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Abstract

Explanation-based learning (EBL) is a knowledge-intensive analytic technique by which learning systems
can capture and generalize problem-solving experience from single training examples. Essential to the
EBL technique is the explanation structure used for describing how the training example is solved. The
explanation structure used in most implementations of EBL is a proof tree that captures dependencies
among the literals of the rules involved in finding the solution. Unfortunately, use of proof trees as
explanations restricts generalizations to being structurally equivalent to their respective training examples.
This paper presents alternative explanation structures that allow EBL systems to learn more interesting
problem-solving features. These explanation structures include chronologically ordered rules, partial
chronologically ordered rules, and rule-dependency graphs. We conclude by showing how viewing expla-
nations as rule-dependency graphs can be of benefit to systems that learn abstractions of training exam-
ples suitable for analogical reasoning.
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1 Introduction

Explanation-based learning (EBL) is an analytic knowledge-intensive tech-
nique by which a machine learning system can capture and generalize
problem-solving experience from a single training example. The applicability
of EBL seems very general; successful implementations range from theorem
proving systems to general-purpose planners. Because of this initial suc-
cess, variations and extensions of EBL are currently being investigated by a
number of machine learning researchers [4, 7, 12, 15, 17, 18, 20, 21].

'~ Most implementations of EBL conform to the following methodology:
given a problem (training ezample) to be solved and domain knowledge, a
performance system is used to find a solution (goal). In the process, an ez-
planation describing why the solution solves the problem is recorded in terms
of the rules applied by the performance system. Subsequently, an ezplanation
structure, corresponding to the uninstantiated form of the domain rules in
the explanation, is generalized in such a way that sufficient constraints on the
domain of training examples for which the explanation holds are computed.
Finally, a generalization of the training example and its solution is extracted
from the generalized explanation.

In its typical implementation, EBL can be viewed as simply compiling an
explanation for a training example, based on rule instance invocation, into a
generalized rule, known as a macrorule. The expectation is that subsequent
application of this macrorule will be more efficient than applying the original
form of the knowledge, thus reducing the search space for finding a solution.
Interestingly, what is actually compiled is the control knowledge related to
searching and applying rule instances in the training example. An additional
EBL requirement is that the antecedents of a learned macrorule must be
operational, 1.e., in terms of attributes that are readily observable in problem
descriptions [13, 14, 20].

Of obvious relevance to how macrorules are computed is the type of struc-
ture used to capture the explanation. EBL systems described in the literature
have typically employed a causally connected proof tree having edges between
individual antecedent and consequent instances of dependent rules. Although
techniques for manipulating the explanation before computing a macrorule
have been proposed, such as pruning hierarchical inheritance (ISA) rules
[4, 21], the structural constraints imposed by using a proof tree ultimately
result in only one macrorule being computed per explanation.



This paper describes alternative explanation structures that allow sev-
eral useful macrorules to be computed from a single training example.
These structures use rule instances, instead of antecedent and conse-
quent instances, to capture explanations. Three alternatives are pre-
sented: chronological-precedence graphs, partial chronological-precedence
graphs, and rule-dependency graphs. In particular, we have experimented
with recording explanations as rule-dependency graphs in the Argo system
(1,9, 10, 11], and using abstractions of these graphs to compute abstractions
of macrorules. The macrorule abstractions are suitable for use in a type of
derivational analogy [2, 3].

2 Inferencing Model

Although not essential to most of this presentation, it is assumed that rule-
based forward chaining is employed in solving problems and, thus, in for-
mulating explanations for training examples. The view adopted is that of a
production system, characteristic of many so-called expert systems, in which
rules are successively applied to effect changes to a working memory of as-
sertions [8].

Each rule, alternatively referred to as an operator or production, consists
of a precondition (antecedents) and a postcondition (consequents). Both the
antecedents and consequents are comprised of positive conjunctive literals
(atomic formulas) in first-order logic. The following notation is used:

R; = (A;, C))

Ai = {aﬂ) Q425 .- 7a'iLi}
C: ={cu,ci2,-.-,CiK; }

where R; is a rule whose antecedents and consequents are the sets A; and C;,
respectively. A literal consists of a predicate and a list of one or more terms,
also called arguments. Terms can be constants, functions, or universally
quantified variables.

A rule is a problem-reduction operator whose effect, when applied to a
working memory of problem assertions, is that assertions unifying with the
rule’s antecedents are deleted from the working memory, while those gener-
ated by the rule’s consequents are added as new assertions to the working
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respectively, of the proof.

The definitions for explanation, explanation structure, and generalized
explanation structure used in Figures 2-4 are essentially the same as the
terms suggested in [21]. In particular, the explanation structure is a non-
generalized representation of the solution in terms of domain knowledge that
is standardized apart. Thus, the explanation structure, while arising as a
result of solving the training example, does not refer to training example
knowledge.

As mentioned, an important requirement for EBL systems is that a
learned macrorule must have operational antecedents [20]. Most systems
take a simplified view towards this requirement: since the proof succeeds
for the training example, computing a macrorule by generalizing the proof
preserves operationality. Work has been carried out in formalizing and ap-
plying the notion of operationality to improve learning capabilities [13, 14].
Although operationality in EBL formulations is considered important, for
the most part it is not examined closely in this paper in order to limit the
scope of the discussion.

The generalization technique proposed in [4], called Explanation General-
ization using Goal Substitution (EGGS) in [21], suggests that simply having
a literal-dependency graph (LDG) is sufficient for computing a generaliza-
tion. The LDG is a directed-acyclic graph having as nodes the antecedent
and consequent instances of the rules applied in solving the training exam-
ple. A directed edge from a consequent node to an antecedent node in the
LDG indicates causality. That is, in solving the training example, an as-
sertion added to working memory as a result of executing the consequent
node’s rule is subsequently used to satisfy part of the precondition of the an-
tecedent node’s rule. Thus, the LDG maintains logical dependencies between
consequent and antecedent instances unified in solving the training example.
The literal-dependency graph for the SAFE-TO-STACK example is illustrated
in Figure 6.

The EGGS algorithm, outlined in Figure 7, can be applied to the LDG to
obtain the macrorule in Figure 5. A general substitution, o, is obtained by
accumulating the substitutions for unifications of consequent and antecedent
nodes for all edges in the LDG. The macrorule antecedents are obtained by
applying o to antecedent instances having no incoming edges in the LDG.
Similarly, consequents of the macrorule consist of consequent instances hav-
ing no outgoing edges in the LDG to which ¢ has been applied.
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Domain Knowledge

R1 = ({VOLUME(?p1, 7vi), DENSITY(?p1, 7d1)},
{WEIGHT(?p1, 7vi*7d1)})

R2 = ({ISA(7p1, ENDTABLE)},
{WEIGHT(?p1, B)})

R3 = ({WEIGHT(?pi, ?wl), WEIGHT(?p2, ?w2), LESS(?wi,
{LIGHTER(?pi, ?p2)})

R4 = ({LIGHTER(?x, ?y)},

{SAFE-TO-STACK(?x, ?7y)}) (goal)

LESS(0.1, 5)

Training Example

ON(OBJ1, 0BJ2)
ISA(OBJ1, BOX)
ISA(DBJ2, ENDTABLE)
COLOR(OBJ1, RED)
COLOR(0OBJ2, BLUE)
VOLUME(OBJ1, 1)
DENSITY(OBJ1, 0.1)

7w2)},

Figure 1: Knowledge for the SAFE-T0-STACK Example



SAFE-TO-STACK(OBJ1,0BJ2)

 {
i
1
1
4
LIGHTER(OBJ1,0BJ2)
LIGHTER(OBJ1,0BJ2)
i
o e el ol o bl el ot e e e e e e +
1 1 1
i 4 4
WEIGHT(0BJ1,0.1) WEIGHT(OBJ2,5) LESS(0.1,5)
WEIGHT(OBJ1,0.1) WEIGHT(0BJ2,5)
i i
- e -————-— + [
1 1 1
4 4 1

VOLUME(OBJ1,1) DENSITY(DOBJ1,0.1) ISA(OBJ2,ENDTABLE)

Figure 2: Explanation (Instantiated Proof Tree) for the SAFE-T0O-STACK Ex-
ample



SAFE-TO-STACK(?x1,7x2)

i
R4
X
LIGHTER(?7x1,7x2)
LIGHTER(?x3,7x4)
3
RS ot e e o ey e ko e t
] I ]
1 i S 4
WEIGHT(?x3,7x5) WEIGHT(?x4,7x6) LESS(7x5,7x6)
WEIGHT(?x7,7x8%7x9) WEIGHT(?x10,5)
i i
Rl +-----~ demmmm-e- t R2 .
1
L H i

VOLUME(?x7,7x8) DENSITY(?x7,7x9) ISA(7x10,ENDTABLE)

Figure 3: Explanation Structure for the SAFE-TO-STACK Example



SAFE-TO-STACK(7x1,7x2)

I

R4 1 {7x1/7x1,7x2/7x2}
1

4

LIGHTER(?x1,7x2)
@IGHTER(?XI ,?x2))
LIGHTER(?x3,?x4)
I
R3t----emmmmmmmr o m o e : """""""" +{7x1/7x3,7x2/7x4}
H H
WEIGHT(?x3,?x5) WEIGHT(?x4,7x6) LESS(?7x5,7x6)

(FEIGHT(?x1,?x5))

WEIGHT(?x7,7x8%7x9)

(FEIGHT(?xZ,?xS{) (}Ess(?xs,?xei)

WEIGHT(?x10,5)
3

Rl+------2-c--u-- +{?x1/7x7,7x8%*7x9/7x5} R2 :{?x2/?x10,5/?x6}
H H 2
VOLUME (7x7,7x8) DENSITY(?x7,7x9) ISA(?x10,ENDTABLE)
VOLUME(?x1,7x8) | [DENSITY(?x1,7x9)| | ISA(?x2,ENDTABLE) | | LESS(?x8%7x9,5)

Figure 4: Generalized Explanation Structure for the SAFE-T0-STACK Exam-

ple

Rmacro = ({VOLUME(?x1, 7x8),
DENSITY(?x1, 7x9),
ISA(?x2, ENDTABLE),
LESS(7x8%7x9, 5)},
{SAFE-TO-STACK(?7xt, 7x2)})

Figure 5: Macrorule for the SAFE-TO-STACK Example



cq41 = SAFE-TO-STACK(7x1,7x2)

as = LIGHTER(?x1,7x2)

cs1 = LIGHTER(?7x3,7x4)

ass = LESS(7x5,7x6)

agy = WEIGHT(?XZS,?XS) azz = WEIGHT(?X4,?XG)
c1; = WEIGHT(?x7,7x8%7x9) cy; = WEIGHT(7x10,5)
a;p = DENSITY(?x7,7x9) ag; = ISA(?x10,ENDTABLE)

a;; = VOLUME(?x7,7x8)

Figure 6: Literal-Dependency Graph for the SAFE-TO-STACK Example

(1) For each edge(cik,a;) in the LDG

(1a) o :

o U most-general-unifier(c;0,a;0);

(2) Rmacro :

({e;i0 | @i has no incoming edges in the LDG},
{ciko | cir has no outgoing edges in the LDG}) .

Figure 7: Macrorule Computation Using the LDG



} |

Although [4] suggests computing the general substitution as the perfor-
mance system solves a training example, this is by no means necessary as
long as an LDG is recorded as part of the problem-solving process. Moreover,
performance considerations might make it undesirable to have the extra uni-
fications required for building o be an inherent part of the problem solver. In
any case, the issue of when to compute macrorules is an orthogonal consider-
ation if the procedure in Figure 7 for using LDGs as explanation structures
is employed.

In STRIPS [6, 7] a procedure similar to EGGS is employed to generalize
problem-solving plans. The main difference between the STRIPS procedure
and that in Figure 7 is that instead of cumulatively building up a o for all
LDG edges, most-general-unifiers for all edges in the LDG are progressively
applied to all literal instances in the proof. Although intuitively less efficient
than EGGS, generalization in STRIPS is guaranteed to produce the same
macrorules obtained with either EBG or EGGS.

Two explanation structures have been described: the (uninstantiated)
proof tree and the literal-dependency graph. Note that the proof tree con-
tains the same information as the LDG, plus additional information linking
antecedent and consequent instances to the rule instances associated with
them. The rule instance information is necessary for computing macrorules
using goal regression, as described in [20]. The LDG has enough information
for computing macrorules using the general substitution technique described
in [4]. Generalizing either of these explanation structures results in comput-
ing the same macrorule. Again, only one macrorule is computed, and it is
applicable only to problems that are structurally equivalent to the training
example.

The following argument illustrates this last point. Consider the macrorule
in Figure 5. This compiled knowledge to determine when it is SAFE-TO-STACK
one object on another is applicable only to problems in which the weight of
the object bound to 7x1 is calculated using its volume and density, the object
bound to 7x2 is an ENDTABLE, and the weight of the ?x1 object is less than
5, the default weight of ENDTABLEs. There are similar problems that can be
solved by ezactly the same domain and control knowledge as that used to solve
the training example, but that cannot be solved by the macrorule computed
from the training example. Given the training example, it would clearly be
useful to learn macrorules for solving more general problems about instances
in which it is SAFE-TO-STACK objects, for example, when the 7x1 object
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is heavier than an ENDTABLE. Thus, a need arises to consider alternative
explanation structures capable of leading to macrorules for problems differing
structurally from the training example.

4 Chronological-Precedence Graphs

The main limitation of the schemes mentioned above in terms of number of
macrorules per training example has to do with the fact that dependency
information is recorded at the granularity of literals. This results in only
one literal-dependency graph for each training example. We now present
several explanation structures for overcoming this limitation that use rules,
instead of literals, as the grain size for representing dependencies in domain
knowledge applied to training examples. These alternatives yield more than
one LDG and, thus, allow learning more than one macrorule for a given
training example.

A simple approach to expressing an explanation is as a chronologically
ordered set of rule instances—totally ordered according to when the rules
are applied in solving the training example. This set can be represented
using a directed-acyclic graph having rule instances as vertices and directed
edges denoting the precedence relation among the instances. We call this
a chronological-precedence graph (CPG). Figure 8 contains the CPG for
the SAFE-TO-STACK example. The CPG information, not being based on
fine-grained logical dependencies between rule literals, can lead to poten-
tially many literal-dependency graphs and, consequently, many different
macrorules.

Conceptually, macrorules can be computed by combining literal depen-
dency graphs for chronologically dependent rule instances in the CPG, as
in Figure 9. In this figure, a consistent LDG is characterized as follows: 1)
consequent-instance nodes have at most one outgoing edge, 2) antecedent-
instance nodes have at most one incoming edge, and 3) a general substi-
tution o exists. The latter is obtained by cumulatively unifying conse-
quent/antecedent edges in a manner similar to step (1) of Figure 7. A
simple optimization used in implementing this procedure is to maintain the
o substitution for each LDG in subLDG,;. This optimization simplifies the
computation of merged-LDGs in step (2) by replacing the need to carry out
cumulative edge unifications with a relatively simple check to see if the LDG
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Figure 8: Chronological-Precedence Graph for the SAFE-TO-STACK Example

substitutions are compatible. Additionally, step (3) of Figure 8 is typically
unnecessary since macrorules can be trivially computed as a side effect of
building merged-LDGs.

(1) For each path(R;, R;) in the CPG

(12) sublDG;; := set of all consistent LDGs having edges from
consequents in R; to antecedents in Rj;

(2) merged-LDGs := set of consistent LDGs for the entire CPG
obtained by merging all LDG combinations
from the subLDG;; combinations;

(3) For each LDG in merged-LDGs, compute a macrorule using
the procedure in Figure 7.

Figure 9: Macrorule Computation Using the CPG

Use of the CPG as the explanation structure for the SAFE-TO~STACK ex-
ample leads to the macrorules shown in Figure 10. In addition to Rmacroi13,
which is the same as Rmacro in Figure 5, 13 additional macrorules are com-
puted. With the exception of Rmacroi3 and Rmacro1l4, however, these
macrorules are not operational with respect to the training example. For
example, they require having assertions about WEIGHTs and LIGHTER, fea-
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tures that would typically not be directly observable. Thus, a single training
example has generated 14 macrorules, of which twelve are unusable.

The problem with using the CPG is that not enough constraints are
placed on dependencies between rule instances. The only causal information
recorded is that if R; chronologically precedes R;, then logical dependen-
cies involving consequents of R; and antecedents of R; are possible, but not
vice versa. Consequently, LDGs for O(n?) rule dependencies, the number of
edges in a CPG’s transitive closure, must be considered in step (1) of Fig-
ure 9. Coupled with the multiple LDGs that are possible for a given pair
of dependent rules in step (1la), a combinatorial explosion of the number of
computed macrorules, most of which are unusable, can result.

Again, the aim is to generate macrorules that differ structurally from the
training example, yet result in compiled knowledge that will be useful for
solving future problems. An obvious way to reduce the number of unusable
rules generated from the CPG is by constraining rule dependencies in such
a way as to reflect more closely the control knowledge used for the training
example.

5 Partial Chronological-Precedence Graphs

Using the fact that some rules decompose problems into independent sub-
problems, one can envision an explanation structure consisting of a partial-
chronological-precedence graph (PCPG) of rules. For example, if B; decom-
poses a problem into independent subproblems A and B, then R; chronolog-
ically precedes all of the rules used in solving A and B. There is, however, no
chronological relation between the rules for solving A and those for solving
B; they do not need to be considered for step (1) of Figure 9.

Consequently, the PCPG is more constrained than the CPG and fewer
subLDG;; sets are possible. Unfortunately, within a subproblem, rule de-
pendencies in the PCPG continue to be based upon chronology. As with
the CPG, this chronological basis allows the possibility for generating many
useless macrorules.
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Rmacrol =

Rmacro2 =

Rmacro3 =

Rmacro4 =

Rmacrob =

Rmacro6 =

Rmacro7 =

Rmacro8 =

Rmacro9 =

Rmacroll

Rmacroll

Rmacrol2

Rmacrol3

Rmacroi4d

1}

Figure 10:

({VOLUME(?x7, 7x8), DENSITY(?x7, 7x9), ISA(7x10, ENDTABLE),
WEIGHT(?x3, 7x5), WEIGHT(7x4, ?x6), LESS(?7x5, ?x6),
LIGHTER(?x1, 7x2)},

{VEIGHT(?x7, ?x8%?x9), WEIGHT(?x10, E),

LIGHTER(?x3, ?x4), SAFE-TO-STACK(?xi, 7x2)})

({VOLUME(?x7, ?x8), DENSITY(?x7, ?x9), ISA(?x10, ENDTABLE),

WEIGHT(7xi, ?7x5), WEIGHT(?x2, ?7x6), LESS(?x5, ?x6)},
{WEIGHT(7x7, ?x8+7x9), WEIGHT(?x10, 5), SAFE-TO-STACK(?7x1, 7x2)})

({VOLUME(?x3, ?x8), DENSITY(?x3, ?x9), ISA(?x10, ENDTABLE),
WEIGHT(?x4, 7x6), LESS(7x8x7x9, 7x6), LIGHTER(?x1, ?x2)},

{VEIGHT(?7x10, 5), LIGETER(?x3, ?x4), SAFE-TO-STACK(?x1, 7x2)})

({VOLUME(?x4, ?x8), DENSITY(7x4, 7x9), ISA(?x10, ENDTABLE),
WEIGHT(?7x3, 7x5), LESS(?x5, 7xB%7x9), LIGHTER(?x1, ?x2)},

{WEIGHT(?x10, 5), LIGHTER(?x3, ?x4), SAFE-TO-STACK(?7x1, ?x2)})

({VOLUME(?x7, ?x8), DERSITY(?x7, 7x9), ISA(?x3, ENDTABLE),
WEIGHT(?x4, ?x6), LESS(5, ?x6), LIGHTER(?x1, 7x2)},

{WEIGHT(?x7, ?x8+7x9), LIGHTER(?x3, ?7x4), SAFE-TO-STACK(7x1, 7x2)})

({VOLUME(?x7, 7x8), DENSITY(?7x7, 7x9), ISA(?x4, ENDTABLE),
WEIGHT(7x3, 7x5), LESS(?x5, 5), LIGHTER(?x1, ?7x2)},

{WEIGHT(?7x7, ?7x8+7x9), LIGHTER(?x3, ?x4), SAFE-TO-STACK(?7x1, ?x2)})

({VOLUME(?x1, 7x8), DENSITY(?x1, 7x9), ISA(?x10, ENDTABLE),
WEIGHT(?x2, 7x6), LESS{?x8%7x9, ?x6)},

{WEIGHT(?x10, 5), SAFE-TO-STACK(?7x1, ?x2)})

({VOLUME(?x2, ?x8), DENSITY(7x2, ?x9), ISA(?x10, ENDTABLE),

WEIGHT(?x1, ?x5), LESS(?x5, ?7x8%7x9)},
{WEIGHT(?x10, 5), SAFE-TO-STACK(7x1, 7x2)})

({VOLUME(?x7, 7x8), DENSITY(?x7, ?7x9), ISA(?x1, ENDTABLE),
WEIGHT(7x2, 7x6), LESS(5, 7x6)},

{WEIGHT(7x7, ?x8+7x9), SAFE-TO-STACK(?x1, 7x2)})

({VOLUME(?x7, ?7x8), DENSITY(?x7, ?x9), ISA(?x2, ENDTABLE),

" WEIGHT(?x1, 7x5), LESS(?7x5, B)},

{WEIGHT(?7x7, 7x8%7x9), SAFE-TO-STACK(?x1i, 7x2)})

({VOLUME(?x3, 7x8), DENSITY(?x3, 7x9), ISA(?x4, ENDTABLE),
LESS(7x8*7x9, B), LIGHTER(?x1, 7x2)},

{LIGHTER(?x3, 7x4), SAFE-TO-STACK(?x1, ?x2)})

({VOLUME(7x4, 7x8), DENSITY(7x4, ?x9), ISA(?7x3, ENDTABLE),
LESS(5, ?x8+7x9), LIGHTER(?x1, 7x2)},

{LIGHTER(?x3, ?x4), SAFE-TO-STACK(?x1, 7x2)})

({VOLUME(?x1, ?x8), DENSITY(?x1, ?x9),

ISA(?x2, ENDTABLE), LESS(7x8%7x9, 5)},

{SAFE-TO-STACK(7x1, ?x2)})

({VOLUME(?x2, 7x8), DENSITY(?x2, ?x9),
ISA(7x1, ERDTABLE), LESS(E, 7x8%*7x9)},

{SAFE-TO-STACK(?x1, ?x2)})

Macrorules for the SAFE-TO-STACK Example Based on the CPG
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6 Rule-Dependency Graphs

Additional constraints can be placed on the explanation structure by con-
sidering logical rule dependencies. Thus, in the development of Argo
[1, 9, 10, 11}, we have experimented with using rule-dependency graphs
(RDGs) as the explanation structures. Like the CPG and PCPG, an RDG
is a directed-acyclic graph that has rule instances as its vertices and directed
edges denoting dependencies among the instances. Unlike the former two, in
which dependencies are based on chronological precedence, RDG dependen-
cies are strictly based on training example causality.

The SAFE-TO-STACK example’s RDG is shown in Figure 11. As with the
PCPG, a similar procedure to the one in Figure 9 can be used to compute
macrorules from RDGs. Step (1) differs in that a subLDG;; is computed for
each edge( R;, R;), rather than each path(R;, R;), in the RDG. An additional
difference is that in step (la) there must be at least one dependency edge
between a consequent and an antecedent for each LDG in subLDG;;; this
is not the case for either the CPG or the PCPG. These differences reduce
considerably the total number of macrorules computed from RDGs.

R1 R2

e
|

Figure 11: Rule-Dependency Graph for the SAFE-TO-STACK Example

Use of the RDG results in only two macrorules, namely Rmacro13 and
Rmacrol4 in Figure 10, being computed for the SAFE-TO-STACK exam-
ple. Note that Rmacroi4 applies to situations differing structurally from
the training example; this compiled knowledge states that an ENDTABLE is
SAFE-TO-STACK on an object whose weight, calculated by multiplying its
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DENSITY and VOLUME, is more than 5, the default weight of an ENDTABLE.

The RDG explanation structure provides a way to constrain macrorule
generation based on training example causality that is not present in the
CPG or PCPG. In the worst case, unfortunately, for n rules there might be
O(n?) edges in the RDG, a situation that would result in having to consider
as many dependencies in the first step of Figure 9 as with the CPG. Appli-
cation dependent experience with Argo, however, reveals that on average the
number of edges is much smaller.

Even when the RDG is used, the multiplicative effect on merged-LDGs
(Figure 9) of having more than one LDG in subLDG;; per edge(R;, R;) can
lead to a combinatorial explosion in the number of macrorules computed.?
Thus, domain-independent schemes for reducing the number of LDGs be-
tween pairs of dependent rules in the RDG are desirable. Intuitively, the
maximal number of dependencies should be used whenever possible in or-
der to reduce the number of antecedents in the generalization and yield
more general macrorules. Because we have assumed rewrite rules, maximal
dependencies must be constructed in such a way that at least one conse-
quent/antecedent dependency is guaranteed for each rule dependency in the
RDG. Use of maximal dependencies in Argo has proven to be successful in
significantly reducing the number of generated macrorules while still preserv-
ing operationality with respect to training examples.

One might argue that this maximal-dependency approach could also be
used for the CPG and PCPG. Unfortunately, use of maximal dependencies
for a given CPG or RDG might lead to a set of macrorules that are not oper-
ational with respect to the training example. This situation arises because,
unlike dependencies imposed by the RDG, chronological dependencies do not
place any causal constraints on rule instances.

7 Abstraction with Rule-Dependency Graphs

Argo, a derivative of the Proteus expert-system development environment
[24], is a tool for building knowledge-based systems that transfer experience
from previous problem-solving efforts to new problems via analogical reason-
ing [1, 9, 10, 11]. Problem-solving experience is acquired in the form of a

1This situation does not arise in the SAFE-TO-STACK example.
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problem-solving plan represented as an RDG. From this graph, Argo calcu-
lates a set of macrorules based on increasingly abstract versions of the plan.
These macrorules are partially ordered according to an abstraction relation
for plans, from which the system can efficiently retrieve the most specific plan
applicable for solving a new problem. The use of abstraction in a knowledge-
based application of Argo allows the sytem to solve problems that are not
necessarily identical, but just analogous to those it has solved previously.

A problem-solving plan in Argo is the explanation structure, in the form
of an RDG, for a training example. Argo implements a type of derivational
analogy [2, 3, 22] to solve new problems by making use of abstracted RDGs
from previous problem-solving experiences. The motivation for using an
RDG to represent a problem-solving plan in Argo is that an RDG encom-
passes a level of detail that facilitates building plan abstractions and learning
their corresponding macrorules.

A number of domain-dependent and domain-independent techniques for
automatically generating plan abstractions are possible. These include delet-
ing rules from a plan, replacing a rule by a more general rule that refers
to fewer details of a problem (as in ABSTRIPS [25]), and generalizing a
macrorule for the plan without reference to the plan itself. Argo abstracts
a plan by deleting all of its leaf rules, which are those having no outgoing
dependency edges. For many domains, the leaf rules trimmed from a plan
tend to be those that deal with details at the plan’s level of abstraction.
Increasingly abstract versions of a plan are obtained by iteratively trimming
it until either one or zero nodes remain.

A domain suited for the type of abstractions described above is that of
design. In fact, the primary application that has been used for building and
testing Argo is a prototype system for VLSI digital circuit design called Argo-
V. Figure 12 shows a plan for solving a content-addressable memory (CAM)
design problem. This illustration not only shows the RDG, but also how it
is abstracted and how many macrorules are computed per abstraction. Note
that macrorules are independently computed for each connected subgraph of
the plan. Connected subgraphs are associated with independent subproblems
within a design and, thus, lead to macrorules whose reusability in future
problem solving is improved. For the sake of illustration, alternative circuit
designs for portions of the CAM-cell design corresponding to Macrorule-9
and Macrorule-10 appear in Figure 13.

In addition to using RDGs to represent explanation structures and build
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______ Macrorule-9 & Macrorule-10

DC: Decompose conditional-signal-assignment statements

NEW: Construct new signal-assignment statements from decomposed statements
DU: Decompose unconditional-signal-assignment statements

EQ: Transform a statement containing an equality into a simpler statement
WIRE: Instantiate a connection between two components

PP: Transform a block of signal-assignment statements into ones representing a cascade
of pass-transistor networks

XTN: Instantiate an exclusive-OR pass-transistor network
PASS: Instantiate a pass transistor

MD: Decompose an entity into one containing memoried statements and one containing
combinational logic

MS: Complete the specification of an entity containing memoried statements
MEM: Instantiate an inverter loop for a one-bit memory

AND: Instantiate an AND gate

Figure 12: Design Plan (RDG) for the CAM-cell Design Problem
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Using Macrorule-9:

State Compare

7ol

1 Match

||

Compare State

v

Using Macrorule-10:
State Compare

[T =
| |

Compare State

Match

Figure 13: Circuit Designs for Macrorules Learned from a Subproblem of the
CAM-cell Training Example
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macrorule abstractions, the following extensions to EBL have been imple-
mented in Argo:

8

e Argo incorporates the Proteus frame system as one of its knowledge

representation mechanisms. Frames are organized into an inheritance
lattice, thereby enabling multiple inheritance and typed variables. Us-
ing Argo’s unifier, the types of the variables in macrorules are auto-
matically deduced.

The use of Lisp is allowed in Argo rules, and thus, Argo’s learning
mechanism has been designed to learn certain types of macrorules in-
corporating Lisp. In particular, the learning algorithm accommodates
LDGs in which Lisp expressions are bound to variables. This, by the
way, is the use of Lisp implied in the SAFE-TO-STACK example [20]. A
requirement for incorporating a Lisp expression into a macrorule is that
the number of times the expression is evaluated must be the same as if
the macrorule’s component rules had been individually applied.

Each datum in Argo is included in a justification-based truth-
maintenance system (JTMS) and, as such, has a set of justifications
and a belief status of IN or OUT [5]. The justification for a macrorule
in the JTMS is a list of its component rules. If any of these component
rules is invalidated by being given an OUT status, the macrorule is
also invalidated. This, in effect, gives Argo a nonmonotonic learning
capability [16].

Argo can compute macrorules from component rules containing spe-
cialized second-order predicates, such as UNLESS, which implements
negation-by-failure, and ERASE, which invalidates existing justifications
of a datum. The latter enables an emulation of rewrite rules in a man-
ner similar to the “delete” literals in STRIPS operators [6, 7].

Conclusions

Most EBL systems compute a macrorule for a training example using the ex-
ample’s proof tree as an explanation structure. Unfortunately, use of proof
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trees limit the learned knowledge to be structurally equivalent to the train-
ing example. This limitation arises from the fine-grained nature of the lit-
eral dependencies captured in proof trees. We have presented three alterna-
tive explanation structures, based on using rule instances to capture expla-
nations: chronological-precedence graphs, partial chronological-precedence
graphs, and rule-dependency graphs. In the Argo system, use of RDGs,
which are based on training example causality among rule instances, has
proven to be of much benefit in learning abstractions of training examples
suitable for analogical reasoning.

Unfortunately, the alternative explanation structures can potentially
cause a combinatorial explosion in the number of macrorules computed from
a training example. We have suggested the use of maximal edge dependencies
for the RDG as a heuristic to reduce, but not preclude, the potential for this
combinatorial explosion. Other domain-independent and domain-dependent
heuristics can be used incrementally to prune macrorules that are unlikely to
be applicable to future problems. These heuristics can be used in conjunction
with criteria for establishing the operationality of computed macrorules in
order to mitigate the potential combinatorial explosion.

Even if the number of macrorules per training example can be controlled,
the number of macrorules learned from many training examples can grow
considerably. As presented in [19], this monotonic accumulation of compiled
knowledge is a potential flaw of most EBL systems that can eventually lead to
a degradation in their performance. Again, heuristics, such as usage counters
and operationality criteria, can be used to prune the number of macrorules
retained in the system. We are investigating these heuristics, as well as other
issues concerning the number of learned macrorules per training example and
across training examples.
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