2:

If (mark(?Player ?Game ?Mark)
board(?Game zero one 7Mark)
board(?Game one one ?Mark)
board (?Game two one ?Mark))

then (wins-game(?Player 7Game)

game-over (?Game))

Test-column-3:

If (mark(?Player 7Game ?Mark)
board (?Game zero two ?7Mark)
board (?Game one two 7Mark)
board(?Game two two ?Mark))

then (wins-game(7Player ?Game)

game-over (?Game))

Test-diagonal-1:

If (mark(?Player ?Game ?Mark)
board (?Game zero zero ?Mark)
board(?Game one one ?Mark)
board(?Game two two 7Mark))

then (wins-game(?Player ?Game)

game-over (?Game))

Test-diagonal-2:
If (mark(?Player ?Game 7Mark)
board(?Game zero two ?Mark)
board (?Game one one 7?Mark)

Confidential and Proprietary 128

MCC Carnot Project

board(?Game two zero ?Mark))
then (wins-game(?Player ?Game)
game-over (?Game))

Test-tie-game:

If (board(?Game zero zero ?Any-markil)
board (7Game zero one 7Any-mark2)
board(7Game zero two 7Any-mark3)
board (?Game one zero 7Any-mark4)
board(7Game one one ?Any-markS5)
board (?Game one two ?Any-markeé)
board(7?Game two zero ?7Any-mark7)
board (?Game two one 7Any-mark8)
board (?Game two two 7Any-mark9))

then (tie-game(?Game)

game-over (?Game))

Print-message-tie:
If tie-game(?Game)
then (print("~2%Game ~A ends in a tie." (?Game)))

Print-message-win:

If wins-game(?Player 7Game)

then (print("~2%Game A is won by ~A." (7Game ?Player)))
Print-message-over:

If game-over(7Game)
then (print("~2%Game A is over." (7Game)))

A.2 Knowledge Base for Player A

;;*%* Class and Instance Declarations *x**
assert-instance(class player)

assert-subclass(agent player)
assert-instance(player PlayerA PlayerB)

Confidential and Proprietary 129 MCC Carnot Project

assert-instance(agent referee)

assert-instance(class game)

assert-instance(class nought-or-cross)
assert-instance(nought-or-cross 0 X)
assert-instance(class index)

assert-instance(index zero one two)
assert-instance(class agent-capability)
assert-instance(agent-capability tic-tac-toe-playing)

; ;%%% Relation Declarations **¥

assert-instance(relation modi)
argument-types(modi (index index))

assert-instance(relation mod2)
argument-types(mod2 (index index))

assert-instance(relation expertise)
argument-types(expertise (agent agent-capability))
specificity-ordered(expertise)

assert-instance(relation awake)
argument-types(awake (agent symbol))
single-valued(awake)
specificity-ordered(awake)

assert-instance(relation abnormal)
argument-types(abnormal (agent))

assert-instance(relation play-tic-tac-toe)
argument-types(play-tic-tac-toe (player player game))

assert-instance(relation tic-tac-toe)
argument-types(tic-tac-toe (player player game))

assert-instance(relation mark)
argument-types(mark (player game nought-or-cross))

Confidential and Proprietary 130 MCC Carnot Project

single-valued(mark)
specificity-ordered(mark)

assert-instance(relation prefer-mark)

argument-types (prefer-mark (player nought-or-cross))

single-valued(prefer-mark)
specificity-ordered(prefer-mark)

assert-instance(relation opposite-mark)

argument-types (opposite-mark (nought-or-cross nought-or-cross))

single-valued(opposite-mark)
specificity-ordered(gpposite-mark)

assert-instance(relation other-player)

argument-types(other-player (player player game))

single-valued(other-player)
specificity-ordered(other-player)

assert-instance(relation board)

argument-types(board (game index index nought-or-cross))

specificity-ordered(board)

assert-instance(relation game-over)
argument-types(game-over (game))
specificity-ordered(game-over)

assert-instance(relation tie-game)
argument-types(tie-game (game))
specificity-ordered(tie-game)

assert-instance(relation wins-game)
argument-types(wins-game (player game))
specificity-ordered(wins-game)

assert-instance(relation move)
argument-types(move (player index index game))

specificity-ordered(move)

Confidential and Proprietary 131

MCC Carnot Project

; ;%** End of Relation Declarations ***

mod1(zero one)
modi(one two)
mod1(two zero)

mod2(zero two)
mod2(one zero)
mod2(two omne)

expertise(referee tic-tac-toe-playing)
opposite-mark(X 0)
opposite-mark(0 X)

Infer awake(7Agent Yes)
from unless(abnormal(?Agent))

533333333335 Rules that Generate Suggested Moves ;;;;

Block-row:

Infer move(?Player 7Row 7Col ?7Game)

from (other-player(?Player 70Opponent 7Game)
mark(?0Opponent ?Game ?Mark)
board(?Game ?Row ?Coli 7Mark)
board(?Game ?Row 7Col2 7Mark)
modi(?Col 7Coll)
mod2(?Col ?Col2)
excuse(unless(board(?Game ?Row ?Col 7Any-mark))))

Block-column:
Infer move(?Player 7Row ?Col 7Game)
from (other-player(?Player ?Opponent ?Game)
mark (?0Opponent ?Game 7Mark)
board(?Game 7Rowl 7Col ?Mark)
board(?Game 7Row2 7Col 7Mark)
mod1(?Row 7Row1l)

Confidential and Proprietary 132 MCC Carnot Project

mod2(?Row 7Row2)
excuse(unless(board(?Game ?Row ?Col 7Any-mark))))

Block-principal-diagonal:

Infer move(7Player ?Row ?Col ?Game)

from (other-player(?Player ?Opponent ?Game)
mark(?0Opponent 7Game ?Mark)
board (?Game 7Rowl ?Coll ?Mark)
board(?Game ?Row2 ?Col2 ?Mark)
mod1 (?Row 7Row1)
mod2(?Row 7Row2)
mod1(?Col 7Coll)
mod2(?Col 7Col2)
excuse (unless(board (?Game ?Row ?Col ?7Any-mark))))

Block-anti-principal-diagonal:

Infer move(?Player 7Row 7Col 7Game)

from (other-player(?Player ?Opponent 7Game)
mark (?0pponent ?Game 7Mark)
board (?Game ?Rowi 7Col2 ?Mark)
board (?Game ?Row2 7Coll ?Mark)
mod1(?Row 7Rowl)
mod2(?Row 7Row2)
mod1(?Col 7Coll)
mod2(?Col ?7Col2)
excuse(unless(board(7Game ?Row 7Col 7Any-mark))))

Try-row-next-own:

Infer move(?Player 7Row 7Col 7Game)

from (other-player(?Player ?0Opponent ?Game)
mark(70Opponent ?Game ?0pponent-mark)
mark(?Player 7Game ?Mark)
board(?Game ?Row 7Coll ?7Mark)
mod1(?Col ?Coll)
mod2(?Col 7Col2)
excuse(unless(board(?Game ?Row ?Col2 7Opponent-mark)))
excuse(unless(board(?Game 7Row ?Col ?Any-mark))))

Confidential and Proprietary 133 MCC Carnot Project

Try-row-next-to-next-own:

Infer move(?Player ?Row 7Col ?Game)

from (other-player(?Player 70pponent ?Game)
mark(?0pponent “?Game 70pponent-mark)
mark(?Player ?Game ?Mark)
board(?Game 7Row ?Col2 7Mark)
mod1(?Col 7Coll)
mod2(?Col ?Col2)
excuse (unless(board(?Game 7Row ?Coll 7Opponent-mark)))
excuse(unless(board(?Game 7Row ?Col 7Any-mark))))

Try-column-next-own:

Infer move(?Player 7Row ?Col ?Game)

from (other-player(?Player 7Opponent ?Game)
mark(70Opponent 7Game ?0pponent-mark)
mark(?Player ?Game ?Mark)
board (?Game ?Rowl 7Col 7Mark)
mod1(?Row 7Rowl)
mod2(?Row 7Row2)
excuse(unless(board (?Game ?Row2 ?Col ?Opponent-mark)))
excuse (unless(board(7Game ?Row 7Col 7Any-mark))))

Try-column-next-to-next-own:

Infer move(?Player 7Row ?Col ?Game)

from (other-player(?Player ?Opponent ?Game)
mark(?0Opponent 7Game ?0pponent-mark)
mark(?Player ?Game ?Mark)
board(?Game 7Row2 ?Col 7Mark)
modi(?Row ?Row1)
mod2(?Row ?Row2)
excuse(unless(board (?Game 7Rowl ?Col ?0pponent-mark)))
excuse (unless(board (?Game 7Row 7Col ?Any-mark))))

Select-center:
Infer move(?Player one one 7Game)
from (excuse(unless(board(?Game one one 7Any-mark))))

Confidential and Proprietary 134 MCC Carnot Project

Select-corner-00:
Infer move(?Player zero zero ?Game)
from (excuse(unless(board(?Game zero zero ?Any-mark))))

Select-corner-02:
Infer move(?Player zero two ?Game)
from (excuse(unless(board(?Game zero two ?Any-mark))))

Select-corner-20:
Infer move(?Player two zero 7Game)
from (excuse(unless(board(?Game two zero 7Any-mark))))

Select-corner-22:
Infer move(?Player two two 7Game)
from (excuse(unless(board(?Game two two ?Any-mark))))

Select-middle-01:
Infer move(?Player zero one ?Game)
from (excuse(unless(board(?Game zero one 7Any-mark))))

Select-middle-10:
Infer move(?Player one zero ?Game)
from (excuse(unless(board(?Game one zero ?Any-mark))))

Select-middle-12:
Infer move(?Player one two 7Game)
from (excuse(unless(board(?Game one two ?Any-mark))))

Select-middle-21:
Infer move(?Player two one ?Game)

from (excuse(unless(board(?Game two one ?Any-mark))))

assert-instance(game gamel)
prefer-mark(PlayerA X)

Confidential and Proprietary 135 MCC Carnot Project

A.3 Knowledge Base for Player B

;;*** Class and Instance Declarations ***

assert-instance(class player)
assert-subclass(agent player)
assert-instance(player PlayerA PlayerB)
assert-instance(agent referee)
assert-instance(class game)
assert-instance(class nought-or-cross)
assert-instance(nought-or-cross 0 X)
assert-instance(class index)
assert-instance(index zero one two)
assert-instance(class agent-capability)
assert-instance(agent-capability tic-tac-toe-playing)

; %%k Relation Declarations ***

assert-instance(relation modi)
argument-types(modl (index index))

assert-instance(relation mod2)
argument-types(mod2 (index index))

assert-instance(relation expertise)
argument-types(expertise (agent agent-capability))
specificity-ordered(expertise)

assert-instance(relation awake)
argument-types(awake (agent symbol))
single-valued(awake)

specificity-ordered(awake)

assert-instance(relation abnormal)
argument-types(abnormal (agent))

assert-instance(relation play-tic-tac-toe)

Confidential and Proprietary 136 MCC Carnot Project

argument-types(play-tic-tac-toe (player player game))

assert-instance(relation tic-tac-toe)
argument-types(tic-tac-toe (player player game))

assert-instance(relation mark)
argument-types(mark (player game nought-or-cross))
single-valued(mark)

specificity-ordered(mark)

assert-instance(relation prefer-mark)
argument-types(prefer-mark (player nought-or-cross))
single-valued(prefer-mark)

specificity-ordered (prefer-mark)

assert-instance(relation opposite-mark)
argument-types(opposite-mark (nought-or-cross nought-or-cross))
single-valued(opposite-mark)

specificity-ordered(opposite-mark)

assert-instance(relation other-player)
argument-types (other-player (player player game))
single-valued(other-player)
specificity-ordered(other-player)

assert-instance(relation board)
argument-types(board (game index index nought-or-cross))
specificity-ordered(board)

assert-instance(relation game-over)
argument-types (game-over (game))
specificity-ordered(game-over)

assert-instance(relation tie-game)

argument-types(tie-game (game))
specificity-ordered(tie-game)

Confidential and Proprietary 137 MCC Carnot Project

assert-instance(relation wins-game)
argument-types(wins-game (player game))
specificity-ordered (wvins-game)

assert-instance(relation move)
argument-types(move (player index index game))
specificity-ordered(move)

; ;*** End of Relation Declarations %%

modil(zero one)
modi(one two)
mod1(two zero)

mod2(zero two)
mod2(one zero)
mod2(two one)

expertise(referee tic-tac-toe-playing)
opposite-mark(X 0)
opposite-mark(0 X)

Infer awake(7Agent Yes)
from unless(abnormal (7Agent))

1333333333335 Rules that Generate Suggested Moves ;;;;

Block-row:

Infer move(?Player ?Row 7Col 7Game)

from (other-player(?Player 7Opponent 7Game)
mark(?0Opponent 7Game 7Mark)
board(?Game ?7Row 7Colil 7Mark)
board(?Game 7Row ?Col2 7Mark)
mod1(?Col ?Coll)
mod2(?Col ?Co0l2)
excuse(unless(board (?Game 7Row ?Col ?7Any-mark))))

Confidential and Proprietary 138 MCC Carnot Project

Block-column:

Infer move(?Player ?Row ?Col ?Game)

from (other-player(?Player ?0Opponent ?Game)
mark (?0Opponent ?Game ?Mark)
board(7Game ?Rowl ?Col ?Mark)
board(?Game ?Row2 ?Col ?Mark)
mod1(?Row 7Rowl)
mod2(?Row 7Row2)
excuse(unless(board (?Game ?Row ?Col ?7Any-mark))))

Block-principal-diagonal:

Infer move(?Player ?Row ?Col 7Game)

from (other-player(?Player 70Opponent ?Game)
mark(?Opponent ?Game ?Mark)
board(?Game 7Rowl 7Coll ?Mark)
board(?Game 7Row2 ?Col2 7Mark)
mod1(?Row ?Rowl)
mod2 (?Row 7Row2)
mod1(?Col ?Coll)
mod2(7Col ?Co0l2)
excuse(unless(board (?Game ?Row 7Col 7Any-mark))))

Block-anti-principal-diagonal:

Infer move(?Player ?Row ?Col 7Game)

from (other-player(?Player 7Opponent ?Game)
mark (?Opponent ?Game ?Mark)
board(?Game ?Rowl ?Col2 7Mark)
board (?Game 7Row2 ?7Coll 7?Mark)
mod1(?Row 7Rowl)
mod2(?Row 7Row2)
mod1(7Col 7Coll)
mod2(7Col 7Col2)
excuse (unless(board (?Game 7?Row ?Col ?7Any-mark))))

Try-row-next-own:

Infer move(?Player ?Row ?Col ?Game)
from (other-player(?Player 7Opponent ?Game)

Confidential and Proprietary 139 MCC Carnot Project

mark(?Opponent “?Game 70pponent-mark)

mark(?Player ?Game ?Mark)

board(?Game ?Row ?Coll 7Mark)

mod1(?Col ?Coll)

mod2(?Col ?Col2)

excuse(unless(board((?Game ?Row ?Col2 ?Opponent-mark)))
excuse(unless(board(?Game 7Row ?Col 7Any-mark))))

Try-row-next-to-next-own:

Infer move(?Player 7Row 7Col 7Game)

from (other-player(?Player ?Opponent ?Game)
mark(?Opponent ?Game 70pponent-mark)
mark(?Player ?Game 7Mark)
board(?Game ?Row ?Col2 7Mark)
mod1(?Col 7Coll)
mod2(?Col 7Col2)
excuse (unless(board(?Game ?Row 7Coll ?Opponent-mark)))
excuse(unless(board(?Game ?Row ?Col 7Any-mark))))

Try-column-next-own:

Infer move(?Player ?Row ?Col ?Game)

from (other-player(?Player ?0pponent ?Game)
mark (70Opponent ?Game ?0Opponent-mark)
mark(?Player ?Game 7Mark)
board(?Game ?Rowl ?Col 7Mark)
mod1 (?Row ?Rowl)
mod2(?Row ?Row2)
excuse (unless(board (?Game 7Row2 7Col ?0Opponent-mark)))
excuse(unless(board(?Game ?Row 7Col 7Any-mark))))

Try-column-next-to-next-own:
Infer move(?Player 7Row ?Col 7Game)
from (other-player(?Player ?Opponent ?Game)
mark (?Opponent ?Game ?0pponent-mark)
mark(?Player ?Game ?Mark)
board(?Game 7Row2 ?Col ?Mark)
mod1(?Row ?Row1)

Confidential and Proprietary 140 MCC Carnot Project

mod2(?Row ?Row2)
excuse(unless(board(?Game ?Rowl 7Col ?0Opponent-mark)))
excuse(unless(board (?Game ?Row ?Col ?Any-mark))))

Select-center:
Infer move(?Player one one ?Game)
from (excuse(unless(board(?Game one one 7Any-mark))))

Select-corner-00:
Infer move(?Player zero zero ?Game)
from (excuse(unless(board(?Game zero zero 7Any-mark))))

Select-corner-02:
Infer move(?Player zero two ?Game)
from (excuse(unless(board(?Game zero two 7Any-mark))))

Select-corner-20:
Infer move(?Player two zero 7Game)
from (excuse(unless(board(?Game two zero 7Any-mark))))

Select-corner-22:
Infer move(?Player two two ?Game)
from (excuse(unless(board(?Game two two ?Any-mark))))

Select-middle-01:
Infer move(?Player zero one ?Game)
from (excuse(unless(board(?Game zero one 7Any-mark))))

Select-middle-10:
Infer move(?Player one zero ?Game)
from (excuse(unless(board(?Game one zero 7Any-mark))))

Select-middle-12:
Infer move(?Player one two ?7Game)
from (excuse(unless(board(?Game one two 7Any-mark))))

Select-middle-21:

Confidential and Proprietary 141 MCC Carnot Project

Infer move(?Player two one ?Game)
from (excuse(unless(board(?Game two one ?Any-mark))))

assert-instance(game gamel)
prefer-mark(PlayerB X)

A.4 Playing a Game

The game is played by creating three RAD agents, named Referee, PlayerA,
and PlayerB, (arbitrarily) all connected to the same ESS. An interface for
the human observer is created by

raduser -a referee -e delphi -u observer
which causes the response

RAD User Interface

Copyright 1992 by Microelectronics and Computer
Technology Corporation
Proprietary and Confidential
MCC Carnot Project

Connecting to ESS on Delphi+17001...
ESS: Aide observer-aide is ready.
Interface: pinging agent referee...
referee: READY

observer:

The appropriate knowledge bases should now be loaded into each agent by
contacting them and issuing consult commands:

observer: consult 'referee-kb.rad"
referee: Consulting referee-kb.rad
Finished consulting referee-kb.rad

observer: contact playera
playera: READY

Confidential and Proprietary 142 MCC Carnot Project

observer: consult "playera-kb.rad"
playera: Consulting playera-kb.rad
playera: Finished consulting playera-kb.rad

observer: contact playerd
playerb: READY

observer: consult "playerb-kb.rad"
playerb: Consulting playerb-kb.rad
playerb: Finished consulting playerb-kb.rad

The Referee is now instructed to begin the game, and the results are shown
to the Observer:

observer: contact referee
referee: READY

observer: play-tic-tac-toe(playera playerb gamel)
referee: Assertion PLAY-TIC-TAC-TOE-1 accepted.

Move 1: square 1 1 is occupied by PLAYERA
Move 2: square 1 1 is occupied by PLAYERB
Move 3: square 1 1 is occupied by PLAYERA
Move 4: square i1 1 is occupied by PLAYERB
Move 5: square 1 1 is occupied by PLAYERA
Move 6: square 1 1 is occupied by PLAYERB
Move 7: square 1 1 is occupied by PLAYERA
Move 8: square 1 1 is occupied by PLAYERB
Move 9: square 1 1 is occupied by PLAYERA

Game GAME!1 ends in a tie.
Game GAME1 is over.

Confidential and Proprietary 143 MCC Carnot Project

O i OO @ B o 0 083 /0 g B3

Appendix B

Resolving Contradictions

B.1 Simple Example of CRM

The following is the contents of a file that RAD can consult for a simple
example of contradiction resolution:

;;; Create class of elephants
assert-instance (class elephant)

;;; Make an attribute of color:

assert-instance (relation color) ; Make color a relation
argument-types(color (elephant symbol)) ; Specify domain, range
specificity-ordered(color) ; Enable inheritance

single-valued(color) ; Make it single-valued
assert color(?X:elephant grey) ; Provide default value

;;; Domain Rules, Assertiomns

;; Forward rule about albinoism
if albino(?X) then color(?X white)

if (says(?7X 7Y) unless(liar(?X))) then assert(?Y)

Prefer(liar(?X) contradiction())

144

if (color(?X:elephant ?Y) bad-color(?X ?Y)) then contradiction()
;;; Situation-Specific Knowledge
assert-instance (elephant clyde)

says(joe albino(clyde))

RAD will exhibit the following behavior when the knowledge in this file is
consulted by an agent named advisor and accessed by a user named doctor:

doctor: consult "clyde.rad"
advisor: Consulting clyde.rad
advisor: Finished consulting clyde.rad

doctor: why color-3

advisor: Instance Slot Value COLOR-3 (IN)
COLOR(CLYDE WHITE)

was derived from the following:

Forward Rule FRULE-0 (IN)
It
ALBINO(?X)
then
COLOR(7?X WHITE)

Assertion ALBINO-1 (IN)
ALBINO(CLYDE)

doctor: why albino-1

advisor: Assertion ALBINO-1 (IN)
ALBINO(CLYDE)

was derived from the following:

Forward Rule FRULE-1 (IN)
If

Confidential and Proprietary 145 MCC Carnot Project

(

SAYS(?X 7Y)

JUNLESS/0(?X PI::*ARG-END-SYM* LIAR)
)
then

ASSERT(?Y)

Assertion SAYS-1 (IN)
SAYS(JOE ALBINC(CLYDE))

Failed Goal LIAR-1 (ouT)
LIAR(JOE)

doctor: contradict color-3
advisor: CONTRADICTION-O

RESOLVED by justifying the following:
LIAR-2

doctor: why liar-2

advisor: Assertion LIAR-2 (IN)
LIAR(JOE)

resolves contradictions:

CONTRADICTION-0

when it is justified by the following:

Forward Rule FRULE-1 (IN)
If
(
SAYS(?X ?7Y)
JUNLESS/0(?X PI::*ARG-END-SYM* LIAR)
)
then
ASSERT(?Y)

Assertion SAYS-1 (IN)
SAYS(JOE ALBINO(CLYDE))

Confidential and Proprietary 146

MCC Carnot Project

Forward Rule FRULE-0 (§4.))
If
ALBINO(?X)
then
COLOR(?X WHITE)

doctor:

B.2 Complex Example of CRM

B.2.1 Knowledge Base for Example of CRM
The following is the consult file for the example discussed in Chapter 8:

;;; Domain Rules, Assertions
assert-instance(relation

test-error mistaken-observation result)

If Symptom(?Patient dehydrated)
then Conclusion(7Patient low amt H20)

If (Conclusion(?Patient low amt H20)
Remember (Normal (?Patient amt Na)))
then Conclusion(?Patient high conc Na)

Infer Normal(?Patient amt Na)
from Unless(Result(?Patient low amt Na))

If (Lab-test(?Patient low 7Meas ?Chem)
Conclusion(?Patient high 7Meas ?Chem))
then contradiction()

;;; Metaknowledge

Fix(Lab-test(7Patient ?Degree ?Meas 7Chem)
Lab-test(?Patient 7Degree ?Meas ?Chem)
Test-error(?Patient 7Degree ?Meas 7Chem))

Confidential and Proprietary 147

MCC Carnot Project

Fix(Conclusion(?Patient ?Degree 7Meas ?Chem)
Symptom(?Patient ?Symptom)
Mistaken-observation(?Patient ?Symptom))

Prefer (Mistaken-observation(?Patient ?Symptom)
Test-error (?Patient ?Degree ?Meas 7Chem))

Defeat (Lab-test(?Patient ?Degree ?Meas 7Chem)
none
Test-error(?Patient ?Degree ?Meas ?Chem))

Defeat (Symptom(?Patient 7Symptom)
none
Mistaken-observation(?Patient ?Symptom))

Prefer(Mistaken-observation(?Patient ?Symptom) contradiction())
Prefer(Test-error (?Patient 7Degree ?Meas ?Chem) contradiction())
Prefer(Result(7Patient low amt ?Chem) contradiction())

B.2.2 Protocol for Use of CRM

The following is the protocol using the consult file above. There are three
agents. Two are radusers: the doctor and the lab. Agent “advisor” is a
radagent. The consult file name is “sodium.rad”.

doctor: contact advisor
advisor: READY
doctor: consult "sodium.rad"
advisor: Consulting sodium.rad
advisor: Finished consulting sodium.rad
doctor: symptom(Jane dehydrated)
doctor: show conclusion
advisor: CONCLUSION
Instance of: RELATION

ARGUMENT-TYPES: none

Confidential and Proprietary 148 MCC Carnot Project

SPECIFICITY-ORDERED: no

SINGLE-VALUED: no
PRIMITIVE: no
SYSTEM: no
PERSISTENT: no
UNIDIRECTIONAL: none
AXIOMATIC: no
SPECIALIZATION: none

User Relation CONCLUSION (quaternary)
Current assertions:

CONCLUSION-1: CONCLUSION(JANE LOW AMT H20)
CONCLUSION-2: CONCLUSION(JANE HIGH CONC NA)

doctor: why conclusion-2

advisor: Assertion CONCLUSION-2 (I
CONCLUSION(JANE HIGH CONC NA)

was derived from the following:

Forward Rule FRULE-1 (IN)
If
(
CONCLUSION(?PATIENT LOW AMT H20)
REMEMBER (NORMAL (?PATIENT AMT NA))
)
then
CONCLUSION(?PATIENT HIGH CONC NA)

Assertion NORMAL-2 (IN)
NORMAL (JANE AMT NA)

Assertion CONCLUSION-1 (@8.)]
CONCLUSION(JANE LOW AMT H20)

At this point, the doctor has used the advisor as a simple expert system.
By asserting a symptom, the rules have drawn conclusions which can be
examined by the doctor. However, since the system is distributed, the lab
may add its own data about the case.

Confidential and Proprietary 149 MCC Carnot Project

lab: lab-test(Jane low conc Na)
advisor: CONTRADICTION-0O

RESOLVED by justifying the following:
MISTAKEN-OBSERVATION-1

When the lab added conflicting information, a contradiction was produced.
Because the consult file used did not include query schemata, no one was
asked about this possibility. But the metaknowledge included was sufficient
for the advisor to treat this as the most likely possibility and justify it.

However, this now comes to the attention of the doctor who disagrees
that he may not have properly observed Jane’s symptoms. This ability to
disagree is an important part of RAD’s functionality.!

doctor: show mistaken-observation-1

advisor: Assertion MISTAKEN-OBSERVATION-1 (IN)
MISTAKEN-OBSERVATION(JANE DEHYDRATED)

doctor: contradict mistaken-observation-1
advisor: CONTRADICTION-1

RESOLVED by justifying the following:
TEST-ERROR-1

The doctor finds this resolution likely. However, the lab does not believe this
is a possibility and disagrees...

lab: show test-error-1
advisor: Assertion TEST-ERROR-1 (an
TEST-ERROR (JANE LOW CONC NA)

lab: contradict test-error-1

advisor: CONTRADICTION-2

RESOLVED by justifying the following:
RESULT-2

doctor: show result-2

1The doctor may also have disagreed by commanding wrong after a query about
mistaken observations.

Confidential and Proprietary 150 MCC Carnot Project

advisor: Assertion RESULT-2 (IN)
RESULT(JANE LOW AMT NA)

The advisor has now offered another possibility: namely that Jane has an
unusually low amount of sodium in her blood. Only this would explain why
she was dehydrated but has a low blood concentration of sodium. This was a
somewhat uncommon possiblity discovered by backtracking. (The rule writer
encoded this possibility as an assumption of normality.)

However, this result is still itself only an assumption. The doctor must
still find out why Jane’s sodium level is low. (It turns out she was radia-
tion poisoned, which also accounts for the dehydration symptoms.) While
pursuing this possibility, the doctor may want to remember the reasoning
behind it. In the current version of RAD, this is done by a full replay of the
justification for the assertion.

doctor: why result-2
advisor: Assertion RESULT-2 (In)
RESULT(JANE LOW AMT NA)

resolves contradictions:
CONTRADICTION-2
CONTRADICTION-1
CONTRADICTION-0

vhen it is justified by the following:

Backward Rule NORMAL-1 (IN)
Infer
NORMAL (?PATIENT AMT NA)
from
JUNLESS/0(?PATIENT LOW AMT NA PI::*ARG-END-SYM* RESULT)

Confidential and Proprietary 151 MCC Carnot Project

Forward Rule FRULE-0 (IN)
If
SYMPTOM(?PATIENT DEHYDRATED)
then
CONCLUSION(?PATIENT LOW AMT H20)

Forward Rule FRULE-1 (@1.))]
If
(
CONCLUSION(?PATIENT LOW AMT H20)
REMEMBER (NORMAL (?PATIENT AMT NA))
)
then
CONCLUSION(?PATIENT HIGH CONC NA)

Forward Rule FRULE-2 (IN)
If
(
LAB-TEST(?PATIENT LOW 7MEAS ?CHEM)
CONCLUSION(?PATIENT HIGH 7MEAS ?CHEM)
)
then
CONTRADICTION()

doctor: quit

The information in this explanation amounts to the fact that two other
possibilities, explaining conflicting data, were rejected and this was the re-
maining explanation. The doctor can see the other possibilities by command-
ing why on the contradictions listed. Eventually, a new justification, based
on the discovery of radiation poisoning, can be established for this assertion.

Confidential and Proprietary 152 MCC Carnot Project

O & OO0 B B /| CO2 &3 e =4

Bibliography

[Proteus 1989] Natraj Arni, et al., “Proteus 3: A System Description,” MCC
Technical Report No. ACT-AI-226-89-Q, Microelectronics and Com-
puter Technology Corporation, Austin, TX, June 1989.

[Ait-kaci, et al. 1985] Hassan Ait-kaci, Robert Boyer, Patrick Lincoln, and
Roger Nasr, “Efficient Implementation of Lattice Operations,” ACM
Transactions on Programming Languages and Systems, vol. 11, no. 1,
January 1989, pp. 115-146.

[Bond and Gasser 1988] Alan H. Bond and Les Gasser, Readings in Dis-
tributed Artificial Intelligence, Morgan Kaufmann Publishers, Inc., San
Mateo, CA, 1988.

[Bridgeland 1989] David M. Bridgeland, “Extending the Warren Abstract
Machine for an Expert System Shell,” presented at AAATI Spring Sym-
posium on Automated Theorem Proving, Stanford, CA, March 1989.

[Charniak et al. 1980] E. Charniak, C. K. Riesbeck, and D. V. McDermott,
Artificial Intelligence Programming, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1980.

[Clocksin and Mellish 1981] W. F. Clocksin and C. S. Mellish, Programming
in Prolog, Springer-Verlag, Berlin Heidelberg, 1981.

[Davis and Smith 1983] Randall Davis and Reid G. Smith, “Negotiation as
a Metaphor for Distributed Problem solving,” Artificial Intelligence,
vol. 20, no. 1, January 1983, pp. 63-109.

[Doyle 1979] Jon Doyle, “A Truth Maintenance System,” Artificial Intelli-
gence, vol. 12, no. 3, 1979, pp. 231-272.

153

[Feigenbaum 1988] Edward A. Feigenbaum, Pamela McCorduck, and H.
Penny Nii, The Rise of the Ezpert Company, Times Books, New York,
1988.

[Gasser et al. 1987) Les Gasser, Carl Braganza, and Nava Herman, “Im-
plementing Distributed Artificial Intelligence Systems Using MACE,”
Proceedings of the Third IEEE Conference on Artificial Intelligence
Applications, 1987, pp. 315-320.

[Gasser and Huhns 1989] Les Gasser and Michael N. Huhns, eds., Dis-
tributed Artificial Intelligence, Volume II, Pitman Publishing, London,
1989.

[Goodwin 1984] J. W. Goodwin, “WATSON: A Dependency Directed In-
ference System,” Research Report LiTH-IDA-R-84-10, Computer and
Information Science Department, Linkoping University, 1984.

[Harp and Sederberg 1988] Steven A. Harp and John C. Sederberg, “Using
Truth Maintenance to Do Configuration,” Proc. Fourth IEEE Con-

ference on Artificial Intelligence Applications, San Diego, CA, March
1988, pp. 393-394.

[Hsu et al. 1987] Ching-Chi Hsu, Shao-Ming Wu, and Jan-Jan Wu, “A Dis-
tributed Approach for Inferring Production Systems,” Proceedings
IJCAI-87, Milan, Italy, August 1987, pp. 62-67.

[Huhns and Bridgeland 1991] Michael N. Huhns and David M. Bridgeland,
“Multiagent Truth Maintenance,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 21, no. 6, December 1991.

[Huhns and Acosta 1988] Michael N. Huhns and Ramon D. Acosta, “Argo:
A System for Design by Analogy,” IEEE Ezpert, Fall 1988, pp. 53-68.

[Huhns 1987] Michael N. Huhns, ed., Distributed Artificial Intelligence, Pit-
man Publishing, London, 1987.

[Kodak 1988] M. R. Hoffmann, “KIMS System Configurer V1.0—Knowledge
Documentation,” Kodak Technical Report, December 1988.

Confidential and Proprietary 154 MCC Carnot Project

e o

[Kirchen 1989] Daniel Kirchen, “The Power Restoration Advisor,” CDC
Technical Report (unpublished), 1989.

[Mason and Johnson 1989] Cindy L. Mason and R. R. Johnson, “DATMS:
A Framework for Distributed Assumption Based Reasoning,” in
[Gasser and Huhns 1989], pp. 293-317.

[Pierce] C. S. Pierce, Scientific Metaphysics, Vol. VI, p. 358.

[Petrie et al. 1986] Charles J. Petrie, David M. Russinoff, and Donald D.
Steiner, “Proteus: A Default Reasoning Perspective,” Proceedings 5th
Generation Conference, National Institute for Software, October 1986.

[Petrie 1986] Charles J. Petrie, “Extended Contradiction Resolution,” MCC
Technical Report No. ACA-AI-102-86, Microelectronics and Computer
Technology Corporation, Austin, TX, March 1986.

[Petrie 1987] Charles J. Petrie, “Revised Dependency-Directed Backtracking
for Default Reasoning,” Proceedings of AAAI-87, Seattle, WA, July
1987, pp. 167-172.

[Petrie 1989] Charles J. Petrie, “Reason Maintenance in Expert Systems,”
MCC Technical Report No. ACA-AI-021-89, Microelectronics and
Computer Technology Corporation, Austin, TX, February 1989.

[Russinoff 1985] David M. Russinoff, “An Algorithm for Truth Mainte-
nance,” MCC Technical Report No. AI-062-85, Microelectronics and
Computer Technology Corporation, Austin, TX, April 1985.

[Smith 1980] Reid G. Smith, “The Contract Net Protocol: High Level Com-
munication and Control in a Distributed Problem Solver,” IEEE
Transactions on Computers, vol. C-29, no. 12, December 1980,
pp. 1104-1113.

[Smith and Davis 1981] Reid G. Smith and Randall Davis, “Frameworks for
Cooperation in Distributed Problem Solving,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-11, no. 1, January 1981,
pp. 61-70.

Confidential and Proprietary 155 MCC Carnot Project

[Steele 1989] Robin L. Steele, Scott A. Richardson, and Michael A. Winchell,
“Design Advisor: A Knowledge-Based Integrated Circuit Design
Critic,” in Herb Schorr and Alain Rappaport, eds., Innovative Ap-
plications of Artificial Intelligence, AAAI Press, 1989.

[Tomlinson et al. 1991] Chris Tomlinson, Mark Scheevel, and Vineet Singh,
“Report on Rosette 1.1,” MCC Technical Report No. ACT-OODS-275-
91, Microelectronics and Computer Technology Corporation, Austin,
TX, July 1991.

[UNIX] “UNIX Programmers Manual,” University of California, Berkeley,
CA, 1984.

[Virdhagriswaran et al. 1987] Sankar Virdhagriswaran, Sam Levine, Scott
Fast, and Susan Pitts, “PLEX: A Knowledge-Based Placement Pro-
gram for Printed Wire Boards,” Proc. Third IEEE Conference on Ar-
tificial Intelligence Applications, February 1987, pp. 302-305.

[Virdhagriswaran and Pitts 1987] Sankar Virdhagriswaran and Susan Pitts,
“MINC: A Deniable Expert System that Reasons with Simplifying
Assumptions,” Proc. SPIE Applications of Artificial Intelligence V,
Vol. 786, 1987, pp. 38—40.

[Warren 1983] David H. D. Warren, “An Abstract Prolog Instruction Set,”
SRI Technical Note 309, SRI International, October 1983.

Confidential and Proprietary 156 MCC Carnot Project

Index

1 59, 65 Contradiction 55

, 97 Count-proofs 59

= 52 Cut 59, 65

? 97,108 Database Connection 24, 110, 115
7?7 108 Database Disconnect 24, 110, 115
Accept 54, 103 Database Message 23
Actions 47, 50, 69 DB-Connect 24, 110, 115
Agenda 71 DB-Disconnect 24, 110, 115
Aide 24 DB-Query 110

And 52 Default Values 42
Argument-types 47, 60 Demand Message 22

Ask 57, 112 Do 57, 69

Ask-once 58 Echo 114

Assert 54, 69, 104 Element 59

Assert-instance 54, 105 Eq 51

Assert-subclass 54, 105 Erase 55, 69, 106

Atom 51 Error Message 23

Atomic 51 Ess 92, 116

Axiomatic 46 Excuse 52

Backward Chaining 62, 65 Explain 109

Bagof 52, 73 Fail 54, 65

Bgrind 62, 115 Fgrind 115

Bottom 38 Forward Chaining 69
Check 101, 114 Frules-indexed 59

Clear 105 General Assertion 39
Comments 94 Ground 51

Consult 54, 69, 105 Halt-agent 116

Contact 92, 115 Help 116

Contradict 106 Host 59

157

IN 27

Instance 32, 56
Instance* 32, 56
Integerp 51

Is 56, 69, 99

Kill 55, 69, 106
Known 52, 73

Lisp Functions 56, 97
Lisp Macros 100
List-agents 92, 116
Location 92, 115, 116
Metaclasses 34, 60
Multiple-valued Relation 40
Neq 51

Next 109

Nonvar 51

Numberp 51

0Odd Loops 31

Orr 52

OUT 28

Particular Assertion 39
Persistent 48
Premise 39

Primitive 46

Print 59, 69
Provable 52

Prove 14, 52
Prove-once 14, 53
Query 14, 53, 109
Query-once 14, 53, 110
Quit 117

Radagent 90
Raduser 91

Register 24

Reliable 55, 59
Reliable, 107
Remember 53, 107

Confidential and Proprietary

Remove-subclass 55, 107

Reply 107

Response Message 23

Said 53

Show 110

Single-valued 48

Single-valued Relation 40, 42

Specialization 49

Specificity-ordered 45, 49, 66

Stability 27

Statement Message 23

Subclass 32, 56

Subclass* 32, 56

Supporters 27

System 47

T 38, 48

Tell 15, 55, 69, 107

Toggle 108

Translate 114

Triggerable 49

True 54

Types 37

Unidirectional 49

Unless 53, 62, 100

Unregister 24

Unreliable 59

Valid Justification 27

Var 51

Variables 37

Warren Abstract Machine (WAM)
62

Was-told 53

Well-foundedness 27

Who 26

Why 111

Wrong 106, 108

158 MCC Carnot Project

