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Abstract

This paper considers the composition of tuples from two binary rela-
tions in order to derive additional tuples of one of these relations. Our
purpose is to determine when the composition is plausible and for which
relation the new tuples are derived. The new tuples represent plausible
additions to a knowledge base. We first present a formal definition of com-
position and our extension to it. We next define conditions on the domains
and ranges of the relations that are necessary for extended composition to
occur. We then show how a set of underlying attributes, independently
specified for each relation, is sufficient for determining plausible composi-
tion, when the primitives are combined according to an algebra. Finally,
we apply our method for extended composition to a representative group
of semantic relations and evaluate the results.

1 Introduction

The construction of a large knowledge base is difficult and requires techniques
that can facilitate knowledge acquisition. Rather than requiring that all knowl-
edge in the base be entered explicitly, a system could be provided with a basic
set of facts and an inference mechanism for inferring additional facts from these
[1]. An ideal system would be able to generate all valid inferences, but no in-
valid inferences. One way to approach this ideal is to provide a set of specialized
inference procedures that collectively generate a valid set of inferences. In this
paper we develop one such procedure, based on an extended composition of se-
mantic relations from a knowledge base. Figure 1 contains examples of this type
of composition. The procedure has the effect of constructing new inference rules,
which, when executed, generate extensions to the knowledge base.

Car ownedly Grover Car ownedy Grover Trunk * artOf Car

partOf ownedBy  containedIn neither containedIn containedIn

Wheel Ernie SpareTire

Figure 1: Three examples of the composition of two semantic relations



2 Extended Composition

A binary relation R consists of a set A (the domain), a set B (the range), and a
mapping that specifies the set of tuples (a,b) belonging to R, where a € A and
b € B. The mapping may be explicit by listing all the tuples in R or implicit
by providing rules for selecting the tuples. In a large frame-based knowledge
system, such as CYC [4, 5], the mapping for a relation is only partially specified;
other tuples for the relation are added as knowledge is entered. The procedure for
composing relations outlined in this paper provides a means of inferring additional
tuples belonging to an implicitly defined relation.

A composite relation results from applying the binary operation of composi-
tion to two binary relations. This operation is defined implicitly by the following
definition of a composite relation [7]:

Definition 1 Let R; be a relation from set A to set B and R; be a relation from
set B to set C. The composite relation from A to C, denoted R; - R;, is

R;-R; ={(a,c) | ATbjb € BA (a,b) € R; A (b,c) € R;]}
We define extended composition as follows:

Definition 2 Let R; be a relation from set A to set B and R; be a relation from
set C to set D. The extended composite relation from A to D, denoted R; ©® R;,
18

R, OR;={(a,d) |laec ANdeDATDeBAbeCA(a,b) € R;A(b,d) € Rj|}

In the remainder of this paper, we denote (a,b) € R; by a.R;.b.
If we denote the converse relation of R by R€, then it can be shown that

(Ri® R; C Ry) & (RS G RS C RY)

Extended composition can also be shown to be associative and not commutative.
Extended composition is represented pictorially in Figure 2.

R ® R

Figure 2: A pictorial representation of the extended composition of relations R;
and R;

We would like to have an algorithmic way of determining when R; © R; is
nonempty and whether it is a subset of R; or R; or neither. Our method for
making this determination is based on two premises:

e the domains and ranges of the two relations must be type-compatible, and

2



e the primitives (defined below) of the relations must combine compatibly.

If the first premise is satisfied by relations R; and R;, then the primitives of the
two relations can be combined to yield the primitives of the composed relation,
R; ©® R;. The primitives of R; © R; can then be compared to those of R; and R;
to determine if R; © R; is a subset of R;, R;, both, or neither.

The type compatibility specified by the first premise results in the following
necessary conditions for the extended composition of relations:

1. The intersection of sets B and C must be nonempty; otherwise, the relation
R; ® R; will be empty.

2. For the derived tuples to be elements of R;, the intersection of sets B and
D must be nonempty.

3. For the derived tuples to be elements of R;, the intersection of sets .4 and
C must be nonempty.

These conditions, represented using Venn diagrams in Figure 3, eliminate many
of the possibilities for extended composition. An algebra based on primitives of
the relations eliminates additional implausible compositions.

Figure 3: Type requirements on the domains and ranges of R; and R;

3 Primitives for Semantic Relations

The second premise above requires a set of primitives that describe each relation
and a set of rules for combining primitives. We have postulated a group of ten
primitives, based on a literature survey [2, 3, 8, 9] and an analysis of numerous
semantic relations in the CYC knowledge base [5]. These primitives are inde-
pendently determinable for each relation and relatively self-explanatory. They
specify a relationship between an element of the domain and an element of the
range of the semantic relation being described. The primitives, described next,
have values from the set X = {+,0, —}, where + indicates that the relationship
holds, — that it does not, and 0 that it is not applicable.

Composable: Some semantic relations can never be meaningfully composed
with other relations due to their fundamental characteristics. For exam-
ple, attributes are not generally transferable through other relations.



Functional: The domain of a Functional relation is in a specific spatial or tem-
poral position with respect to the range of the relation. For example, in
an instance of the componentOf relation, such as Wheel.componentOf.Car,
the Wheel is in a specific spatial position with respect to the Car. This
property does not hold for Juror.memberOf.Jury.

Homeomerous: In each instance of a Homeomerous relation, the element of the
domain must be the same kind of thing as the element of the range, e.g.,
in PieSlice.pieceOf.Pie, the slice is the same stuff as the pie.

Separable: The domain of a Separable relation can be temporally or spatially
separated from the range, and can thus exist independently of the range.
For the above componentOf example, the Wheel can be separated from
the Car and can exist independently. For Wheel.madeOf.Aluminum, the
Aluminum cannot be separated from the Wheel if the Wheel is still to exist.

Structural: The domain and range of a Structural relation have a hierar-
chical relationship in terms of a physical structure. For example, in
Wheel.componentOf.Car, the hierarchical structure is from part to whole
and the Structural property of componentOf has a — value.

Temporal: The domain and range of a Temporal relation are ordered in regard
to a temporal structure. For example, there is no notion of time in the
relation pieceOf, indicated by a value of 0 for Temporal; in causedBy, a
value of — indicates that the range element precedes the domain element.

Intangible: The domain and range of an Intangible relation have a hierarchical
relationship in terms of ownership or mental inclusion. As an example,
the relation ownedBy has a value of — for Intangible, because the element
owned is intangibly included in the owner’s sphere of influence.

(Note: values of the last three primitives for the converse of a relation are
opposite to those for the forward relation.)

Near: The domain of a relation with property Near is physically or temporally
close to the range.

Connected: The domain of a relation with property Connected is physically or
temporally connected to the range. A connection, which may be indirect,
is indicated by +; no connection is denoted by —.

Intrinsic: A semantic relation has the property Intrinsic if the relation is an
attribute of the stufflike nature of its domain or range. For example,
the relation hasDensity is an intrinsic property of its domain, so that if
Aluminum.hasDensity.5, then every piece of Aluminum inherits this value for
its density.

To test our hypotheses, we have selected a representative set of relations,
including part-whole, subclass, ownership, causal, and attribution relations. For
each of these relations, Table 1 shows the values we have assigned to the above
primitives. The domains and ranges of the relations, shown in Table 2, are also
needed to determine plausibility.



Table 1: Primitives for Semantic Relations

Relation Name Relation Primitives

n. Intrin.

@
o
=1
Q
o
=1

Compos. Fu Homeo. Sep. Struct. Temp. Intang. N

=]
o
o)

+

a. componentOf
b. memberOf

c. pieceOf

d. constituentOf
e. subeventOf

f. subregionOf
g. subprocessOf
h. subsequenceOf
i. purposeOf

j. causedBy

k. producedBy
1. ownedBy

m. focusOf

n. connectionOf
attributeOf
containedIn
subfieldOf
hasMechanisms
isA

. hasWeight

. hasDensity

I+ +++++ 1+

+ 1 |++il

+
T

rFrr+rrr++1r++14++1r+10 00+

'l lTelol I ool I LI 1| |
cooco++o++oococo++++++ o0+
+
T
i+ r++1 11+ +1++++++1

co++ I o+ 1 +++++1 1 I I +++
cooco |l ococoocococo | | | | | o]l cooco

L+ +++ I ++++++++++++
[ T O o T e O O e i o A B

co | oo | o]l coocoococo | ol ol | |

<g o@D

4 Algebra of Relation Primitives

We assume that the results of composing two semantic relations can be deter-
mined from the results of combining their ten relation primitives (the accuracy
of this assumption is evaluated below) as follows:

Ri ®© R] = VRZ' o VR]‘ (1)

where Vi € X% X = {+,0, -}, and o is the combination operator. That is, for
the purposes of relation composition, each relation can be represented solely by
a vector of values for its ten relation primitives. It thus becomes necessary to
define precisely how two of these vectors combine.

We assume that the primitives are orthogonal and form a linear basis for the
set of relations. The combination operator o can thus be defined in terms of a
separate operation table for each primitive, as shown in Table 3. Each operation
table is symmetric and has been derived from empirically determined rules for
relation composition, such as the following:

e In order to compose, two relations must have the same hierarchical direction
for their Structural, Temporal, and Intangible primitives.

e If R, has the property Connected and R; does not, then R; ® R; (and
R; ® R;) cannot have the property Connected. Therefore, R; ® R; (and
R; ® R;) is not a subset of R;.

e If R, has the property Separable and R; does not, then R, ®R; (and R;®OR;)
has the property Separable. Therefore, R; ® R; (and R; ® R;) may be a
subset of R;.



Table 2: Domains and Ranges for Semantic Relations

Relation Name Domain Range
a. componentOf IndividualObject IndividualObject
b. memberOf Thing Collection
c. pieceOf Stuff Stuff
d. constituentOf Stuff IndividualObject
e. subeventOf Event Event
f. subregionOf SpatialObject SpatialObject
g. subprocessOf Process Process
h. subsequenceOf Sequence Sequence
i. purposeOf Event Agent
j. causedBy Event Event
k. producedBy IndividualObject Process
l. ownedBy IndividualObject Tangible&IntangibleObject
m. focusOf IntangibleObject IntangibleObject
n. connectionOf IndividualObject IndividualObject
o. attributeOf Attribute Thing

p. containedIn IndividualObject SpatialObject
r. subfieldOf IntangibleStuff IntangibleStuff
s. hasMechanisms Event Event

t. isA Collection Collection

u. hasWeight TangibleObject Number

v. hasDensity TangibleObject Number

The resultant algebra enables the primitives of the composed relation to be
derived. If these derived primitives match the primitives of one (or both) of the
composing relations, then a tuple of one (or both) of these can be instantiated,;
else, the knowledge base can be searched to find all relations that match the
resultant primitives, and, if not already instantiated, these can be presented to a
user as potential new tuples for the knowledge base.

As an example of this inference procedure, assume that a user has entered
the assertions Wheel.componentOf.Car and Car.ownedBy.Grover. Combining the
primitives from Table 1 for componentOf and ownedBy according to the com-
bining rules in Table 3 yields the following vector of primitives for the resultant
relation: Vg = (+ — — + 00 — 0 +/— +4/—). This vector matches the
primitives of ownedBy and does not match those of componentOf, thus inferring
that Wheel.ownedBy.Grover.

The plausibility of this result is checked by comparing the types of the domain
and range of this relation instance with the types specified for ownedBy in Table 2
To do this, a taxonomy of types is needed that enables the intersection of domains
and ranges to be determined. Such a taxonomy is typically part of frame-based
knowledge-representation systems. The types used for our examples are from
the CYC ontology [5], a portion of which is reproduced in Figure 4. Using this
ontology and Table 2, we find that Wheel is an instance of IndividualObject,
Grover is an instance of Tangible&IntangibleObject, and these match the
domain and range of ownedBy. The resultant inference is thus deemed plausible.



Thing

| T

IndividualObject Intangible Represented Thing
N |
Event Stuff IntangibleObject Collection
N T
SomethingOccurring Process IntangibleStuff — AttributeValue Relationship
/\
DynamicProcess SomethingExisting Constraint Slot
/\
Tangible&IntangibleObject TangibleObject
|
Agent TangibleStuff

Figure 4: A type hierarchy, taken from the CYC ontology, where each node is a
set and each arc denotes a subset relationship



Table 3: Operation Tables for Combining Relation Primitives

Composable Functional Homeomerous
R; Rj R;

R; - 0 + R; - 0 + R; — 0 +
— P 0 P - |+/— 0 — — — 0 —
0 0 0 0 0 0 0 0 0 0 0 0
+| P 0 + +] - 0+ +] - 0+

Separable Structural Temporal
R; R; R;

R; — 0 + R; — 0 + R; — 0 +
— — 0 + - — 0 P — — 0 P
0 0 0 0 0 0 0 0 0 0 0 0
+] + 0 + +| P 0+ +| P 0+

Intangible Near, Connected Intrinsic
R; R; R;

R; — 0 + R; — 0 + R; — 0 +
— - 0 P - | +/- 0 - — - 0 +/-
0 0 0 0 0 0 0 0 0 0 0 0
+ P 0 + + - 0 + +|+/— 0 +

Note: +/— indicates that the relations compose, but that this primitive does not constrain
the composition. P denotes prohibited, indicating that the relations do not compose.

5 Results

The above inference procedure was applied to the set of relations shown in Tables
1 and 2. The results, in the form of a composition matrix, are shown in Table 4.
Each entry in Table 4 is equivalent to a rule of the form

Vo € domain(R;) Vy € [range(R;) N domain(R;)] Vz € range(R;) 2)
[z.Ri.y Ny.Rj.z — x.(R; ©® R;).Z]

The results reflect the order of composition, e.g., R; ® R; as well as R; © R;,
which has not been previously addressed [3, 9]. Because each of the operators for
combining primitives is symmetric, the composition matrix is nearly symmetric.
The only exceptions result from type compatibility, which sometimes excludes a
composition from occurring. For example, f ® 1 C [, but I ® f = (), because the
intersection of the range of [ with the domain of f is empty.

The following are specific examples of plausible inferences predicted by the
extended composition of relations (where — denotes logical implication):

e a®lClI
Wheel.componentOf.Car A Car.ownedBy.Grover
— Wheel.ownedBy.Grover

e aOpCp
Tire.componentOf.Car A Car.containedIn.Garage
— Tire.containedIn.Garage



Table 4: Composition Matrix for R; ® R;

R;
Rila b ¢ d e f g h i j kX I m n o p r s t u v
ala - - - - - a - - - 1 - a - p - - - - -
b |- - - - - - - - L
c|- - ¢ - - ¢ - ¢ - - -1 - - - - - - - -
d|{- - - d - dd - - - - -1 - - - p - - - - -
e |- - - - e e - 1 j kK Il m - - - - s - - -
f (- - ¢ d - f - - - -1 - - - p - - - - -
g |- - - - e - - i j kK 1 m - - - r s - - -
h|la - ¢ - - - - h i j k¥ 1 - n - p - - - - -
il- - - - i - i i i i i - - - - - - i - - -
I S R NS T A B | SR
k|- - - - %k - k kK i jk k - - - - - - ks - - -
r{y1 - 111 - 11 - - -1 - 1 - - - - - - -
mi|- - - - m - m - - - - I m - - - - - - - -
n|fla - - - - - - mn - - -1 - m - p - - - - -
o | - - - - - Lo
pp - »pP - P - P - - - - -"pP - P - - - - -
r |- - - - - - - - - -1 - - - -"'r*r - - - -
s |- - - - s - s - i js ks - - - - - - s - - -
e
T
e

Note: the letters in this matrix refer to the relations listed in Tables 1 and 2.

pOaCp
Refrigerator.containedIn.Kitchen A Kitchen.componentOfHouse
— Refrigerator.containedIn.House

do fcd
Silicon.constituentOfBeach A Beach.subregionOf.Island
— Silicon.constituentOf.Island

e i ©OeC
Thunder.causedBy.Lightning A Lightning.subeventOf.ThunderStorm
— Thunder.caused By.ThunderStorm

goOmMmCm
Chewing.subprocessOf.Eating A Eating.mechanismOfDigestingFood
— Chewing.mechanismOf.DigestingFood

The technique for relation composition also correctly predicts when neither of
the composed relations can be inferred. For example

e pOIL=10
Grover.containedIn.Car A Car.ownedBy.Ernie
+ (Grover.containedIn.Ernie V Grover.ownedBy.Ernie).



6 Discussion and Conclusions

The inference procedure and results presented in this paper extend the work of
2, 3, 8, 9]. Chaffin and Hermann [2] identify a set of relation elements (relation
primitives) that can be used to describe and classify relations. Each relation
element is a fundamental property that holds between the domain and range of
the relation.

Winston, Chaffin, and Herrmann [9] define three independent relation ele-
ments, nclusion, connection, and similarity; these are used to describe spatial
inclusion, meronymic inclusion, and class inclusion. When any inclusion relation
is combined with another, they find that a valid inference can be made and that
the resultant relation is the one having the fewest relation elements. In addition,
Winston et al. identify three dependent elements of connection that explain the
transitivity, but not the composability, of six meronymic relations.

Cohen and Loiselle [3] identify two deep structures for relations: hierarchical
and temporal, each having a direction. Each relation is hierarchical, temporal, or
both. When two relations are composed, the resultant relation may have any of
several possible deep structures, depending on the properties of the composing
relations. They found that inferences are most plausible when either the hier-
archical or temporal directions of the two composing relations are the same as
that in the composed relation. Like Winston et al., they do not consider type
consistency in composing relations.

We extend the research efforts cited above by basing relation composition
on set theory. On this basis, we conclude that typing of the domain and range
elements may restrict composition, independently of any relation attribute re-
strictions. In addition, we extend the work of [9] by explicitly considering the
hierarchical nature of the inclusion relations, as suggested by [3]. This leads to
a means of defining the primitive attributes of the converse of a relation and,
consequently, of composing a converse with other relations.

We provide a vector of ten primitives for each of 21 typical relations. This
vector representation provides a more powerful basis for ranking and classifying
relations than does the linear ordering in [9]. Since there are three possible
values for each of the ten primitives, our representation provides for 3'° = 59, 049
different basis vectors that can be used to represent relations. The number of
relations that could be represented is actually much greater because of the large
number of types that could be chosen for the domains and ranges.

The inference procedure we developed for relation composition is based on
several assumptions. The foremost of these is that relation composition is equiv-
alent to a combination of the corresponding vector of primitives. The correctness
of this assumption is borne out by the plausibility of the predicted inferences,
shown in Table 4. A second assumption is that each relation primitive is orthog-
onal to the others. This simplifying assumption greatly increases the efficiency
of the inference procedure by yielding operation tables (see Table 3) that are
independent of each other. Although the validity of the results supports this
assumption also, there is some evidence that the chosen primitives are NOT or-
thogonal. For example, the primitives Connected, Homeomerous, and Intrinsic
combine dependently according to the following rule to yield compositions with
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attribute relations not predicted by our algebra:

(attributeOf Intrinsic.+) A (R;.Connected.+) A (R;.Homeomerous.+)
— (attributeOf ® R; C attributeOf)

Such a rule would yield the valid inference densityOf @ pieceOf C densityOYf,
which does not result from our relation algebra. It could be applied after extended
composition and viewed as an additional inference mechanism.

Other valid inferences are missing from Table 4, including mem-
berOf ® isA C memberOf and componentOf ® attributeOf C attributeOf. How-
ever, we feel that these omissions do not diminish the utility of our results, in
that our procedure is designed for correctness instead of completeness. In addi-
tion, many knowledge-based systems have other inference mechanisms that could
generate these missing inferences. For example, an automatic classifier [6] would
generate the inference memberOf © isA C memberOf.

The potential for generating new inferences in a large knowledge base, such as
the one in CYC, is enormous. CYC, currently with >4000 relations, could have
approximately eight million possible compositions. Of these, 20% are predicted to
be plausible, based on the percentage of valid entries in Table 4. For all possible
values of relation primitives, no more than 31% could be composed validly due
to prohibited entries in the operation tables for combining primitives. The 30,000
assertions now in the CYC knowledge base can be combined using the predicted
compositions to yield many new inferences.

However, there are two major problems with extended composition. First,
reason maintenance for the resultant inferences is computationally problematic,
because the inferences depend not only on the relations being composed, but
also on the relation primitives for all of the relations involved. Second, assigning
values for the relation primitives is conceptually problematic. The values are
subjective and must be entered manually for each relation in a knowledge base.
The validity of the inferences generated by extended composition are directly
dependent on these values.

Nevertheless, we expect that the relation primitives can be used for classifying
relations, as well as generating new inferences, and for suggesting plausible analo-
gies. The procedure for extended composition appears to be a viable technique
for increasing the information in an existing knowledge base. Because the proce-
dure has the effect of generating new inference rules and then applying them, it
yields plausible inferences that are not within the deductive closure of the original
knowledge base.
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